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ABSTRACT 
Using a combination of geospatial machine learning prediction and sediment 
thermodynamic/physical modeling, we have developed a novel software workflow to 
create probabilistic maps of geoacoustic and geomechanical sediment properties of the 
global seabed. This new technique for producing reliable estimates of seafloor properties 
can better support Naval operations relying on sonar performance and seabed strength, 
can constrain models of shallow tomographic structure important for nuclear treaty 
compliance monitoring/detection, and can provide constraints on the distribution and 
inventory of shallow methane gas and gas hydrate accumulations on the continental 
shelves. 
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1. MOTIVATION 
The Arctic Ocean is one of Earth’s last frontiers. As climate change continues to expose this once 
frozen marine expanse, accessibility and global interest in seafloor sovereignty has been steadily 
increasing. The United States, one of the eight Arctic Nations, faces new security challenges 
including the defense of its Arctic borders, protection of economic interests such as petroleum and 
fisheries, maintaining freedom of navigation, and ensuring maritime domain control.  

The U.S. Navy has operated submarines under the Arctic since the passage of the USS Nautilis in 
1958 (Allen et al., 2017). Recently, a new Naval Arctic strategy has been released that now includes 
“blue-water Arctic” operations (Eckstein, 2018). Such Naval operations, including navigation, anti-
submarine warfare (ASW), and mine warfare (MIW) depend heavily on sonar performance and 
seabed strength.  

The Navy relies on sound (acoustic waves) in the ocean to perform a variety of tasks critical to its 
national security mission. Sound interacts with everything in the water column, including the sea 
surface and seafloor. Sound can also be altered significantly as it penetrates the seafloor and interacts 
with geologic structures before returning to the water column to propagate further. Over long 
distances there can be many interactions with the sea surface and seafloor. Therefore, knowing the 
seabed geology constrains its acoustic properties, specifically the sound speed, density, and 
attenuation. Knowing the acoustic properties allows us to forecast the sound interaction with the 
seabed, and subsequently the performance of any given sonar system. 

Reliable estimates of key seafloor properties (e.g. porosity, sediment type, and phase fractions of 
solid, liquid, and gas) are required to predict geoacoustic and geomechanical properties. In particular, 
shallow methane accumulations in seafloor sediments have enormous effects on sonar performance 
and seabed strength, however, only in the gas phase. Sub-seafloor thermodynamics, such as the 
temperature and pressure, control gas solubility and the gas hydrate stability boundary, and 
subsequently, where gas-phase methane occurs.  

The Arctic Ocean is a new, challenging theater of operations for the military, where direct seafloor 
observations (data) are far sparser than in previous areas of Naval interest, leaving operational 
activities such as ASW, MIW, and others unsupported. Large campaigns of seafloor data acquisition 
(the current solution to this problem elsewhere) are unlikely in the Arctic for the foreseeable future. 
Instead, a means of probabilistically estimating seafloor properties based on existing sparse 
observations with predictive numerical simulation, can form the optimal environmental input to 
support ASW and MIW tactical decision aids. Using a combination of geospatial machine learning 
prediction and sediment thermodynamic/physical modeling, we have created probabilistic maps of 
key seafloor characteristics that control geoacoustic and geomechanical sediment properties. This 
new technique for producing reliable estimates of Arctic seafloor properties will better support 
Naval operations relying on sonar performance and seabed strength. 

This report summarizes the software workflow we have developed and used to produce probabilistic 
maps of any seafloor quantity of interest. It includes descriptions of the model validation exercises, 
and demonstrations of the workflow at several seafloor locations. We also provide a selected list of 
~30 publications resulting from this work available to the reader for more detail.  
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2. THE GLOBAL PREDICTIVE SEABED MODEL (GPSM) 

2.1. Introduction to GPSM 
The objective of seafloor prediction is to obtain optimal estimates of any given quantity where it has 
not been directly measured.  Because the seafloor is vast and very sparsely sampled in most 
quantities, we require a prediction almost everywhere. Conventional interpolation techniques (e.g. 
splines in tension), that rely only on geospatial proximity, ignore almost everything we know about 
the seabed are ill-suited for our purpose. 
Geospatial Machine Learning (GML) predictions are based on the proximity in multi-dimensional 
geologic predictor space, rather than just geospatial proximity. With GML we predict, or interpolate 
intelligently, taking advantage of areas that may be geographically very distant, but geologically very 
similar. GML can use all the information we have about the seabed to predict what we do not know. 
Not relying strictly on geographical proximity allows prediction in geographical areas that are denied, 
as well as simply difficult-to-access, such as the Arctic. 

GML uses predictors and a predictand. The 
quantity we wish to predict (the predictand) must 
also be observed at multiple locations (these 
observations are the sparse data). Increasing 
numbers of observations generally correspond to a 
denser sampling of predictor space, and more 
certain predictions. 
The geologic predictors used in GML are quantities 
that are known both at the geospatial locations of 
the observations, as well as the locations of sites at 
which we want to predict. These can be quantities 
that have been measured (e.g. bathymetry), 
calculated (e.g. distance from shore), or predicted 
from other GML applications (e.g. porosity). Spatial 
statistics of these parameters may also be used as 
predictors. One must clearly be careful to avoid 
circularity; e.g. using predicted porosity as a 
predictor to predict a quantity, then subsequently 
using that same quantity to upgrade the prediction 
of porosity. 
The relationship between the predictors and the 
predictand need not be known a priori – this is a 

strength of the GML approach, but also means that for any given application we do not know which 
predictors will be the most useful. Bad predictors (those poorly correlated with the predictand), can 
degrade the prediction. For this reason, we typically employ several strategies of predictor (also 
called feature) selection – determining the best predictors for any given seafloor quantity. 

Figure 2-1. Seafloor porosity predicted by 
GPSM using geospatial machine learning. 

(Martin et al., 2015) 
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Quantitatively determining the best predictors, as well as quantifying the accuracy of the final 
prediction, is done through validation. To validate any given group of predictors, we withhold a 
random fraction of the observed data (usually 10%, for 10-fold validation), make predictions at 
those locations, and then compare the predicted with the observed values. This is repeated with a 
different random fraction, until each observation has, at some point, been withheld and predicted. 
The error between observed and predicted is a reliable, quantitative measure of predictive skill of the 
prediction method. Validation proves quantitatively and decisively the superiority of machine 
learning interpolation to conventional, geospatial-only interpolation. 
The Naval Research Laboratory’s Global Predictive Seafloor Model (GPSM) is a practical 
implementation of GML designed to provide near real-time estimates of Navy-relevant quantities 
from continuous seafloor property fields generated by machine learning algorithms (K-Nearest 
Neighbor, Random Forests, etc.) given often sparse measurements or direct observations compiled 
from widely available sources.  
GPSM has been in use and continuously improved since providing the first global seafloor porosity 
field, published in 2015 (Martin et al., 2015; see Figure 2-1). More recent publications, some 
supported in whole or in part by this project include predictions of total organic carbon (Lee et al., 
2019), seep probability (Phrampus et al., 2020), seafloor sediment accumulation rates (Restreppo et 
al., 2020), recent bathymetry change (Obelcz et al., 2020), sediment thickness vs. geologic age (Lee et 
al., 2020), density (Graw et al., 2021), and gas hydrate accumulation (Eymold et al., 2021). A more 
detailed discussion of how GPSM is used is presented in Section 2.2. 

2.2. Specifics of GPSM Usage for Seabed Modeling 
Past estimates of seafloor characteristics have been made from an assortment of data, including well 
logs (Hillman et al., 2017; Lee & Waite, 2008; Majumdar et al., 2017) and seismic surveys (Shipley et 
al., 1979; Wood & Ruppel, 2000) conducted by industry, military, and academic research groups. 
Despite their importance in determining the geo-acoustic and geo-mechanical properties for the 
seafloor, observations across much of the planet remain sparse, especially in sensitive areas such as 
the Arctic. Because extensive campaigns to accumulate higher resolution data of the seafloor remain 
prohibitive, probabilistic estimations of critical seafloor parameters such as porosity, sedimentation, 
and TOC can be made using geospatial machine learning (GML) techniques using GPSM, based on 
the sparse available data (Lee et al., 2019; Martin et al., 2015). By using these predictions as variable 
or uncertain input parameters for geophysical modeling, uncertainties from the input space can be 
propagated into numerical simulations to produce probabilistic maps of additional properties within 
the sediment column, such as acoustic velocity of the sediments, or the depth of the gas hydrate 
stability zone (GHSZ). 

GPSM provides predictions for values of sedimentation rate (m/yr), total organic content (TOC) 
(%), heat flux (W/m2), sediment porosity, seafloor depth (m), seafloor temperature (°C), among 
many other characteristics of interest. Current resolution for the model is up to 5 arc-minute spacing 
across the globe. By using multivariate data of seafloor physical properties, the model extrapolates 
from better-constrained areas to poorer-constrained areas based on similarity in geologic 
characteristics rather than just geographic distance. The data provided by the model include both the 
expected values and standard deviations on predictions for seafloor depth, seafloor temperature, 
TOC, heat flux, sedimentation rate, and porosity structure at each location in a desired location, 
such as the Blake Ridge study area (Figure 2-2), for example. Estimates for TOC and heat flux were 
made using the k-nearest neighbors (KNN) algorithm (Lee et al., 2019) based on datasets of TOC 
(Seiter et al., 2004) and heat flux (Goutorbe et al., 2011). Preliminary predictions for sedimentation 
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rate come from taking sedimentary thickness values from GlobSed (Straume et al., 2019) and 
dividing by their reported ages (Müller et al., 2019). Seafloor temperature estimates are provided 
through the World Ocean Atlas (Locarnini et al., 2018) and depths were taken from SRTM15+ 
down-sampled to 5 minutes (Tozer et al., 2019). Porosity profiles were determined by the Random 
Forest method using data from the Deep Sea Drilling Project, Ocean Drilling Program (ODP), 
Integrated Ocean Drilling Program (IODP), and Pangaea data sets (Martin & Wood, 2017; Martin et 
al., 2015). 

 
Figure 2-2. Map of average GPSM values for the Blake Ridge study area. Panel A shows the 
temperature in °C, Panel B shows the TOC means in %, Panel C shows sedimentation rate (ω) 
means in mm/yr, and Panel D shows the heat flux (Q) means in mW/m2. All variables are mapped 
such that yellow colors indicate higher values and blue colors indicate lower ones. Onshore areas 
are shown in white and bathymetric contour intervals between 500–3,500 mbsl are plotted as 
dashed lines with the 500 mbsl line indicated in red. Based on Figure 2 of Eymold et al. (2021). 
 
The GPSM results used in this report utilize publicly available data. For example, one such publicly 
available database is dbSEABED (http://instaar.colorado.edu/%7Ejenkinsc/dbseabed/), used to 
predict sediment type (terrigenous, biogenous, granitic, basaltic, calcareous, or siliceous) and grain 
size. dbSEABED catalogues millions of sediment samples collected throughout the world’s oceans 
and over several decades.  The following information and sediment parameters are included in the 
database:  latitude, longitude, water depth, dominant bottom type of sediment (rock, gravel, sand, 
mud), and percentages of sediment types (gravel, sand, mud) (Figure 2-3).  

http://instaar.colorado.edu/%7Ejenkinsc/dbseabed/
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Figure 2-3. dbSEABED Dominants Classification 2019 color charts to be used with visual displays 
of the database. 

 

 
Figure 2-4. Map of available surficial sediment samples in dbSEABED in an example Alaskan 

North Slope region of interest. 
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For example, a search in dbSEABED of an example region of interest revealed the predominant 
surficial sediment type immediately north and offshore of Oliktok Point, Alaska, is sand and 
transitions to mud farther offshore, with infrequent pockets of gravel (Figure 2-4).  Near the 
southeast boundary of the region, surficial sediment type is a mixture of gravel, sand, and mud. 

 

3. DAKOTA 

3.1. General Usage of Dakota Software 
We use the statistical software package, Dakota, to initiate the PFLOTRAN simulations. Dakota was 
developed to optimize simulation codes and provide uncertainty quantification of parameter studies 
(Adams et al., 2019). Values for the mean, μ, and standard deviation, σ, of each seafloor parameter 
from GPSM are written as input to Dakota for each sample location. For our initial model 
demonstration at Blake Ridge (Eymold et al., 2021), five parameters were chosen for sampling: 
TOC, heat flux, sedimentation rate, methanogenesis rate, and a porosity scaling factor. Subsequently, 
we have added the capability to sample on the GPSM values for seafloor temperature and depth in 
the more recent version of the workflow. Dakota uses the Latin hypercube sampling (LHS) method 
to produce a distribution of variables for the simulations by dividing the range of each variable into 
N distributions of probability 1/N and then select N values for each variable in order to accurately 
represent the variability of all parameters (McKay et al., 1979). Based on the ranges of each 
parameter, the TOC, heat flux, sedimentation rate, temperature, and depth were sampled from a 
normal distribution, the scaling factor was sampled with a uniform distribution, and methanogenesis 
rate was sampled using a log-uniform distribution due to its spanning over three orders of 
magnitude. This method provides N values of each variable independent of the other variables to 
provide a set of distinct values of individual parameters for each simulation. To avoid non-physical 
values, upper and lower bounds for each variable can be set using flags in Dakota. 

3.2. Specific Usage of the Dakota Software Options 
Response functions can be defined in Dakota to determine the correlation coefficients between 
input variables and output values from all simulations run. We set two response functions for these 
simulations. First, we calculate the total mass of gas hydrate (𝐻𝐻𝑛𝑛) formed in the complete sediment 
column at every location n following the formulation: 
 
𝐻𝐻𝑛𝑛 =  ∑ 𝑆𝑆ℎ(𝑧𝑧) ⋅ 𝜙𝜙 (𝑧𝑧) ⋅ 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝜌𝜌ℎ𝑧𝑧                (Eq. 3.1), 
 
where 𝑆𝑆ℎ(𝑧𝑧) is the gas hydrate saturation at depth 𝑧𝑧, 𝜙𝜙 (𝑧𝑧) is the porosity at depth 𝑧𝑧, Vcell is the 
volume of the grid block (1 m3), and 𝜌𝜌ℎ is the density of hydrate, set to a constant value of 920 
kg/m3. A similar calculation can be made for the mass of free gas in the sediment profile: 
 
𝐺𝐺𝑛𝑛 =  ∑ 𝑆𝑆𝑔𝑔(𝑧𝑧) ⋅ 𝜙𝜙 (𝑧𝑧) ⋅ 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑋𝑋𝑔𝑔(𝑧𝑧) ⋅ 𝜌𝜌𝑔𝑔(𝑧𝑧)𝑧𝑧       (Eq. 3.2), 
 
where 𝑆𝑆𝑔𝑔(𝑧𝑧) is the gas saturation at depth 𝑧𝑧, 𝜙𝜙 (𝑧𝑧) is the porosity at depth 𝑧𝑧, 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the volume of 
the grid block (1 m3), 𝑋𝑋𝑔𝑔(𝑧𝑧) is the mole fraction of methane at each depth, and 𝜌𝜌𝑔𝑔(𝑧𝑧) is the pressure 
dependent density of methane at each depth.  
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Correlation coefficients were determined for the input values of sedimentation rate, TOC, heat flux, 
and methanogenesis rate and the output mass of hydrate formed during each simulation. The 
Pearson correlation coefficient was calculated by: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦) =  ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)𝑛𝑛
𝑖𝑖=1

2 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

2
      (Eq. 3.3), 

 
where 𝑥𝑥 is the independent variable (e.g., sedimentation rate), 𝑦𝑦 is the response function (e.g., mass 
of hydrate formed), i indicates the simulation number, n is the total number of simulations run, and 
�̅�𝑥 and 𝑦𝑦� are the average independent variable and response function, respectively (Adams et al., 
2019). The simple raw correlation values between the input parameters and 𝐻𝐻𝑛𝑛 for Blake Ridge were 
plotted across the study area (Figure 3-1). 
As a qualitative assessment, the variable with the strongest correlation with 𝐻𝐻𝑛𝑛 can be determined at 
each location (Figure 3-2). Most of the study area has the highest correlation between TOC and 
formation mass (green), while parts of the northern portion exhibit the strongest relationship based 
on sedimentation rate (orange). Along many of the shallowest areas that formed hydrate, 
methanogenesis rate exhibits the strongest relationship (blue). The two formation maxima show a 
stronger relationship with heat flux than any of the other variables (purple). 
 

 
Figure 3-1. Correlation coefficients between hydrate formation mass and sedimentation rate (A), 
TOC (B), Heat Flux (C), and Methanogenesis Rate (D). All maps are shown such that red indicates 
positive correlations, blue indicates negative correlations, and white indicates a lack of 
correlation between variables. Adopted from Figure 7, Eymold et al. (2021). 
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Figure 3-2. Map of variables with the strongest correlation coefficient at each location that formed 
gas hydrate in the Blake Ridge study area. Adopted from Figure 8, Eymold et al. (2021). 

 

4. PFLOTRAN HYDRATE DEVELOPMENT 
The open source, massively parallel multiphase flow and reactive transport finite volume simulator 
PFLOTRAN (Hammond et al., 2011; Lichtner and Hammond, 2012) was modified to simulate gas 
hydrate and ice formation in geologic media. This simulator was chosen both for its high-
performance capabilities and its extensive in-house user and developer community at Sandia. Well-
established workflows exist for probabilistic modeling of large-scale 3D geologic systems by 
coupling PFLOTRAN and Dakota (Mariner et al., 2017); leveraging this expertise and developing 
state-of-the-art simulation capability for simulating gas hydrate systems at large scales motivated the 
selection of PFLOTRAN for this development. 

PFLOTRAN uses a “process model” coupling approach to multi-physics modeling, where 
individual process models solve independent systems of coupled partial differential equations. 
Process models are then coupled together sequentially either at the same timesteps (peer-to-peer) or 
by allowing one process model to sub-step another (parent-child). For example, when coupling 
single-phase flow to global-implicit reactive transport, PFLOTRAN would use both the 
RICHARDS flow mode process model and the GIRT (Global Implicit Reactive Transport) 
transport mode process model. The RICHARDS flow mode solves for the flow of liquid water in 
porous media through the solution of a single partial differential equation for mass conservation. 
The GIRT transport mode is sequentially coupled as a child to the flow mode, meaning GIRT can 
sub-step (take smaller time steps) the flow mode for a given time step and then sync back up at the 
end of the flow time step. 

Newly implemented in PFLOTRAN is a flow mode called HYDRATE mode, which solves the 
coupled system of partial differential equations describing mass conservation of water and gas 
(methane) as well as conservation of energy in porous media. The system is solved using a fully 
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implicit method that is backward Euler in time, meaning the solution is unconditionally stable. The 
HYDRATE mode process model considers water in the liquid, steam, ice, and hydrate phases as 
well as gas in the dissolved, gaseous, and hydrate phases. Just like other flow modes, HYDRATE 
mode can be sequentially coupled to other process models such as GIRT. 

4.1. Governing Equations for PFLOTRAN Hydrate 
PFLOTRAN’s HYDRATE mode solves a system of two mass conservation equations and one 
energy conservation equation to model two-component, equilibrium, multiphase flow in porous 
media considering phase changes and heat transfer. For each component, i, mass conservation takes 
the form: 
 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜙𝜙�𝑠𝑠𝑐𝑐𝜌𝜌𝑐𝑐𝑥𝑥𝑐𝑐𝑖𝑖 + 𝑠𝑠𝑔𝑔𝜌𝜌𝑔𝑔𝑥𝑥𝑖𝑖

𝑔𝑔� +  ∇ ∙ �𝒒𝒒𝒍𝒍𝜌𝜌𝑐𝑐𝑥𝑥𝑐𝑐𝑖𝑖 + 𝒒𝒒𝒈𝒈𝜌𝜌𝑔𝑔𝑥𝑥𝑔𝑔𝑖𝑖 − 𝜙𝜙𝑠𝑠𝑐𝑐𝐷𝐷𝑐𝑐𝜌𝜌𝑐𝑐∇𝑥𝑥𝑐𝑐𝑖𝑖 − 𝜙𝜙𝑠𝑠𝑔𝑔𝐷𝐷𝑔𝑔𝜌𝜌𝑔𝑔∇𝑥𝑥𝑔𝑔𝑖𝑖 � = 𝑄𝑄𝑖𝑖                                          
(Eq. 4.1) 
where 𝜙𝜙 is the porosity of the medium, sl and sg are the liquid and gas saturations (fraction of liquid 
or gas per unit volume of pore space) respectively, 𝜌𝜌𝑐𝑐 and 𝜌𝜌𝑔𝑔 are the liquid and gas densities, 
respectively, 𝑥𝑥𝑐𝑐𝑖𝑖 and 𝑥𝑥𝑔𝑔𝑖𝑖  are the mole fractions of component i in the liquid and gas phases, 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑔𝑔 
are the advective (Darcy) fluxes of the liquid and gas phases, 𝐷𝐷𝑐𝑐 and 𝐷𝐷𝑔𝑔 are the effective diffusion 
coefficients in the liquid and gas phases, and 𝑄𝑄𝑖𝑖 represents a source or sink of component i. Hydrate 
and ice phases are considered immobile, and diffusion through solid phases is not considered in the 
current formulation. 
Conservation of energy takes the form: 
 

∑ � 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜙𝜙𝑠𝑠𝛼𝛼𝜌𝜌𝛼𝛼𝑈𝑈𝛼𝛼) + ∇ ∙ (𝑞𝑞𝛼𝛼𝜌𝜌𝛼𝛼𝐻𝐻𝛼𝛼)� + 𝑑𝑑
𝑑𝑑𝑑𝑑
�(1 − 𝜙𝜙)𝜌𝜌𝑟𝑟𝐶𝐶𝑝𝑝𝑇𝑇� − ∇ ∙ (𝜅𝜅∇𝑇𝑇) = 𝑄𝑄𝛼𝛼=𝑐𝑐,𝑔𝑔,ℎ,𝑖𝑖          (Eq. 4.2) 

 
where contributions are considered from liquid (l), gas (g), hydrate (h), ice (i), and rock (r) phases; 𝑈𝑈𝛼𝛼 
is the internal energy and 𝐻𝐻𝛼𝛼 is the enthalpy of each pore occupying phase; 𝐶𝐶𝑝𝑝is the heat capacity of 
the rock, and 𝜅𝜅 is the thermal conductivity of the rock. 
The system of equation is subject to the following constraints: 
 
∑ 𝑠𝑠𝛼𝛼 = 1𝛼𝛼=𝑐𝑐,𝑔𝑔,ℎ,𝑖𝑖      (Eq. 4.3) 
𝑃𝑃𝑐𝑐(𝑠𝑠𝑐𝑐) = 𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑐𝑐     (Eq. 4.4) 

𝑃𝑃𝑔𝑔 = 𝐾𝐾𝐻𝐻𝑥𝑥𝑐𝑐
𝑔𝑔      (Eq. 4.5) 

𝑈𝑈𝛼𝛼 = 𝐻𝐻𝛼𝛼 −
𝑃𝑃𝛼𝛼
𝜌𝜌𝛼𝛼

      (Eq. 4.6) 

 
where Pc is the capillary pressure, which must equal the difference between nonwetting (gas) and 
wetting (liquid) phase pressures, and KH is the Henry’s law constant, which dictates the solubility of 
the gas component in the liquid phase when 2 phases are present. PFLOTRAN contains a large 
library of capillary pressure relationships as functions of liquid saturation; Van Genuchten capillary 
pressure functions are most used. For the Henry’s Law constant, two options were added as part of 
this work. The default option is as follows (Carroll and Mather, 1997): 
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𝐾𝐾𝐻𝐻 = exp �5.1345 + 7837
𝑇𝑇

− 1.509𝑥𝑥106

𝑇𝑇2
+ 2.06𝑥𝑥107

𝑇𝑇3
� ∙ 1000   (Eq. 4.6) 

 
where T is temperature. The second option (Cramer, 1982) is as follows: 
 
𝐾𝐾𝐻𝐻 =  1𝑥𝑥105 ∙ (24582.4 + 6.71091𝑥𝑥102𝑇𝑇 + 6.87067𝑇𝑇2 − 1.773079𝑥𝑥10−1𝑇𝑇3 +
1.09652𝑥𝑥10−1𝑇𝑇4 − 3.19599𝑥𝑥10−6𝑇𝑇5 + 4.46472𝑥𝑥10−9𝑇𝑇6 − 2.40294𝑥𝑥10−12𝑇𝑇7)       (Eq. 4.7) 
 
Densities and internal energies of each phase are computed using equations of state. Multiple 
equation of state options exist for water and gases. The most commonly used equation of state for 
liquid water is the IAPWS IF97 equation of state (IAPWS, 2007). For methane, the Peng-Robinson 
equation of state is generally appropriate. In the current formulation, densities of hydrate and ice are 
constant and set to 920 kg/m3. For hydrate, enthalpy is formulated as a function of temperature 
(Handa, 1998): 
 

𝐻𝐻𝐻𝐻 = 𝐶𝐶𝑝𝑝𝐻𝐻(𝑇𝑇 − 𝑇𝑇𝐹𝐹) + 𝐻𝐻𝐻𝐻0
𝑁𝑁𝐻𝐻+1

     (Eq. 4.8) 

𝐶𝐶𝑝𝑝𝐻𝐻 = 1.620(𝑀𝑀𝑊𝑊𝐻𝐻2𝑂𝑂𝑁𝑁𝐻𝐻 + 𝑀𝑀𝑊𝑊𝐶𝐶𝐻𝐻4)    (Eq. 4.9) 
 
where CpH is the heat capacity of hydrate, TF is the freezing temperature of water, HH0 is the 
reference enthalpy of hydrate, NH is the hydration number, set to 6 for structure I methane hydrate, 
𝑀𝑀𝑊𝑊𝐻𝐻2𝑂𝑂 is the molecular weight of water, and 𝑀𝑀𝑊𝑊𝐶𝐶𝐻𝐻4 is the molecular weight of methane. For ice, 
internal energy is computed as follows (Fukusako and Yamamoto, 1993): 
 
𝑈𝑈𝐼𝐼 = 𝐿𝐿𝑤𝑤 + 185(𝑇𝑇 − 273.15) + 3.445(𝑇𝑇2 − 273.152), 𝑇𝑇 ≥ 90𝐾𝐾  (Eq. 4.10) 
𝑈𝑈𝐼𝐼 = 𝐿𝐿𝑤𝑤 + 4.475(𝑇𝑇2 − 273.152),                                         𝑇𝑇 < 90𝐾𝐾  (Eq. 4.11) 
 
where 𝑈𝑈𝐼𝐼 is the internal energy of ice and Lw is the latent heat of fusion of water (set to -6017.1 
J/mol). 
For the mobile phases (liquid and gas), Darcy velocities of each phase are computed as follows: 
 

𝒒𝒒𝜶𝜶 = −𝑘𝑘𝑘𝑘𝛼𝛼𝑟𝑟

𝜇𝜇𝛼𝛼
∇(𝑃𝑃𝛼𝛼 − 𝜌𝜌𝛼𝛼𝒈𝒈𝑧𝑧), (𝛼𝛼 = 𝑙𝑙,𝑔𝑔)   (Eq. 4.12) 

 
where k is the intrinsic permeability of the medium, 𝑘𝑘𝛼𝛼𝑟𝑟  is the relative permeability of phase 𝛼𝛼 (a 
function of phase saturation), 𝜇𝜇𝛼𝛼 is the viscosity of phase 𝛼𝛼, 𝑃𝑃𝛼𝛼is the pressure of phase 𝛼𝛼,  g  is the 
acceleration due to gravity, and z is the depth in the direction of gravity. The numerical method used 
here upwinds relative permeabilities and viscosities and harmonically averages permeabilities 
between neighboring grid cells.  
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For marine gas hydrate systems modeling, sedimentation is often an important component of the 
geologic system being modeled. Sedimentation has been incorporated into the mass and energy flux 
terms: in addition to the Darcy flux driven by pressure gradients, a constant sedimentation rate can 
be specified which moves pore constituents in the downward direction (which can be specified with 
the GRAVITY keyword) at the specified sedimentation rate. 
The effective diffusion coefficients are formulated as follows: 
 
𝐷𝐷𝛼𝛼 = 𝜏𝜏𝐷𝐷𝛼𝛼𝑖𝑖       (Eq. 4.13) 
 
where the bulk diffusivity in phase 𝛼𝛼, 𝐷𝐷𝛼𝛼𝑖𝑖 , is scaled by the tortuosity of the porous medium, 𝜏𝜏, which 
ranges from 0 to 1. 
Thermal conductivity of the composite medium, 𝜅𝜅, is computed as a function of each pore 
constituent. Numerous options for parameterizing thermal conductivity exist across PFLOTRAN, 
but these only consider the presence of liquid and gas. Across all other flow modes, the default 
formulation of thermal conductivity is (Somerton et al., 1974): 
 

𝜅𝜅 = 𝜅𝜅𝑑𝑑𝑟𝑟𝑦𝑦 + �𝑠𝑠𝑐𝑐(𝜅𝜅𝑠𝑠𝑠𝑠𝑑𝑑 − 𝜅𝜅𝑑𝑑𝑟𝑟𝑦𝑦)    (Eq. 4.14) 
 
where 𝜅𝜅𝑑𝑑𝑟𝑟𝑦𝑦 is the dry thermal conductivity of the rock and 𝜅𝜅𝑠𝑠𝑠𝑠𝑑𝑑 is the saturated thermal conductivity 
of the rock. In hydrate mode, this thermal conductivity function is an option, but the default thermal 
conductivity is overridden to the following formulation: 
 
𝜅𝜅 = 𝜅𝜅𝑑𝑑𝑟𝑟𝑦𝑦 + 𝜙𝜙(𝑠𝑠𝑐𝑐𝜅𝜅𝑐𝑐 + 𝑠𝑠ℎ𝜅𝜅ℎ + 𝑠𝑠𝑖𝑖𝜅𝜅𝑖𝑖 + 𝑠𝑠𝑔𝑔𝜅𝜅𝑔𝑔)   (Eq. 4.15) 
 
where 𝜅𝜅𝑐𝑐 , 𝜅𝜅ℎ, 𝜅𝜅𝑖𝑖 , and 𝜅𝜅𝑔𝑔 are the thermal conductivities of liquid, hydrate, ice, and gas phases, 
respectively. 
Alternatively, a third option exists in the form (White et al., 2020): 
 
𝜅𝜅 = 𝜅𝜅𝑑𝑑𝑟𝑟𝑦𝑦 + 𝜙𝜙(𝑠𝑠𝑐𝑐𝜅𝜅𝑠𝑠𝑠𝑠𝑑𝑑 + 𝑠𝑠ℎ𝜅𝜅ℎ + 𝑠𝑠𝑖𝑖𝜅𝜅𝑖𝑖 + 𝑠𝑠𝑔𝑔𝜅𝜅𝑔𝑔)  (Eq. 4.16) 
 
A common source of hydrate-generating methane in marine environments is microbial 
methanogenesis. Steady-state methanogenesis as a function of depth is included using the following 
formulation (Malinverno, 2010): 
 

𝑄𝑄𝑚𝑚 = 𝑘𝑘𝛼𝛼𝜆𝜆𝛼𝛼𝑒𝑒
−𝜆𝜆
𝜔𝜔

(𝑧𝑧−𝑧𝑧𝑆𝑆𝑆𝑆𝑆𝑆)    (Eq. 4.17) 
 
where 𝑘𝑘𝛼𝛼 is a conversion factor from organic matter to methane, 𝜆𝜆 is the microbial reaction rate, 𝛼𝛼 
is the organic matter content at the seafloor, 𝜔𝜔 is the sedimentation rate, and zSMT is the depth to the 
base of the sulfate reduction zone. 
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Phase changes are handled using equilibrium flash calculations, and the solution method uses 
primary variable switching when the system enters new phase states. For example, when the system 
is fully liquid-saturated, the code solves for the three primary variables liquid pressure (Pl), mole 
fraction of gas (methane) in the aqueous phase (xl

g), and temperature (T). If concentration of 
dissolved gas exceeds its solubility in the aqueous phase, a gas phase forms and therefore the phase 
state changes from liquid saturated to two-phase. At this point, mole fraction of gas in the aqueous 
phase is no longer unknown since it is determined by Henry’s Law. Therefore, the second primary 
variable switches from mole fraction of gas in the aqueous phase to gas phase saturation (sg). 
Similarly, if a fully liquid-saturated system exists within the gas hydrate stability zone (GHSZ) and 
dissolved methane exceeds solubility, a gas hydrate phase forms and the second primary variable 
switches to hydrate saturation. Options are provided in the code for description of both the 
methane hydrate phase boundary and methane solubility in the gas hydrate stability zone. The three 
options for phase boundaries are as follows: 

1) From Kamath (1984): 

𝑃𝑃𝑐𝑐[𝑘𝑘𝑃𝑃𝑘𝑘] = 𝑒𝑒14.717−1.88679𝑥𝑥103

𝑆𝑆 ,𝑇𝑇 < 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔  

𝑃𝑃𝑐𝑐[𝑘𝑘𝑃𝑃𝑘𝑘] = 𝑒𝑒38.98−8.533𝑥𝑥103

𝑆𝑆 ,𝑇𝑇 ≥ 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔  
        (Eq. 4.18) 

2) From Moridis (2003): 
𝑃𝑃𝑐𝑐[𝑀𝑀𝑃𝑃𝑘𝑘] = 𝑒𝑒^(−43.8921173434628 +  0.776302133739303 𝑇𝑇 −
 7.27291427030502x10−3𝑇𝑇2 +  3.85413985900724x10−5𝑇𝑇3 −
 1.03669656828834x10−7𝑇𝑇4 +   1.09882180475307x10−10𝑇𝑇5)  , 𝑇𝑇 < 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔  
 (Eq. 4.19) 
𝑃𝑃𝑐𝑐[𝑀𝑀𝑃𝑃𝑘𝑘] = 𝑒𝑒^(−1.9413850446456𝑥𝑥105  +  3.31018213397926𝑥𝑥103 𝑇𝑇 −
 22.5540264493806 𝑇𝑇2 +  0.0767559117787059 𝑇𝑇3 −  1.30465829788791𝑥𝑥10−4𝑇𝑇4 +
 8.86065316687571𝑥𝑥10−8 𝑇𝑇5) , 𝑇𝑇 ≥ 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔 

3) A simplified, invertible fit of Moridis (2003):  
𝑃𝑃𝑐𝑐[𝑀𝑀𝑃𝑃𝑘𝑘] = 𝑒𝑒0.0334940999𝑇𝑇−8.1938174346,𝑇𝑇 < 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔     (Eq. 
4.20) 
𝑃𝑃𝑐𝑐[𝑀𝑀𝑃𝑃𝑘𝑘] = 𝑒𝑒0.1100383278 𝑇𝑇−29.1133440975,𝑇𝑇 ≥ 𝑇𝑇𝑓𝑓𝑟𝑟𝑐𝑐𝑐𝑐𝑧𝑧𝑖𝑖𝑛𝑛𝑔𝑔  
 
where Pe is the three-phase equilibrium boundary pressure at a given temperature. While the second 
phase boundary (Moridis, 2003) is the most precise, we found that the third equation is the most 
useful because of its invertibility and smooth derivative. Invertibility is a useful feature because the 
option exists to adjust the methane solubility within the gas hydrate stability zone as follows (Davie 
et al., 2004): 
 

𝐾𝐾𝐻𝐻 = 𝐾𝐾𝐻𝐻0𝑒𝑒
−𝑆𝑆−𝑆𝑆3𝛼𝛼     (Eq. 4.21) 
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Where KH0 is the Henry’s Law constant before adjustment, 𝛼𝛼 is a fitting parameter (set to 14.4o C), 
and T3 is the three-phase equilibrium temperature at a given pressure. The three-phase equilibrium 
temperature is derived from inverting the phase boundary equations; for phase boundary equation 2, 
an approximate inversion is used. 
HYDRATE mode currently supports offsetting in the gas hydrate and ice phase boundary due to 
the presence of dissolved salt for a constant salinity or for varying salinity. Discussion of salt mass 
conservation implementation is covered in the next section. 
Increasing NaCl concentrations shift the hydrate equilibrium phase boundary towards higher 
pressures and lower temperatures. This is accounted for in PFLOTRAN through the stability 
condition parameters outlined in Dickens and Quinby-Hunt (1997), and the resulting temperature 
depression equation for systems with inhibitors introduced by salt in Moridis (2014): 
 

∆𝑇𝑇𝑠𝑠 = ∆𝑇𝑇𝐷𝐷,𝑟𝑟
ln(1−𝑥𝑥)
ln(1−𝑥𝑥𝑟𝑟)    (Eq. 4.22) 

 
where ∆𝑇𝑇𝑠𝑠 represents the subcooling for a given NaCl 
mole fraction, 𝑥𝑥, with a given reference temperature 
depression, ∆𝑇𝑇𝐷𝐷,𝑟𝑟, at a reference mole fraction, 𝑥𝑥𝑟𝑟. 
As hydrate is formed from methane and water, salt is 
excluded from the solid phase as hydrate is formed 
(Figure 4-1). As hydrate saturation increases, salinity 
increases, and the surrounding pore water becomes 
denser.  
 
 
In addition to being shifted due to salt presence, the 
gas hydrate phase boundary can be shifted due to the 
size of the pore in which hydrate or gas would 
precipitate. This behavior is captured through a 
modification the Gibbs-Thomson equation, which 
substitutes in a pseudo-capillary pressure of the hydrate 
phase for pore size through the Young-Laplace equation: 

∆𝑇𝑇𝐺𝐺 = 𝑇𝑇𝑃𝑃𝑐𝑐
𝐻𝐻𝑓𝑓𝜌𝜌𝐻𝐻

     (Eq. 4.23) 

 
where ∆𝑇𝑇𝐺𝐺 is the shift in the three-phase equilibrium temperature due to the Gibbs-Thomson effect 
and Hf is the latent heat of fusion of hydrate, set to 6017.1 J/mol. 
 
 
 
 
 
 

Figure 4-1. Hydrate formation increases 
salinity of the surrounding pore fluid. 
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4.2. Additional Functionalities in PFLOTRAN Hydrate 
In addition to modeling gas hydrate, HYDRATE mode also can model ice formation and 
dissolution. As a test problem of the capability to model gas hydrate and ice, a 1D sediment column 
was initialized with dissolved methane below solubility to form hydrate but within the gas hydrate 
stability zone. The heat flux at the top boundary was applied to reduce the temperature below the 
freezing point of ice. Since ice formation consumes only water, the dissolved concentration of 
methane increases locally as ice forms. Local increases in dissolved methane push methane 
concentrations past solubility to form hydrate, and therefore over time as the ice front propagates 
downward a corresponding hydrate saturation front ends up propagating with the ice front (Figure 
4-2). 

 
Figure 4-2. Ice saturation (left) and hydrate saturation (right) at several simulation times that 
demonstrate exclusion of methane as ice forms, allowing hydrate formation in the remaining pore 
space not occupied by ice. 
 
PFLOTRAN’s hydrate mode has been developed to consider a third component in addition to 
methane and water. At the time of publication this capability is not yet released in the main version 
of the code. The third component can either be used to model a separate dissolved species (such as 
a salt), or it can be used to model methane derived from a different source. When the third 
component is treated as methane from a different source, PFLOTRAN treats diffusive flux of 
methane by adding methane from both sources, and when forming a new phase (free gas or 
hydrate), the new phase is composed of methane from each source in the same ratio as these 
components exist in the aqueous phase.  
As an example test problem, a 2D sediment column is initialized with gas hydrate that is all of 
shallow microbial origin (Figure 4-3). A dipping high permeability layer exists throughout the 
domain (outlined in Figure 4-4), and methane of deep thermogenic origin is injected along the dip as 
a boundary condition; the source is kept constant through time. Over time, methane with a deep 
thermogenic signature displaces methane with a microbial signature and forms hydrate. Since 
observational data can distinguish between methane with a microbial and thermogenic signature, this 
type of simulation would be useful for constraining methane migration mechanisms from source to 
reservoir.  
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The multi-component modifications to PFLOTRAN allow for simulation of density-driven flows in 
a system comprised of methane, salt, and water. Salinity impacts density, which is determined using 
the Batzle and Wang (1992) equation of state (Eqs. 1-2) for brines given pressure and temperature. 
𝜌𝜌𝑤𝑤 represents the water density at a given temperature, 𝑇𝑇 (C), and pressure, 𝑃𝑃 (MPa), while 𝜌𝜌𝐵𝐵 
represents brine density given salinity, S (ppm/10000000), water density, temperature, and pressure. 

 
Figure 4-3. Initial distribution of  thermogenic and microbial hydrate (left) and mole fraction of 
thermogenic and microbial methane (right) in a 1 km by 10 km 2D domain. 
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Figure 4-4. Distribution of  thermogenic and microbial hydrate (left) and mole fraction of 
thermogenic and microbial methane (right) in a 1 km by 10 km 2D domain with a dipping high 
permeability layer where methane of deep thermogenic origin is injected along the dip. 
𝜌𝜌𝑤𝑤 = 1 + 10−6(−80𝑇𝑇 − 3.3𝑇𝑇2 + 0.00175𝑇𝑇3 + 489𝑃𝑃 − 2𝑇𝑇𝑃𝑃 + 0.016𝑇𝑇2𝑃𝑃 − 1.3 ∙ 10−5𝑇𝑇3𝑃𝑃 −
0.333𝑃𝑃2 −  0.002𝑇𝑇𝑃𝑃2)     (Eq. 4.24) 
 

𝜌𝜌𝐵𝐵 = 𝜌𝜌𝑤𝑤 + 𝑆𝑆 �0.668 + 0.44𝑆𝑆 + 10−6�300𝑃𝑃 − 2400𝑃𝑃𝑆𝑆 + 𝑇𝑇(80 + 3𝑇𝑇 − 3300𝑆𝑆 − 13𝑃𝑃 +

47𝑃𝑃𝑆𝑆)��     (Eq. 4.25) 

 
Density-driven flows in hydrate systems are initiated when hydrate formation is rapid enough to 
initiate a density contrast between fluids in a highly permeable layer. As hydrate forms, the salt is 
excluded in the pore space. This density contrast between the top of the rock layer and the 
background density results in convection initiated by the slight density change from hydrate 
formation (Figure 4-5).  
 

 
Figure 4-5. Liquid density (top) and aqueous methane concentration (bottom) for a system with 
convection initiated by hydrate formation. 
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Functionality was added to simulate CO2 hydrate formation in a 
CO2-water system. The CO2 hydrate functionality utilizes the pre-
existing Span and Wagner equation of state to compute the state 
properties of gaseous CO2. A test problem was developed (Fig. 3) 
to compare the CO2 hydrate functionality against the CH4 hydrate 
functionality. The problem is a cylinder with an initial hydrate 
saturation of 0.50 and a heat source in the center set at 100 W. As 
the system heats, hydrate dissociates and partitions into the liquid 
and gas phases. A small hydrate saturation increase is seen at the 
dissociation front due to the endothermic nature of hydrate 
dissociation. 

 
 
 

 
Figure 4-7. Temperature (top left), pressure (top right), gas saturation (lower left), and hydrate 
saturation (lower right) plots for a cylindrical dissociation test of CO2 and CH4 hydrate. 
 

Figure 4-6.  Hydrate dissociation 
test problem schematic. 
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5. DESIGN OF THE SOFTWARE WORKFLOW 
Creating probabilistic maps of geoacoustic and geomechanical sediment properties is achieved via a 
novel workflow that combines GPSM, Dakota, and PFLOTRAN software packages (Figure 5-1, 
indicated by the blue boxes). First, sparse global seabed data and high-resolution predictors are input 
to GPSM, which uses geospatial machine learning to produce high-resolution, 2D, gridded 
predictions of seabed characteristics with uncertainty. The uncertainty in gridded seabed 
characteristics are sampled on by Dakota and used to define the input parameters of several unique 
realizations of marine sediment thermodynamic simulations run by PFLOTRAN. The outcomes are 
3D probabilistic maps of gas and hydrate distribution, which are used by GPSM – GeoPhysMod to 
calculate the corresponding 3D acoustic properties of the marine sediments. The software workflow 
can be run in pieces, or through the entire cycle, allowing flexibility in its use to produce the desired 
information.  

 

 
Figure 5-1. Schematic of the software workflow. Sparse seabed data and high-resolution 
predictors are input to GPSM, which uses geospatial machine learning to produce 2D gridded 
predictions of seabed characteristics with uncertainty. The uncertainty in gridded seabed 
characteristics are sampled on by Dakota and used to define the input parameters of several 
unique realizations of marine sediment thermodynamic simulations run by PFLOTRAN. The 
outcome are 3D probabilistic maps of gas and hydrate distribution, which are used by GPSM – 
GeoPhysMod to calculate the corresponding 3D acoustic properties of the marine sediments. 



 

30 

6. MODEL VALIDATION 

6.1. International Code Comparison 
Implementation of gas hydrate formation and dissociation capability in PFLOTRAN was validated 
by including simulation results in the 2nd International Gas Hydrate Code Comparison Study 
(IGHCC2; White et al., 2020). PFLOTRAN simulation results were included in this study for 2 test 
problems: a radial thermal stimulation problem and a radial depressurization problem. In each 
problem, a 1D radial domain is initialized with a constant gas hydrate saturation and then gas 
hydrate is driven to dissociate into water and free gas. In the thermal stimulation problem (Figure 
6-1 through Figure 6-3), dissociation is driven by a head flux boundary condition (150 W) at r=0. As 
heat is applied, hydrate begins to dissociate at r=0 and then over time the hydrate dissociation front 
propagates away from the heat source. While the far boundary (at r=1500 m) remains unaffected by 
the heat source, a similarity solution exists. Codes were compared to each other in terms of the 
similitude variable, r2/t, for a given set of outputs including hydrate saturation (Figure 6-1), 
temperature (Figure 6-2), and aqueous saturation (Figure 6-3). PFLOTRAN results (light blue 
dashed line) are difficult to make out in the comparison because they very nearly match the vast 
majority of the other codes for hydrate saturation, temperature, and liquid saturation. 

In the depressurization problem (Figure 6-4 through Figure 6-7), the same 1D radial domain is 
subjected to an extraction well at r=0 with a constant extraction flow rate (100 g/s) applied 
throughout the duration of the simulation. Flow out of the domain reduces the pressure below the 
pressure for stability of gas hydrate, thus driving hydrate initially present to dissociate into water and 
gas. Just like the thermal stimulation problem, a similarity solution exists before the pressure wave 
propagates to the edge of the domain. Gas hydrate saturation (Figure 6-4), pressure (Figure 6-5), gas 
saturation (Figure 6-6), and temperature (Figure 6-7) are compared across simulators as functions of 
the similitude variable (r2/t). The PFLOTRAN solution compares very well to the other simulators 
for this problem, but differences could be due to differences not covered by the problem 
description, including equations of state for liquid and gas or gas hydrate phase boundary 
assumptions. 
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Figure 6-1. Comparison of several simulator results for hydrate saturation during and after 
thermal stimulation of the reservoir. Adopted from White et al., 2020. 

 

 
Figure 6-2. Comparison of several simulator results for temperature during and after thermal 
stimulation of the reservoir. Adopted from White et al., 2020. 
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Figure 6-3. Comparison of several simulator results for liquid saturation during and after thermal 
stimulation of the reservoir. Adopted from White et al., 2020. 
 

 
Figure 6-4. Comparison of several simulator results for hydrate saturation during and after 
depressurization of the reservoir. Adopted from White et al., 2020. 
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Figure 6-5. Comparison of several simulator results for pressure during and after depressurization 
of the reservoir. Adopted from White et al., 2020. 
 

 
Figure 6-6. Comparison of several simulator results for gas saturation during and after 
depressurization of the reservoir. Adopted from White et al., 2020. 
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Figure 6-7. Comparison of several simulator results for temperature during and after 
depressurization of the reservoir. Adopted from White et al., 2020. 
 

 

6.2. Blake Ridge 
Validation of our results has been published previously (Eymold et al., 2021) and the comparison to 
Bhatnagar et al. (2007) from that work is reproduced here. ODP Site 997 in Blake Ridge (31°50.6’ 
N, 75°28.1’ W) is a well-characterized location of gas hydrate occurrence which has been studied 
extensively (Burwicz & Rüpke, 2019; Dickens et al., 1997; Egeberg & Dickens, 1999; Frederick & 
Buffett, 2013; Wood & Ruppel, 2000) and offers an opportunity to verify the simulations using 
PFLOTRAN’s HYDRATE mode by comparing these  results to previous work (Bhatnagar et al., 
2007). Samples of hydrate have been observed and collected at ODP Site 997 that show an average 
methane hydrate content of 4-7% of porosity between depths of 186-451 mbsf (Egeberg & Dickens, 
1999). Outputs from simulations using PFLOTRAN are compared to those simulated by Bhatnagar 
et al. (2007) in Figure 6-8 and are in good agreement with the observations from Egeberg & Dickens 
(1999). This evaluation will help foster new study designs and provide a template to verify the 
simulator against research from other groups to validate the seafloor model based on known values. 

The water depth of the site is 2,781 mbsl, seafloor temperature is 3.4°C, and gas hydrate has been 
collected from depths of 180-240 and 380-450 mbsf (Paull et al., 1996). Previous 1-D simulations of 
hydrate formation at ODP Site 997 have been conducted, and we compare the results of 
PFLOTRAN to those from Bhatnagar et al. (2007). 
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Figure 6-8. Hydrate saturation profiles from 100 simulations are shown in dark gray and the gas 
saturation profiles are plotted in light gray (left) on the same dimensionless depth scale as 
Bhatnagar et al. (2007), normalized to 458 mbsf (the base of the GHSZ in their simulations). The 
simulation that was run with PFLOTRAN using the exact Bhatnagar values displays comparable 
values of hydrate saturation (magenta) and gas saturation (red). For verification, the output profile 
shown in Figure 7 of Bhatnagar et al. (2007) is shown in the right panel. Adopted from Figure 11, 
Eymold et al. (2021). 

 
The 1-D numerical model by Bhatnagar et al. (2007) simulated fluxes of methane leading to 
accumulation of gas hydrate in both the Cascadia Margin and Blake Ridge. The modeling framework 
used in that study was based on phase equilibrium and methane solubility, mass balance for 
methane, water, and organic matter, and porosity reduction due to sedimentation. Estimates for the 
extent of the GHSZ based on steady state results after approximately 12 Myr were provided from 
the simulations. The input parameters came from past studies (Davie & Buffett, 2001; Paull et al., 
1996) and do not incorporate measurement or uncertainty errors in contrast to our simulations here. 

 
Table 6-1. Model parameters for 1-D gas hydrate simulation from GPSM and those used in  
Bhatnagar et al. (2007). Simulations of Location 4903 used a fixed value of 1 × 10-14 s-1 for 
methanogenesis rate and 0.22 mm/yr for sedimentation rate but sampled on TOC and heat flux. 
Output profiles for hydrate saturation and gas saturation are plotted in Figure 5.2.1. (Table 3, 
Eymold et al. 2021) 
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Most variables for ODP Site 997 used by Bhatnagar et al. (2007) were comparable to the GPSM 
values at the nearest location (Location 4903 at 31°52.5’ N, 75°27.5’W, centered approximately 3.6 
km to the northwest) (Table 6-1). The geothermal gradient used to match the Bhatnagar simulation 
was ~15 mW/m2 higher than that predicted by GPSM, and the methanogenesis rate was within the 
range that we used to sample with Dakota for the Blake Ridge PFLOTRAN simulations. Seafloor 
depth was slightly shallower for GPSM and the seafloor temperature was 1°C colder. The most 
drastic differences between the parameter sets from GPSM and those used by Bhatnagar et al. 
(2007) were the lower sedimentation rate in GPSM (previously discussed) and the TOC, which was 
nearly double the value provided by GPSM. 

By setting the sedimentation rate to 0.22 mm/yr and the methanogenesis rate to 1 × 10-14  s-1 to 
match the values used by Bhatnagar et al. (2007), the PFLOTRAN outputs for both hydrate and gas 
saturation closely approximated the previous study (Figure 6-8). The maximum hydrate saturation 
values varied depending on TOC for each simulation, but the base of the GHSZ averaged 464.1 
mbsf and was in good agreement with the past prediction of 458 mbsf. The bottom of the hydrate 
saturation profile predicted by GPSM ranged from 436-486 mbsf (left panel of Figure 6-8), 
depending on the heat flux used in each simulation. While the gas saturation profiles were 
comparable in location and scale, the discrepancy in shape and exact value may be attributed to the 
different equations of state used in each study.  

The structure of the hydrate saturation profiles depends on the methanogenesis rate used; by 
following the higher methanogenesis rate of λ = 1 × 10-13 s-1 (Malinverno, 2010), the GHSZ 
extended deeper and maximum hydrate saturation was lower. In these simulations where the 
Bhatnagar value of λ = 1 × 10-14 s-1 was used instead, the saturation profile was sharper and had a 
higher maximum value, suggesting that hydrate formation strongly depends on this rate. This 
reaction rate is temperature dependent and will be highest just beneath the zSMT in the profile 
(Wehrmann et al., 2011; You et al., 2019). Future simulations should vary the zSMT based on 
geography and λ based on depth (temperature) if information is available.  

Despite differences based on the GPSM values in a nearby location, the Dakota-PFLOTRAN 
workflow described here produces comparable results to those predicted at ODP Site 997 by 
Bhatnagar et al. (2007). As this workflow is applied to other geographic locations in the future, these 
verification tests will be increasingly necessary to refine the model parameters. 

 

7. MODEL DEMONSTRATIONS 

7.1. Blake Ridge Gas Hydrate Province 
The results from simulations at Blake Ridge study area were published previously (Eymold et al., 
2021) and are reproduced here. The Blake Ridge study area (31°N-36°N and 78°W-72°W) domain 
covers 84 × 72 (N = 6,048) geographic locations equally spaced at 5 arc-minutes in both latitude and 
longitude, with parameters generated via GPSM. Of these 6,048 locations, 5,293 were located 
offshore and were simulated 100 times each using 48 processors on a local Linux cluster, with a 
1,000 m 1-D sediment profile at 1 m depth discretization. 
Gas hydrate formation occurs at depths greater than 500 mbsl in the Blake Ridge study area (Figure 
7-3). Two peak areas of formation occur, with one located in the area north of 35°N 75°W between 
500-1,500 m depth and a second located east of 34°N 76°W between 1,000-1,500 m depth. The area 
north of 35°N 75°W has shown widespread methane seepage at sites down to 600 m depth east of 
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Cape Hatteras, possibly related to hydrate dissociation (Skarke et al., 2014). The peak east of 34°N 
76°W is located near the Carolina Rise, where BSRs are extensive and gas hydrate is prone to 
dissociation due to warming Gulf waters (Phrampus & Hornbach, 2012; Ruppel et al., 1995). The 
greatest amount of hydrate (3,746.9 kg) occurred at 35°17.52’N 74°52.5’W and a seafloor depth of 
1,324.5 mbsl.  
Essentially no hydrate occurred in the southwest portion of the study area between 500-1,500 m 
depth after the simulations reach steady state, suggesting that regions without occurrence may 
indicate unfavorable conditions for hydrate formation. This region is characterized by lower TOC 
values than in the study area above 33°N along with elevated values of sedimentation rate. Since 
rapid burial prevents microbial breakdown of organic material at the seafloor and is associated with 
increased levels of preservation at depth (Burwicz & Rüpke, 2019), faster sedimentation rates could 
lead to more methane generation in the sediment column below the SMT. However, since the 
source of methanogenesis in our model is exclusively the organic matter brought to depth by burial, 
exceptionally rapid sedimentation rates may drive the TOC through the GHSZ faster than it can be 
metabolized into methane. This could explain simulations that resulted in no hydrate (or free gas) 
formation despite high values of TOC and appropriate pressure and temperature conditions.   
 

 
Figure 7-1. Map of average hydrate formed in sediment columns in Blake Ridge, determined from 
the integration of hydrate formation in the entire sediment column for all simulations (Equation 
3.1). The mass of hydrate formed is shown in kg and was calculated based on the ρh = 920 kg/m3 
and the hydrate saturation at each depth in the profile. Adopted from Figure 5, Eymold et al. 
(2021). 
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Figure 7-2. Hydrate formation from 12 realizations of Blake Ridge simulations. Areas that formed 
gas hydrate are plotted from light blue to yellow as mass of hydrate formed increases. Adopted 
from Figure 6, Eymold et al. (2021). 
 

Each of the 100 simulations differs based on the variables used at each location. The formation 
results in each of the 100 simulations are stored as a single mapped output for all locations in the 
study area. By going through these individual runs, hydrate formation can be similar between the 
simulations but is not identical between runs due to variation of the parameters used for each 
location (Figure 7-2). Hence, these realizations and the formation rates can be used to produce 
statistical forecast maps of the study area going forward.  

Calculations were also made to determine the percentage of simulations where free gas was formed 
in the study area (Eqn. 3.2). The average mass of free gas formed in each simulation (Figure 7-3) and 
the number of simulations where at least 1% gas saturation and 2% gas saturation occurred in the 
sediment column (Figure 7-4) can be used to evaluate the likelihood that gas is present in locations 
near Blake Ridge. While no hydrate formed in locations shallower than 500 mbsl, much of the 
nearshore region routinely formed free gas during the 10 Myr simulations. Near both hydrate 
formation peaks, free gas almost always reached at least the 1% saturation threshold.  
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Figure 7-3. Map of average total mass of free gas formed in sediment columns in Blake Ridge. The 
mass of gas formed is shown in kg and was calculated based on the specific mole fraction (Xg), 
density (e), and saturation (Sg) of methane at each depth in the profile. Adopted from Figure 9, 
Eymold et al. (2021). 

 
 

 
Figure 7-4. Map of percentage of simulations where gas saturation reached at least 1% (left) and at 
least 2% (right) in the sediment column. Adopted from Figure 10, Eymold et al. (2021). 
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7.2. North Atlantic Gas Seep Provinces 
Ocean Drilling Program (ODP) boreholes give an insight into locations where methane gas and 
methane hydrate occur along the U.S. Atlantic margin. Along the upper continental slope, offshore 
of New Jersey, ODP boreholes report subsurface microbial methane, indicating methanogenesis in 
the area (Shipboard Scientific Party, 1994a,b,c,d, 1998a). South of this region, offshore of North 
Carolina and South Carolina, seismic profiles from the ODP show a strong BSR at some locations, 
inferring the presence of hydrate in the area (Dickens et al., 1997; Holbrook et al., 1996; Shipboard 
Scientific Party, 1996a,b). In global surveys summarizing free gas distribution in marine sediments, 
Fleischer et al. (2001) and Judd (2003) both note occurrences of free gas along the U.S. Atlantic 
margin. Evidence of gas seeps has also been documented by Hill et al. (2004) and Brothers et al. 
(2014) who note instances of pockmarks and blowouts caused by gas escaping from the seafloor. 

More recently, investigations by Skarke et al. (2014) have found multiple instances of methane gas 
leakage from the seafloor along the U.S. Atlantic margin at a higher concentration than previously 
thought. Skarke et al. (2014) identified 570 gas plumes on the northern U.S. Atlantic margin, with 
440 of these seeps (77%) lying between the shelf break and 600 m water depth. The location of 
these plumes would lie just shallow of the methane hydrate stability zone. The seeps in this area 
were further explored by Prouty et al. (2016) who suggest that seepage may have begun as early as 15 
kya in the Baltimore Canyon slope field, and between 1-3 kya at the deeper Norfolk seep field. 

The global model of seafloor TOC was extended by Eymold et al. (2021) to model the formation of 
gas hydrates at Blake Ridge. Combining global models from GPSM for seafloor TOC, heat flux, and 
sedimentation rate, Eymold et al. (2021) modeled the burial of organic carbon on the seafloor, and 
the resulting generation of methane gas and hydrate. They found two main areas of gas hydrate 
formation along the U.S. Atlantic margin which corresponded to locations where methane seepages 
had previously been located. For a majority of the locations modeled, Eymold et al. (2021) found 
that TOC was the most strongly correlated variable to forming gas hydrate (other variables were 
sedimentation rate, methanogenesis rate, and heat flux). 

We used the GPSM-Dakota-PFLOTRAN workflow to predict seafloor TOC and gas and hydrate 
abundance at several sites along the continential shelf break. For GPSM, we used k-nearest neighbor 
regression with k = 5 following Lee et al. (2019). For the PFLOTRAN simulations, A period of 
120,000 years was chosen, representing the time period of a glacial cycle. Dakota was used to 
provide a distribution of results by sampling the PFLOTRAN input parameters TOC, sedimentation 
rate, and heat flux (Table 7-1). Specifically, Dakota used Latin hypercube sampling to provide a 
distribution of input variables to model with PFLOTRAN. Table 6.2.1 summarizes the input 
variables used in the PFLOTRAN/Dakota model, many following the work of Eymold et al. (2021). 

 
Table 7-1. Input parameters for PFLOTRAN simulation. 

Parameter Status Value Units 

Sedimentation Rate From Restreppo et al. (2020) Variable m/s 

TOC Modeled from GPSM (max 5%) Variable % 
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Parameter Status Value Units 

Heat Flux 0.048±0.002 (Fuchs et al., 2021) Variable W/m2 

Porosity Calculated Variable - 

Methanogenesis Rate Fixed 5x10-14 1/s 

Geothermal Gradient Variable, base on porosity and heat flux Variable °C/m 

Pressure Change Limit Max change per time step 100000 Pa 

Temperature Change Limit Max change per time step 1 °C 

Gravity Fixed -9.8 m/s2 

Labile Portion of TOC 75% of TOC Variable % 

Conversion Factor of 
Methane Fixed 2241 kg/m3 

Diffusion Coefficient of 
Methane Fixed 1x10-9 m2/s 

Gas Viscosity Methane 1.1x10-5 Pa.s 

Tortuosity Fixed 1.4 - 

Rock Density Fixed 2700 kg/m3 

Thermal Conductivity (dry) Fixed 1 
W/m/°
C 

Thermal Conductivity (wet) Fixed 1 
W/m/°
C 

Heat Capacity Fixed 830 J/kg/°C 

Permeability Fixed 1x10-15 m2 

SMT Depth Fixed 15 mbsf 

Van Genuchten Pressure Fixed 5.8x10-4 1/Pa 

Van Genuchten Pore Size 
Factor Fixed 0.189 - 

Liquid Residual Saturation Fixed 0.1 - 
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Parameter Status Value Units 

Max Capillary Pressure Fixed 1x108 Pa 

Gas Residual Saturation Fixed 0.15 - 

Initial Liquid Pressure Initial Condition Variable Pa 

Initial Mole Fraction Initial Condition 0.001 - 

Initial Temperature Initial Condition Variable °C 

Initial Hydrostatic Liquid 
Pressure Initial Condition Variable Pa 

Initial Dirichlet Hydrate 
Saturation Initial Condition 1x10-8 - 

Initial Dirichlet 
Temperature Initial Condition Variable °C 

Neumann Liquid Flux Bottom Boundary Condition 0 m/yr 

Neumann Gas Flux Bottom Boundary Condition 0 m/yr 

Neumann Energy Flux Bottom Boundary Condition Q W/m2 

Hydrostatic Liquid Pressure Top Boundary Condition Variable Pa 

Dirichlet Mole Fraction Top Boundary Condition 0.001 - 

Dirichlet Temperature Top Boundary Condition Variable °C 

 

Dakota sampled TOC, sedimentation rate, and heat flux using a normal distribution. As discussed 
earlier, TOC predictions and standard deviations were modeled using GPSM predictor grids from 
Phrampus et al. (2020) and observed data points from Seiter et al. (2004). To avoid values of zero, a 
lower bound of TOC was set to 0.01%. An upper bound of TOC was set to 5%, like the GPSM 
model, to avoid unrealistically high values. Sedimentation rates and standard deviations were 
determined from Restreppo et al. (2020) who modeled global oceanic sediment accumulation rates 
using GPSM at a 5 x 5 arc-minute resolution. Bounds on sedimentation rates were set to a minimum 
of 1x10-14 m/s (3.16x10-5 cm/yr) and to a maximum of 1 m/s. For the studied area, heat flux was 
sampled from Global Heat Flow Compilation Group (2013), and was set to 48 ± 2 mW/m2. A 
methanogenesis rate of λ = 5x10-14 s-1 was chosen based on estimates of λ = 1x10-14 s-1 from 
Bhatnagar et al. (2007) and λ = 1x10-13 s-1 from Malinverno (2010). This value for methanogenesis 
rate also lies between the constraints of 1x10-15 ≤ λ ≤ 1x10-13 s-1 set by Eymold et al. (2021). Porosity 
was calculated at depth using the relationship for marine sediments presented by Kominz et al. 
(2011): 
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𝜙𝜙 = 0.775𝑒𝑒−
𝑧𝑧

1251     (Eq. 7.1) 

where φ is porosity and z is depth below seafloor in m. Daigle et al. (2020) discuss the validity of this 
porosity model. 

In determining which points to model hydrate formation, the study area was narrowed to 36.6°N–
38°N and 74.5°W–73.1°W. This area shows some of the higher TOC estimates in the modeled 
region. Table 6.2.2 summarizes the locations where PFLOTRAN and Dakota were used to model 
hydrate and gas generation. Four points were chosen along the dip of the continental shelf. Since the 
goal of the geomechanical model was to model hydrate dissociation at the feather edge of the 
hydrate stability zone, four additional points were chosen from this area where seafloor depth was 
between 485 and 510 m (Figure 7-5). In addition, one location was chosen just shallower than the 
feather edge to show gas generation with no hydrate. 

 

 
Figure 7-5. Locations chosen to model with PFLOTRAN and Dakota. Colorbar is water depth in m. 
Gray dots represent locations along the continental slope where seafloor depth is between 485 
and 510 m. From these, four locations along the strike of the continental shelf were modeled 
(magenta dots). Five locations were chosen along the shelf dip. Four of these locations produced 
hydrate (white x) and one location shallower than 485m produced only gas (red x). To emphasize 
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the shelf edge where the feather edge of the hydrate stability zone is expected, a maximum depth 
of 720m was graphed. Refer to Table 6.2.2 for depths at each location. 
The Global Multi-Resolution Topography (GMRT) Synthesis was used to determine seafloor depths 
(Ryan et al., 2009). The GMRT Synthesis provides high resolution bathymetry data for almost 10% 
of the global ocean. Individual locations can be queried through the GMRT PointServer Web 
Service to retrieve accurate water depths at specific latitude and longitude locations. 

 
Table 7-2. Locations chosen for PFLOTRAN simulation. 

Location # Lat, Lon Water depth (m) Note 

Along shelf strike 

1 36.6966, -74.6463 -508 Feather edge 

2 37.2228, -74.4960 -510 Feather edge 

3 37.7490, -74.1523 -497 Feather edge 

4 38.1570, -73.6906 -487 Feather edge 

Along shelf dip 

5 37.5865, -74.2600 -434  

6 37.5805, -74.2494 -651 Feather edge 

7 37.3822, -73.8646 -1901  

8 37.2049, -73.5260 -2595  

9 36.9652, -73.1084 -3061  

 

Seafloor temperatures were calculated at a given depth through a polynomial regression. Data from 
Boyer et al. (2018) provided 47 temperature profiles within the 36.6°N–38°N and 74.5°W–73.1°W 
study area. Since the area of focus was the GHSZ feather edge, near the continental slope, a visual 
inspection of profile location was used to choose temperature profiles near the continental slope 
(Figure 7-6). This left 10 temperature profiles, and a 6th order polynomial regression was used to 
create a model of temperature with depth (Equation 7.2): 

𝑇𝑇(𝑧𝑧) = 5.450 × 10−16𝑧𝑧6 − 1.641 × 10−12𝑧𝑧5 + 1.763 × 10−9𝑧𝑧4 − 7.746 × 10−7𝑧𝑧3 +
1.075 × 10−4𝑧𝑧2 − 8.606 × 10−3𝑧𝑧 + 12.504    (Eq. 7.2) 

where here z is water depth. 

The weight percent of total organic carbon (TOC) at the seafloor predicted with GPSM is shown in 
Figure 7-7a. The standard deviation of these predictions is in Figure 7-7b. The highest TOC values 
were predicted along the line from (35.4°N, 75.0°W) to (39.0°N, 72.0°W). Comparing this region in 
the prediction map to the standard deviation map, known seafloor TOC values are sparse in this 
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area and TOC standard deviations are higher than the rest of the predicted grid. The locations 
chosen along the shelf strike can be found in this area. In addition, the mean inexperience is shown 
in Figure 7-7c. The mean inexperience is calculated as the average distance in parameter space from 
the predicted location to its 5 nearest neighbors. Compared to the standard deviation map, a 
relatively low mean experience can be seen along the line from (35.4°N, 75.0°W) to (39.0°N, 
72.0°W). Thus, although there is a high variance of predictions, there are other locations globally 
that are parametrically close to locations along this shelf strike line. 

 

 
Figure 7-6. Temperature profiles from Boyer et al. (2018) within the study area. Those used to 
construct Eq. 7.2 are shown with magenta circles. 
 

Average sedimentation rates were just over 0.007 cm/yr with standard deviations around 0.1 cm/yr 
(Restreppo et al., 2020). Location 9 had a much lower predicted sedimentation rate than the other 
eight locations, corresponding to its further distance from the shelf edge and seacoast, as well as its 
overall depth. Average TOC predictions were around 1-2% dry weight. Location 1 had a relatively 
low average TOC prediction of 0.095% dry weight as the location is on the southern tip of the 
increased TOC zone between (35.4°N, 75.0°W) and (39.0°N, 72.0°W). Heat flux for all simulations 
were between 42.315 and 52.168 mW/m2. 
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Figure 7-7. (a) Mean predicted TOC. (b) Standard deviation. (c) Mean inexperience. 

 

At each location, 50 simulations were run using PFLOTRAN with a sampling of inputs done by 
Dakota. For an individual location, the resulting output profiles of gas, hydrate, and temperature 
could be plotted against depth, and a base of hydrate stability can be calculated. Figure 7-8 shows 
the hydrate saturation profiles with depth for the nine study locations and Figure 7-9 shows the gas 
saturation profiles with depth for the nine study locations. 
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Figure 7-8. Top: predicted hydrate saturations at each location. Bottom: location map for 

reference. 
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Figure 7-9. Top: predicted gas saturations at each location. Bottom: location map for reference. 
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The BHZ is very evident in Figure 7-8in sites 1-4 and site 6. There is a spread of BHZ depths at 
each location due to the different temperature profiles of each simulation. The depth at which the 
temperature profile and hydrate phase envelope intersect, causing hydrate to no longer be stable, 
varies for each run (Figure 7-9). Sites 1-4 and site 6 lie along the strike of the continental shelf and 
near the feather edge of the hydrate stability zone. The BHZ can be seen graphically for these sites 
where the hydrate saturation drops from its maximum value to zero. 
At sites 7-9, some hydrate saturation profiles show this sudden drop in saturation, but many of the 
hydrate profiles decrease gradually making it difficult to predict the depth of the BHZ on hydrate 
saturation alone. This is discussed by Xu and Ruppel (1999) who note the difference between the 
hydrate stability zone and the actual zone of hydrate occurrence which relies on “the availability of 
methane in excess of its solubility in seawater.” In profile 5, no hydrate forms This location is 
upslope of the feather edge and outside of the hydrate stability zone. 
 

Table 7-3. Summary of hydrate profiles modeled with PFLOTRAN. 

Site # 
Total 
runs 

Success 
runs 

Hydrate 
runs 

BHZ 
avg. 

(mbsf) 

BHZ 
min. 

(mbsf) 

BHZ 
max. 

(mbsf) 

Hydrate 
sat. at 
BHZ 

Temp 
at BHZ 

(°C) 

Along strike 

1 50 49 5 86.1 80.5 91.5 0.0024 15.20 

2 50 46 12 87.8 77.5 100.5 0.0029 8.44 

3 50 44 16 67.1 55.5 77.5 0.0026 13.85 

4 50 48 3 53.5 49.5 57.5 0.0011 7.58 

Along dip 

5 50 47 0 nan nan nan nan nan 

6 50 47 34 196.2 123.5 228.5 0.0080 17.72 

7 50 50 20 414.9 145.5 576.5 0.0036 17.40 

8 50 50 11 404.3 261.5 619.5 0.0001 22.96 

9 50 50 7 282.8 200.5 427.5 0.0001 12.30 

 
Table 7-3 summarizes the hydrate profiles shown in Figure 7-8. The number of successful runs at 
each location is noted, as well as the number of runs where hydrate formed. Only simulations in 
which hydrate formed were used to calculate the depth of the BHZ and the hydrate saturation at the 
BHZ. In addition, the average temperature at the BHZ was calculated by averaging the temperature 
profiles at the depth of the calculated BHZ. As mentioned, in sites 7-9, some hydrate saturation 
profiles did not show the sudden drop indicating the BHZ. Thus, the average BHZ depths for these 
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three sites are likely inaccurate and much shallower than the actual depth of the BHZ. A better 
estimation of the BHZ depth for sites 7 and 8 is the maximum predicted depth of the BHZ. As 
expected the BHZ calculated at sites 7 and 8 is deeper than the BHZ for sites found along the shelf 
strike. 
The gas saturations are summarized in Table 7-4. Gas generation occurs within the modeled 1000 m 
sediment column in 8 of the simulations. The only simulation in which no gas was generated during 
the 50 runs was at the deepest location, site 9. When calculating the maximum gas saturation and the 
depth of the maximum gas saturation in Table 7-4, only maximum saturations shallower than 1000 
m were considered. This is why site 7 does not have a maximum gas saturation value or depth. The 
maximum gas saturation for site 8 occurs in only one run, and can likely be ignored as well. 
Comparing the remaining six locations, site 5 has the largest average maximum gas saturation. As 
discussed, this site is up-slope of the feather edge and outside of the hydrate stability zone. 
 

Table 7-4. Summary of gas profiles modeled with PFLOTRAN. 

Site # 
Total 
runs 

Success 
runs 

Gas 
runs 

Max gas 
saturation 

Depth of max 
gas saturation 

(mbsf) 

Along strike 

1 50 49 11 0.0136 249.95 

2 50 46 23 0.0188 339.68 

3 50 44 33 0.0300 248.95 

4 50 48 37 0.0262 292.56 

Along dip 

5 50 47 37 0.0383 205.39 

6 50 47 32 0.0266 407.98 

7 50 50 11 nan nan 

8 50 50 5 0.0073 998.50 

9 50 50 0 nan nan 

 
The predictive map of seafloor total organic carbon (TOC) from GPSM was comparable to the 
work done by Lee et al. (2019) and Eymold et al. (2021). The global map of seafloor TOC produced 
by Lee et al. (2019) also predicted an area of increased TOC off the east coast of the United States in 
the same region ((35.4°N, 75.0°W) to (39.0°N, 72.0°W)) predicted in this model. The map of 
seafloor TOC predicted by Eymold et al. (2021) covers about a quarter of the area of my prediction. 
In this prediction, trends of TOC are similar to the trends predicted here as Eymold et al. (2021) 
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also predicts an increase in TOC at the southern end of the (35.4°N, 75.0°W) to (39.0°N, 72.0°W) 
region. It is unsurprising that the areas with increased TOC predictions are consistent between my 
work and the work done by Lee et al. (2019) and Eymold et al. (2021). Although the data sets used 
between the three predictions differed slightly, the general methodology was consistent across the 
models. 
To ensure the accuracy of the seafloor TOC model, it is additionally important to compare the 
results to field data in the area. Investigations by Skarke et al. (2014) have found multiple instances 
of methane gas leakage from the seafloor along the U.S. Atlantic margin in the form of gas plumes 
(Figure 6.2.6). The sites of these methane seeps correspond with areas predicted by GPSM to have 
higher values of seafloor TOC, specifically in the region between (35.4°N, 75.0°W) and (39.0°N, 
72.0°W). This region of highly concentrated methane seeps identified by Skarke et al. (2014) also 
aligns with the locations of the sites (specifically along the shelf break) where hydrate and gas 
formation were modeled with PFLOTRAN/Dakota. 

 
Figure 7-10. Output maps from GPSM over the area 29°N–45°N and 82°W–66°W. Locations with 
known TOC values are marked by small white dots. Methane seeps (large yellow dots) identified 
by Skarke et al. (2014) are also plotted and support the increased TOC prediction between (35.4°N, 
75.0°W) and (39.0°N, 72.0°W). Modeled locations are marked with a magenta x. 
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7.3. Gulf of Mexico – Shallow Gas 
We focused on predicting the probability of encountering shallow gas and hydrates in the Gulf of 
Mexico using the GPSM-Dakota-PFLOTRAN workflow. In shallow marine sediments, gas 
accumulations and hydrates are significant geohazards to subsea infrastructure, drilling, and 
production. Therefore, these predictions are crucial to ensure offshore drilling safety and submarine 
infrastructure security. The objective is to generate a prediction with uncertainty estimates to allow 
geohazard assessment before any shallow hazard surveys are performed. 

We used k-nearest neighbor regression for this task following Lee et al. (2019) and Eymold et al. 
(2021). The optimal value of k was selected at k = 5 based on its highest R2 value and similar 
runtime to other values (Table 7-5). TOC predictions and standard deviations in the Gulf of Mexico 
are shown in Figure 7-11.  

 
Table 7-5. Selection of k based on the coefficient of determination (R2) and runtime. 

K value R2 Runtime 

  
[min] 

4 0.6131 113.34 

5 0.6165 93.76 

6 0.6134 87.16 

7 0.6144 108.25 

8 0.6121 93.03 

10 0.6074 101.47 

12 0.6046 90.35 

 

Dakota sampled TOC, heat flux, and sedimentation rate from a normal distribution. The scaling 
factor was sampled with a uniform distribution, and methanogenesis rate was sampled using a log-
uniform distribution (Eymold et al. 2021). Furthermore, boundaries were set for each variable to 
avoid non-physical values such as negative sedimentation rates. This method provides N values of 
each variable independent of the other variables to provide a set of distinct values for each 
simulation (Eymold et al. 2021). These inputs were then used in PFLOTRAN. Input parameters are 
shown in Table 7-6. 

To narrow the focus of the simulation runs and accurate estimate parameters, we chose geographic 
locations with economic and geologic significance. Cross-referencing oil production data from the 
Enverus database, we selected locations in offshore lease blocks with the highest oil production 
(Enverus 2021). These blocks included Alaminos Canyon, Green Canyon, and Garden Banks, which 
can be seen below on Figure 7-12. These blocks were also chosen because they had both significant 
production history and direct measurements of heat flux and sedimentation rates from other 
sources. 
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Figure 7-11. Top: TOC prediction. Bottom: standard deviation of prediction. 
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Table 7-6. Input values for PFLOTRAN simulations. 

Parameter Status Value Units 

Sedimentation Rate  
Predictions from Restreppo et al. 
(2020) Variable m/s 

TOC Predictions from GPSM Variable % 

Heat Flux IHFC Global Heat Flow Database Variable W/m2 

Porosity Scalar 
Kominz et al. (2011) Model: 0.663*e(-

depth/1333) Variable - 

Methanogenesis Rate 
Log uniform sampled between 1 x 10-15 
to 1 x 10-13 Variable s-1 

Geothermal Gradient Variable, based on porosity/heat flux Variable °C/m 

Pressure Change Limit Max change per time step 1 x 105 Pa 

Temperature Change Limit Max change per time step 1 x 105 °C 

Gravity Fixed -1.125 m/s2 

Labile Portion of TOC Set to 75% TOC Variable % 

Conversion Factor of 
Methane Fixed 2,241 kg/m3 

Diffusion Coefficient of 
Methane Fixed 1 x 10-9 m2/s 

Gas Viscosity Methane 1.1 x 10-5 Pa-s 

Tortuosity Fixed 1.4 - 

Rock Density Fixed 2,700 kg/m3 

Thermal Conductivity (dry) Fixed 1 W/m/°C 

Thermal Conductivity (wet) Fixed 1 W/m/°C 

Heat Capacity Fixed 830 J/kg/°C 

Permeability Fixed 1 x 10-15 m2 

SMT Depth Fixed 15 mbsf 
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Parameter Status Value Units 

Van Genuchten Pressure Fixed 5.8 x 10-4 m-1 

Van Genuchten Pore Size 
Factor Fixed 0.189 - 

Liquid Residual Saturation Fixed 0.1 - 

Max Capillary Pressure Fixed 1 x 108 Pa 

Gas Residual Saturation Fixed 0.15 - 

Initial Liquid Pressure Initial Condition Variable Pa 

Initial Mole Fraction Initial Condition 1 x 10-3 - 

Initial Temperature Initial Condition Variable °C 

Initial Hydrostatic Liquid 
Pressure Initial Condition Variable Pa 

Initial Dirichlet Hydrate 
Saturation Initial Condition 1 x 10-8 - 

Initial Dirichlet Temperature Initial Condition Variable °C 

Neumann Liquid Flux Bottom Boundary Condition 0 m/yr 

Neumann Gas Flux Bottom Boundary Condition 0 m/yr 

Neumann Energy Flux Bottom Boundary Condition Q W/m2 

Hydrostatic Liquid Pressure Top Boundary Condition Variable Pa 

Dirichlet Mole Fraction Top Boundary Condition 1 x 10-3 - 

Dirichlet Temperature Top Boundary Condition Variable °C 

 

Furthermore, to provide contrast to these deep-water locations, several shallow locations near the 
continental shelf were selected in blocks, Galveston Area, Ship Shoal, High Island Area, Viosca 
Knoll, and East Cameron Area. These locations were also supported by direct measurements of heat 
flux and sedimentation rates from other sources. In addition, locations were selected from the 
International Ocean Discovery Program (IODP) database because these were well supported by 
accurate and direct measurements of necessary parameters (Expedition 308 Scientists, 2006). 

To accurately determine water depth at these locations, we used the Global Multi-Resolution 
Topography synthesis (GMRT) (Ryan et al. 2009). This global database was of the highest resolution 
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and has the most up to date bathymetry for the entire globe. Therefore, it gave us an accurate value 
of water depth at specific latitude and longitude locations. Similarly, to determine seafloor 
temperature, we used the GIS database from the Marine Conservation Institute. This database 
provided us with an accurate value of seafloor temperature at specific latitude and longitude 
locations, with a cell size of 30 arc seconds (Boyer et al, 2005). To determine sedimentation rate and 
its standard deviation, we used predictions from Restreppo et al. (2020), who applied a machine 
learning algorithm to predict oceanic sediment accumulation rates for all coasts and oceans. The 
results of this prediction model are summarized in Figure 7-13. 

 

 
Figure 7-12. Simulation locations with lease blocks. 

 
To determine heat flux and its standard deviation, we referenced the International Heat Flow 
Commission’s Global Heat Flow Database (Global Heat Flow Compilation Group, 2013). This 
database has approximately 279 direct measurements of heat flow in the Gulf of Mexico region. 
This provides us with an accurate observation of heat flux at specific latitude and longitude, which is 
significant because heat flux varies greatly as you move from the continental shelf to the slope in the 
Gulf of Mexico. Furthermore, to supplement this data in areas that were not densely sampled, we 
referenced a US Department of the Interior Minerals Management Service report (U.S. Resource 
Evaluation Division, 2008). This report included raw data on the geothermal gradient in the Gulf of 
Mexico, as seen below in Figure 7-14, originally collected in units of °C/km. Based on this 
histogram, we applied the mean geothermal gradient of 32.44 mW/m2 and the standard deviation of 
17.35 mW/m2 to locations where no direct measurements were present in the global heat flow 
database. 
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Figure 7-13. Top: sedimentation rate prediction. Bottom: standard deviation. Values from 
Restreppo et al. (2020). 

 



 

58 

 

 
Figure 7-14. Raw Texas Tech geothermal gradient distribution (U.S. Resource Evaluation Division, 
2008). 

 
Based on the availability and accuracy of parameters, the selected locations for simulation are 
summarized in Table 7-7 and Table 7-8. These tables include exact parameter values taken from the 
sources previously listed. 
 

Table 7-7. Prediction locations. 

Block  
Alaminos 
Canyon 857 

IODP 2004-
2013 308-
U1320-A 

Green 
Canyon 640 

Garden 
Banks 215 

IODP 2004-
2013 308-
U1322-A 

Profile  9299 12327 12587 13216 14766 

Latitude [°] 26.0939572 27.2664 27.3168347 27.5994467 28.1542281 

Longitude [°] -94.904053 -94.4032 -90.753767 -92.298389 -89.103724 

Water Depth [m] -2460 -1430 -1307 -770 -1157 

Seafloor 
Temperature [°C] 4 5 4 7 4.5 

Sedimentation Rate [cm/yr] 0.10308577 0.25487322 0.21047477 0.25127935 0.23858934 

Sedimentation Rate 
Standard Deviation [cm/yr] 0.35268494 0.33345547 0.37109157 0.33762705 0.35216802 

Heat Flux [mW/m2] 47 32.43511 32.43511 34 32.43511 

Heat Flux Standard 
Deviation [mW/m2] 2 17.35227 17.35227 2 17.35227 
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Table 7-8. Prediction locations, continued. 

Block  

Galveston 
Area 

Ship 
Shoal 169 

High 
Island 
Area 

Viosca 
Knoll 

East 
Cameron 
Area (#2) 

East 
Cameron 
Area (#1) 

Profile  15773 15821 16216 16928 17091 17736 

Latitude [°] 28.593 28.6187564 28.7138 29.0049 29.0932 29.3488 

Longitude [°] -94.9804 -90.995106 -94.0069 -88.5556 -92.8321 -92.6947 

Water Depth [m] -31 -19 -27 -468 -22 -16 

Seafloor 
Temperature [°C] 23 24 23 10 23 23 

Sedimentation 
Rate [cm/yr] 0.48083304 0.23699815 0.31938822 1.93456078 0.301677951 0.458751461 

Sedimentation 
Rate Standard 
Deviation [cm/yr] 0.4152395 0.20393202 0.43229884 0.36461788 0.41631946 0.40278223 

Heat Flux [mW/m2] 52 41 46 44 52 48 

Heat Flux 
Standard 
Deviation [mW/m2] 2 2 2 2 2 2 

 
By referencing multiple sources for accurate estimations of input parameters and assuming microbial 
methanogenesis is the source of shallow hydrocarbons, we can propagate the seafloor properties 
downward using Dakota and PFLOTRAN. This generates probabilistic models of gas and hydrate 
presence. In these simulations, we assumed that the parameters remained constant for the duration 
of the simulation. Although this is not geologically reasonable, it allows us to identify where gas 
saturation should occur.  
The results from the Dakota and PFLOTRAN runs are represented graphically in Figure 7-15– 
Figure 7-19. On the left side of each figure are histograms of results data. The first histogram 
represents the number of simulation runs that resulted in gas being formed, as well as how much gas 
was formed. The x-axis illustrates the volume of gas, in cubic meters, integrated over the simulation 
domain, which is a rectangular prism with the base of a 5 x 5 arc minute box on the seafloor that 
extends vertically downwards 1,000 m. The second histogram represents the reaction rate constant 
for the methanogenesis function, which was given as log normal distribution in Dakota. The third 
histogram represents the distribution of TOC values, which should follow a normal distribution and 
depend on the mean and standard deviation predicted by GPSM. Although these distributions will 
follow a normal distribution, this trend may not appear in some histograms because the sample size 
is relatively low when using only ten simulations runs on PFLOTRAN. Furthermore, the plots on 
the right side are known as horsetail plots. These plots represent the distinct gas or hydrate 
saturation profile you expect to see based on the variation of parameters provided by Dakota. Each 
plot line represents one set of parameters input in one simulation run. Overall, these histograms and 
horsetail plots are illustrating the probability of seeing gas and hydrates within the parameter space.  
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Figure 7-15. Results for Alaminos Canyon. 
 

 

Figure 7-16. Results for IODP 308-U1320-A. 
  

 

Figure 7-17. Results for Green Canyon. 
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Figure 7-18. Results for Garden Banks. 
 

 

Figure 7-19. Results for IODP 308-U1322-A. 
 

In the deep-water region of the Gulf of Mexico, the simulations run at locations within Alaminos 
Canyon, Green Canyon, Garden Banks, IODP 308-U1320-A, and IODP 308-U1322-A represent 
probabilistic models for gas accumulation and hydrate presence in these deep-water marine 
environments. The gas saturation histogram shows that it is highly probably that no gas is formed 
because the runs’ volumes of gas present were frequently zero. In addition, the distributions of the 
TOC values also were normally distributed around low values, less than 0.25% dry weight. In 
addition, the horsetail plots show that all the saturation profiles for both gas and hydrates remain at 
approximately zero throughout the 1,000-meter zone. 
In the continental shelf region of the Gulf of Mexico, the simulations run at locations within the 
Galveston Area, Ship Shoal, High Island Area, Viosca Knoll, and East Cameron represent 
probabilistic models for gas accumulation and hydrate presence in these shallow marine 
environments. The results for each of these locations are illustrated in Figure 7-20 - Figure 7-25. 
In Figure 7-20, the gas saturation histogram shows that it is approximately equally likely for no gas 
to be present, or between 20-25 m3 to be present. In addition, the TOC distribution shows that this 
Galveston Area location was more likely to have higher values of TOC because the distribution 
ranged from 0.4-0.8% dry weight. The horsetail plots show that this location will likely not have 
hydrate present, but is likely to have gas saturation present. Most the profiles slowly increase with 
depth, showing multiple profiles ending around 0.025 at 1,000 m. 
 



 

62 

 

Figure 7-20. Results for Galveston Area. 
 

 

Figure 7-21. Results for Ship Shoal. 
 

 

Figure 7-22. Results for High Island Area. 
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Figure 7-23. Results for Viosca Knoll. 
 

 

Figure 7-24. Results for East Cameron (profile 17091). 
 

 

Figure 7-25. Results for East Cameron (profile 17736). 
 
Figure 7-21 shows the results for the Ship Shoal location. Similar to Figure 7-21, the gas saturation 
histogram shows that it is approximately equally likely for no gas saturation to be present, or 
between 20-25 m3 to be present. In addition, the TOC distribution has high values ranging from 0.6-
0.9% dry weight. The horsetail plots show that this location will likely not have hydrate present, but 
is likely to have gas saturation present. Most the profiles have the highest saturation of gas present 
between 200-600 m from the seafloor. 
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In Figure 7-22, the gas saturation histogram for High Island area shows that it is approximately 
equally likely for no gas saturation to be present, or between 20-25 m3 to be present. However, the 
TOC values are not as high as previous locations, ranging from 0.1-0.5% dry weight. The upper 
bounds of this distribution is still higher than the deep water locations which were unlikely to have 
gas present. The horsetail plots show that this location will likely not have hydrate present, but is 
likely to have gas saturation present. However, the gas saturation is most likely to be relatively low 
around 0.015, with the exception of a few profiles that show gas present between 200-400 m. 
In Figure 7-23, the gas saturation histogram shows that it is approximately equally likely for no gas 
saturation to be present, or between 8-10 m3 to be present. In addition, the TOC distribution has 
values ranging from 0.2-1.2% dry weight. This distribution is much wider than previous locations, 
and is likely to have high TOC values. In addition, the highest frequency of the distribution falls on 
the higher end of the scale of TOC values. The horsetail plots show that this location will likely not 
have hydrate present, but is likely to have gas saturation present. These profiles increase with depth. 
However, the maximum gas saturation for each profile ranges between 0-0.008, which is lower than 
other locations selected in the Gulf of Mexico. 
In Figure 7-24, the gas saturation histogram shows that it is approximately equally likely for no gas 
saturation to be present, or between 20-25 m3 to be present. In addition, the TOC distribution has 
very high values ranging from 1.0-1.3% dry weight. The horsetail plots show that this location will 
likely not have hydrate present, but is likely to have gas saturation present. These profiles show gas is 
likely to be present between 200-400 m below the seafloor in some simulation runs. In addition, 
these saturation profiles also range up to a maximum of 0.125 gas saturation. 
In Figure 7-25, the gas saturation histogram shows that it is approximately equally likely for no gas 
saturation to be present, or between 20-25 m3 to be present. In addition, the TOC distribution has 
relatively high values ranging from 0.8-1.4% dry weight. The horsetail plots show that this location 
will likely not have hydrate present, but is likely to have gas saturation present. These profiles show 
gas saturation increasing with depth, and in some runs, experiencing a spike in gas saturation 200-
400 m below the seafloor in some simulation runs. In addition, these saturation profiles also range 
up to a maximum of 0.100 gas saturation. 
After graphing the results from these simulation runs, we observe that there is no hydrate present at 
any of these locations. After evaluating the exact values that make up the above distributions of gas 
saturation and hydrate saturation, the minimum and maximum depths that gas occurs is represented 
in Table 7-9 below. 
 

Table 7-9. Average maximum and minimum depth of gas and hydrate present and range of TOC 
values. 

Block Profile 

Average 
Minimum 
Depth of 
Gas 
Present 
(m) 

Average 
Maximum 
Depth of 
Gas 
Present 
(m) 

Maximum 
Gas 
Saturation 

Average Gas 
Saturation 
Over Zone 
of 
Occurrence 

Range of 
TOC 
(Fraction 
Dry 
Weight) 

Alaminos Canyon 
857 9299 - - - - 

0.0018 - 
0.0024 



 

65 

Block Profile 

Average 
Minimum 
Depth of 
Gas 
Present 
(m) 

Average 
Maximum 
Depth of 
Gas 
Present 
(m) 

Maximum 
Gas 
Saturation 

Average Gas 
Saturation 
Over Zone 
of 
Occurrence 

Range of 
TOC 
(Fraction 
Dry 
Weight) 

IODP 2004-2013 
308-U1320-A 12327 - - - - 

0.0005 - 
0.0020 

Green Canyon 640 12587 - - - - 
0.000 - 
0.004 

Garden Banks 215 13216 - - - - 
0.0006 - 
0.0012 

IODP 2004-2013 
308-U1322-A 14766 - - - - 

0.0006 - 
0.0012 

Galveston Area 15773 0.5 972.9 0.15 0.0213 
0.004 - 
0.008 

Ship Shoal 169 15821 51.95 997.1 0.15 0.0355 
0.006 - 
0.009 

High Island Area 16216 23.55 926.3 0.15 0.0122 
0.001 - 
0.005 

Viosca Knoll 16928 100.35 509.95 0.00905 0.00283 
0.002 - 
0.0012 

East Cameron Area 
(#2) 17091 19.25 993.3 0.15 0.0442 

0.010 - 
0.013 

East Cameron Area 
(#1) 17736 0.5 994.9 0.15 0.0364 

0.008 - 
0.014 

 
Considering the results above, we can draw conclusions about the relationship between geologic 
location and gas and hydrate presence, as well as the minimum amount of TOC needed to indicate 
gas or hydrate presence. Overall, locations on the continental shelf along the Gulf of Mexico coast 
are more likely to have presence of gas accumulation compared to those located in deep-water. 
However, neither the locations along the shelf nor in deep-water were likely to have hydrate. 
Because we selected lease blocks with already existing high oil production, it may be likely that these 
blocks do not have hydrate present because major oil and gas operators are more likely to drill in 
locations without obvious shallow hazards. Areas with high drilling activity in the Gulf of Mexico, 
such as Alaminos Canyon, Green Canyon, and Garden Banks, are less likely to have shallow gas 
hazards. Furthermore, any seafloor seeps identified in areas of high drilling activity likely originate 
from deep reservoirs, not from shallow gas accumulation because high drilling activity disturbs the 
deep reservoir temperature and pressure conditions, which leads to seeps. 
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Moreover, our predictions illustrate that gas is more likely to be present along the shelf where the 
total organic content values are high. Gas is less likely to be present in deep water where the total 
organic content values are low. From these results, it can be asserted that approximately 0.25% dry 
weight is a minimum amount of TOC that indicates the presence of a shallow gas hazard. 
Galveston, Ship Shoal, Viosca Knoll, and East Cameron range well above 0.25% dry weight, and 
correlate to a long average depth interval where gas saturation is likely to be present. Out of the 
locations along the shelf, the High Island area has a wider TOC range which drops below 0.2% dry 
weight. However, the range also well exceeds this minimum and spans to 0.5% dry weight. By 
comparison, all the locations along the slope and deep-water have TOC ranges around 0.1% dry 
weight, with Green Canyon as the expectation with a wider range that does go below 0.2% but also 
spans up to 0.4% dry weight. Furthermore, these regions continental shelf where sedimentation rate 
is greater than 0.1 cm/yr are more likely to have shallow gas hazards. This trend can be visualized in 
Figure 7-26 below. Overall, these results illustrate that gas is more likely to be present along the shelf 
where the total organic content values are high. 
 

 
Figure 7-26. TOC values at selected simulation locations. 

 
Based on the PFLOTRAN simulations, we observe that a threshold seafloor TOC concentration of 
0.25 wt% is necessary for shallow gas to occur (Figure 7-27). For TOC values lower than this, the 
shallow hazard risk is low. 
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Figure 7-27. Predicted gas concentrations arranged in order of increasing seafloor TOC from left 
to right. Locations highlighted in green are predicted to have shallow gas. 

 
Our predictions illustrate that gas is more likely to be present along the shelf where TOC values are 
high, compared to low TOC values in deep water.  We can support the assertion that 0.25% dry 
weight is a minimum amount of TOC that indicates the presence of a shallow gas hazard. 
Furthermore, 10% gas saturation is often considered the mobility threshold. Comparing the likely 
gas saturation profiles with the TOC distributions, we can conclude that 0.25% dry weight TOC 
may be needed for 10% gas saturation. Furthermore, regions along the shoreline and continental 
shelf where sedimentation rate is greater than 0.1 cm/yr are more likely to have shallow gas hazards. 
Areas with high drilling activity in the Gulf of Mexico, such as Alaminos Canyon, Green Canyon, 
and Garden Banks, are less likely to have shallow gas hazards. Any seafloor seeps identified in areas 
of high drilling activity likely originate from deep reservoirs, not from shallow gas accumulation. 
This work provides granular predictions of shallow geohazards on a basin scale, and offers a holistic 
approach to identifying shallow hazard using big data and machine learning techniques. Leveraging 
geospatial machine learning models improves the predictions of subsurface hydrocarbons, despite 
scarce sampling of total organic content in the seafloor. Furthermore, these predictions also include 
associated uncertainties, which improves engineering analysis. 
 
 

7.4. Greenland-Norwegian Sea 
The seafloor between Greenland, Iceland, Scandinavia, and Svalbard contains numerous sites where 
free gas and gas hydrate have been detected in sediments. Off the east coast of Greenland, evidence 
of hydrate occurrence comes in the form of gassy sediments and BSR signals (Minshull et al., 2020; 
Knies and Mann, 2002). Additional BSRs have been observed during analysis of the Storegga Slide 
off the northwest coast of Norway (Brown et al., 2006). The presence of gas and hydrate off the 
coast of Svalbard is also widely documented by sonar (Veloso-Alarcón et al., 2019; Westbrook et al., 
2009), hydroacoustic analysis of the Hornsund Fracture Zone (Mau et al., 2017),  and sediment core 
collection (Treude et al., 2020). Therefore, this region represents another study area to demonstrate 
the Dakota-PFLOTRAN workflow. 

The GPSM values for a study area between 30°W and 30°E and 65°N and 80°N were used to 
construct a study area for the region between Scandinavia and Greenland, termed the Greenland-
Norwegian Sea study area. Sedimentation rate is generally highest in shallow locations, with 
exceptionally high rates found north of Iceland (Figure 7-28). The TOC values tend to be higher 
nearshore but TOC exceeds 2% in the region between Svalbard and Norway in the eastern part of 
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the map (Figure 7-29). High heat fluxes are associated with many locations near Greenland and 
Iceland, as well as off the west coast of Svalbard (Figure 7-30). Similarly, warmer seafloor 
temperatures are associated with nearshore locations throughout the study area (Figure 7-31). 
Finally, regions with depths <1,000 mbsl extend off the coasts for hundreds of kilometers and the 
plate boundary can be seen along the middle of the study area (Figure 7-32). 

 
Figure 7-28. Annual sedimentation rates for Greenland-Norwegian Sea study area based on 

Straume et al., (2019). Higher sedimentation occurred near northeast Greenland and north of 
Iceland.  

 

 
Figure 7-29. Total Organic Carbon (TOC) for the Greenland-Norwegian Sea study area. TOC values 

above 2% are common for the section between Svalbard and Norway. 



 

69 

 
Figure 7-30. Heat Flux for Greenland-Norwegian Sea study area. Elevated values of heat flux occur 

along mid ocean ridge and near Iceland hotspot. 
 
 

 
Figure 7-31. Seafloor temperature for Greenland-Norwegian Sea study area. Higher temperatures 

coincide with nearshore areas along coastlines. 
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Figure 7-32. Seafloor depth for Greenland-Norwegian Sea study area. The mid ocean ridge is 

clearly visible, running as the thin line from Svalbard down to Iceland. 
 
The Greenland-Norwegian Sea study area encompasses 129,600 locations, 96,857 of which are 
offshore and can be simulated. Dakota was used to sample on the sedimentation rate, TOC, heat 
flux, temperature, and depth associated with every location and the distributions were used to 
initiate PFLOTRAN simulations. We ran five simulations on each of these locations for 500 kyr to 
determine the formation of free gas and gas hydrate. The masses of gas hydrate and free gas formed 
in the sediment column during the simulations were calculation following Equation 3.1 and 3.2, and 
the average was taken between all five simulations at each location.  
The average gas formation shows three regions of significant free gas occurrence north of Iceland, 
along the northeast coast of Greenland, and the highest occurrences between Svalbard and Norway 
(Figure 7-33). Nearly all locations between the Norwegian and Barents Seas formed free gas during 
the simulation time when seafloor depth was <1,000 mbsl (maximum of 9,381.0 kg). Effectively no 
gas forms in regions approaching the mid ocean ridge as the available TOC and sedimentation rates 
decrease. Generally, the boundaries of the gas forming areas envelope the regions which will be 
suitable for gas accumulation in the Greenland-Norwegian Sea study area. 
The formation of gas hydrate in the Greenland-Norwegian Sea study area was much more restricted 
compared to free gas occurrence (Figure 7-34). Elevated amounts of formation occurred off the 
northeast coast of Greenland between 17°W - 10°W (maximum of 2,554.6 kg), with lower masses 
forming between the Barents and Norwegian Seas from 15°E-30°E. Intriguingly, high formation 
was predicted for the west coast of Svalbard (7°E-9°E, north of 77°N) and may be associated with 
gas migration along the Hornsund Fracture Zone (Mau et al., 2017). This region was also included in 
the areas of high gas formation, suggesting this system is crucial to seafloor methane considerations. 
The Greenland-Norwegian Sea study area was selected to demonstrate the Dakota-PFLOTRAN 
workflow and evaluate its performance in an Arctic region. Hydrates have been either directly 
observed or inferred in nearshore locations along Arctic coasts (Hester and Brewer, 2009). Because 
all regions in the Arctic are warming (Meredith et al., 2019), increased temperatures threaten the 
stability of hydrate and free gas contained in sediments. Methane dissociation has the potential to 
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decrease ocean pH (Biastoch et al., 2011) and poses a risk to climate change if the gas is able to 
reach the atmosphere (Ruppel and Kessler, 2017). Predictions based on high resolution GPSM data 
can provide improved predictions for the location, volume, and risk of hydrate and gas occurrence 
that more accurately represent the previously less-constrained Arctic areas. 
 

 
Figure 7-33. Average gas formation for each sediment column. Gas formation was more abundant 

and more frequent in the Greenland-Norwegian Sea study area compared to hydrate formation. 
 

 
Figure 7-34. Average hydrate formation for each sediment column. Locations off eastern shore of 
Greenland and between Svalbard and Norway were the only regions to form substantial amounts. 
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7.5. Machine Learning Driven Regression Model 
In this work, we tested three machine learning (ML) models including artificial neural networks 
(ANNs) and convolutional neural networks (CNNs) to predict free gas and gas hydrate formation. 
PFLOTRAN simulations as described in Section 7 and Sections 8.1-8.2 were used to generate 
training data of free gas and gas hydrate formation as a function of sedimentation rate (mm/yr), 
TOC (%), Q (mW/m2), depth (mbsl), and temperature (°C).  A total of 24000 datasets were 
generated. All physical input and output data as shown in Figure 7-35 were normalized from 0 to 1 
for ML training. Three different groups including no hydrate, only free gas, and both free gas and 
hydrate formation are separately and randomly split into training/validation/testing sets with a ratio 
of about 7:1.8:1.2.  

 

 
Figure 7-35. (Left) Distribution of five varying input parameter values for PFLOTRAN simulation 
including sedimentation rate (mm/yr), TOC (%), Q (mW/m2), depth (mbsl), and temperature (°C). 
(Right) Distribution of formed hydrate and free gas mass with a number of non-zero cases. The 
horizontal and vertical axes are corresponding to the range of parameter values and frequency of 
parameter values, respectively. A total of 24000 simulation data are generated. 
 

In this work we used two different CNN architectures to construct ML-driven models for predicting 
hydrate formation. CNNs have been widely used for image classification and segmentation and also 
applied for regression tasks of various scientific and engineering problems (e.g., Anwar et al., 2018, 
Ling et al., 2016). As shown in Figure 7-36(a&b) two CNN architectures with different complexities 
are chosen to develop robust ML-driven models for prediction of hydrate & gas formation. The first 
CNN architecture includes four CNN-based models with each having different numbers of CNN 
layers, filters and kernel sizes. Maxpooling is used in only one CNN branch. This particular structure 
shown in Figure 7-36(a) is to extract various relationships of five input parameters at different scales.  
All four CNN models are concatenated, followed by a series of dense layers with different sizes to 
construct a regressor with an output dimension of 2. The second CNN architecture (Figure 7-36b) 
consists of three CNN1D layers with 32, 64, 128 filters and a kernel size of 2, followed by 4 dense 
layers with a size of 256, 96, 16, and 2 per each layer. This second CNN is a vanilla type standard 
CNN structure for feature extraction and regression. Hence, we can compare the performance of 
two CNN-based models. A number of filters in CNN1D layer, a number of epochs from 5,000 to 
20,000, learning rate, activation function, dropout, and a number of dense layers and size are 
manually evaluated to find out optimal hyperparameters. 
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Figure 7-36. (a) Stacked four CNN architectures with different levels of depth and filter sizes for 

multiscale pattern extractions. Conv1D was used. (b) Single CNN architecture with three Conv1D 
layers followed by a series of dense layers. (c) ANN architecture with a repeat of hidden layers 

using the same number of nodes per each layer. 
 

ANNs consist of input, hidden layer(s) with nodes, and output with a number of hidden layers and 
nodes as primary hyperparameters. Due to its simple structure and as universal approximator ANNs 
have been widely used as a regression model (e.g., Abiodun et al., 2019). Advances in ANNs-based 
applications have been investigated for hyperparameter optimization, hybrid neural networks 
models, and integrated approaches with other neural network or deep learning methods among 
others. Here, we use a relatively simple ANN architecture consisting of a number of hidden layers 
(5-8) with the same number of nodes per each layer (40-80) and batch normalization. We did a 
limited sensitivity analysis to optimize the hyperparameters. 

Figure 7-37shows the prediction of hydrate and gas masses using the best ML-based models with 
three different architectures described above for testing datasets (~3,000 data). Overall, the 
prediction of hydrate formation has been predicted very well for all three models. Particularly, two 
CNN based models predict extremely well although there are only 279 cases out of 24,000 with 
hydrate formation. As described, all ML models are trained together to predict hydrate and gas 
formation. It is noted that there are many multiple CNN-based solutions founded to make a similar 
prediction as shown in Figure 7-37, while ANN-based models are relatively limited to achieve similar 
performance. This simple comparison shows that CNN-based models is superior to ANN-based 
approach to extract information better for this problem. In contrast, the prediction of gas formation 
has more complex behaviors. First, for the most of data both CNN-based approaches have a good 
prediction compared to the PFLOTRAN results (i.e., truth) as seen in most of data points near the 
1-to-1 line. However, scattered patterns of low range of gas mass formation is observed in all three 
models, indicating that under certain conditions the training data is not enough to train the ML-
based models well. It should be noted that training results are much better than those in Figure 7-37 
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where testing data unseen during training is displayed. Although it is further needed to investigate 
the conditions where the current ML-based models are struggled to make a good prediction of gas 
formation quantitatively, data screening for training may help to improve ML training in the future.  

 
Figure 7-37. Parity plots of ML prediction vs. PFLOTRAN data (i.e., truth) for hydrate and gas 
formation. (a&b) stacked CNN architecture, (c&d) single CNN architecture, and (e&f) ANN 
architecture. All ML model architectures are shown in Figure 7-36. 
 

Although prediction of formed gas mass looks scattered, a fraction of these scattering data is about 
4% of all testing data. As in the hydrate formation, CNN-based models have higher equally likely 
sets of hyperparameters compared to ANN-based models, indicating that if we adopt for automatic 
hyperparameter optimization, it is likely to find a number of models for good prediction of both 
hydrate and gas formation with CNN-based models. It should be noted that ML-based regression 
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models developed here can be used as a surrogate model for fast prediction (e.g., a few seconds for 
100 model prediction), so we can perform highly computationally demanding jobs quickly as well as 
initial screening for high fidelity modeling studies. 

 

7.6. Alaskan North Slope 
Submarine permafrost in the Arctic has been estimated to trap 60 billion tons of methane and 
contain 560 billion tons of organic carbon within seafloor sediments and soil (Sayedi et al. 2020). 
Much of the North Slope exists within the gas hydrate stability zone and the presence of gas hydrate 
has been determined from core samples and logging data (Collett et al., 2011). Gas hydrate 
associated with permafrost in this region has been hypothesized to form by the conversion of 
trapped free gas following glaciation (Collett, 2002; Boswell et al., 2011). While research shows that 
dissociation of permafrost-trapped methane is unlikely to reach the atmosphere through the water 
column, the rates of release or microbial oxidation could change in response to global warming of 
the Arctic (Sparrow et al., 2018). A better understanding of the effects of potential methane gas 
release on long term climate concerns requires probabilistic predictions of subsurface methane gas 
formation. We applied the Dakota-PFLOTRAN workflow to a case study on Alaska’s North Slope 
to develop new capabilities and evaluate the performance in predicting shallow gas formation in the 
Arctic. 

To further demonstrate the model capabilities in the Arctic, we developed a flexible version of the 
Dakota-PFLOTRAN workflow that runs on Sandia’s Common Engineering Environment (CEE) 
Linux system. This updated workflow allows for flexible sampling setups and incorporates changes 
in relative sea level (RSL) over the simulation time. We used the GPSM values for 1,565 locations 
between 157°W and 142°W and 70°N and 72°N to cover the shallow coast off of the North Slope 
of Alaska. The sedimentation rate was consistently low along the coast in the study area, with rates 
reaching 0.16 mm/yr in the southeastern portion (Figure 7-35). TOC values were scattered but 
exceeded 2% in the eastern half of the coastline as well as further north offshore (Figure 7-36). The 
study area exhibited modest heat flux values which were highest nearer to shore but ranged between 
45-75 mW/m2 (Figure 7-37). Due to the Arctic setting, seafloor temperatures were almost always 
just above 0 °C even in shallow depths, but some coastal areas such as near the village of Utqiagvik 
(71.28°N, 156.79°W) exhibited temperatures exceeding 20 °C (Figure 7-38). Finally, the seafloor 
depth followed the trace of the coastline, with deeper portions of the study area in the northwest 
(Figure 7-39). Any or all of these variables could be toggled on or off for Dakota sampling in the 
new workflow. 

The RSL time history was introduced to account for the changes in sea level due to glaciation over 
the past 120 kyr (Figure 7-40). This time history is used to apply pressure conditions that vary 
through time due to changing water depth as well as adjusting the temperature when the location 
would be exposed to atmospheric as opposed to oceanic conditions based on site specific depth. 
Due to glaciation, much of the time history is at lower sea level relative to today’s conditions. 

To initiate this flexible workflow, we maintained a constant porosity of 70% for the sediment 
column and simulated for one full glaciation cycle of 120 kyr. All locations with depths ≤ 200 mbsl 
were selected and 25 simulations were run at each site. While the workflow allows for Dakota to 
sample on all five GPSM parameters, several limitations were observed for this study area. Due to 
the shallow depths associated with the coastline, frequent numerical issues occurred when very 
shallow depths were selected from the Dakota distributions coupled with high TOC values. As a 
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temporary solution, we chose to retain the GPSM averages for seafloor depth at each location rather 
than sampling on this parameter. Similarly, the cold temperatures associated with the Arctic resulted 
in ice formation during simulations where the Dakota-provided seafloor temperature was negative. 
Therefore, we emplaced a minimum temperature of 0.1 °C for all North Slope simulations. 

 

 

Figure 7-38. Sedimentation rate for North Slope study area. 
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Figure 7-39. TOC values for North Slope study area. 
 

 

Figure 7-40. Heat flux values for North Slope study area. 
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Figure 7-41. Seafloor temperature for North Slope study area. 
 

 

Figure 7-42. Seafloor depth for North Slope study area. 
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Figure 7-43. Relative sea level due to changes in glaciation. Modern day sea level is shown as 
a dashed black line. 

 

 
The results from the simulations (Figure 7-41) suggest that free gas is ubiquitous in the sediments 
along the North Slope, though in low quantities (maximum of 132.7 kg). The low mass of gas likely 
results from the short simulation times which should be increased in the future. Locations along the 
200 m contour exhibited slightly higher formation masses than locations nearshore. We hypothesize 
that this is due to more elevated sedimentation rates away from the coastline and further evaluation 
should extend the simulations to all depths in the study area. 
By including the RSL time history into PFLOTRAN, we can apply more realistic boundary 
conditions for the Arctic but more adjustments are necessary. The 120 kyr simulation times are too 
short to allow for simulations to reach steady state and the duration should be extended. Repeating 
the RSL time history will incorporate the effects of multiple glacial cycles over these longer 
simulation times. The temperature restriction emplaced is unrealistic and next simulations should 
include salinity to reduce the freezing temperature of water and prevent ice formation in the 
sediment columns. Finally, the constant porosity was applied to allow greater flexibility of the 
workflow to run on CEE but future simulations will incorporate the site-specific porosity profiles 
available in GPSM. Overall, these efforts demonstrate that the workflow has been updated to 
include more customization for specific studies and will be able to run on external Linux systems 
once the workflow is made publicly available. 
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Figure 7-44. Average gas formation for the North Slope of Alaska. All simulations yielded 
gas at every location in the study area. 

 
 
 
 

7.7. Global Forecasting of Free Gas and Gas Hydrate Occurrence  
To showcase the generalizability of the GPSM-Dakota-PFLOTRAN framework, we applied the 
framework at a global scale. This study presents results from a global application of this data-driven 
workflow for integrated probabilistic gas hydrate systems modeling, which includes parameter 
distribution prediction (GPSM), parameter sampling (Dakota), mechanistic simulation 
(PFLOTRAN), statistical analysis (Dakota and Python scripting), and 3D visualization (ParaView). 
Coarse mapping of gas hydrate and free gas at this scale can yield insight into which locations to 
sub-sample for more rigorous uncertainty quantification; this kind of study can also be used to 
identify which regions of the globe could be most sensitive to global climate change with respect to 
their gas or hydrate deposits. 

In this study, 500 simulation realizations were run for each of 35,136 distinct locations across the 
globe (excluding land, 1-degree). For each location, data was extracted from GPSM-generated maps 
of expected value and standard deviation of heat flux (Figure 7-42) and seafloor total organic carbon 
(Figure 7-43). For each simulation realization at each location, boundary conditions, initial 
conditions, and sediment material properties were set according to Dakota-derived sample 
parameter sets which were generated based off expected value and standard deviations prescribed 
for each parameter at a given location. Five parameters were sampled for this study: seafloor depth, 
seafloor temperature, heat flux, sedimentation rate, and seafloor organic carbon content. These 
parameters informed the boundary and initial conditions of simulations run to steady state which 
consider non-isothermal effects, multiphase flow, in-situ microbial methane generation, 
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sedimentation, and methane diffusion/advection. The end result of this workflow is a set of 500 
sediment column simulations at each location with predictions for each simulation of steady-state 
free gas and gas hydrate quantities (Figure 7-44).  

 

 
Figure 7-45. Predicted heat flux using K-nearest neighbors algorithm produced by GPSM. 
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Figure 7-46. GPSM prediction of seafloor total organic carbon (Lee et al., 2019). 

 

 
Figure 7-47. Example of the GPSM-Dakota-PFLOTRAN workflow 

 

Once these results are produced by PFLOTRAN, the data can be post-processed by Dakota and 
visualized with Python scripting to tease out potential relationships between input parameters and 
outputs of interest. As an example, Figure 7-44 illustrates a snapshot of 500 simulations at one 
location taken near Blake Ridge offshore North Carolina. For this single location, Dakota post-
processing generated a tabular output file containing sampled parameter values for each individual 
realization along with output variables of interest at a given point in the domain. In this example, the 
domain point chosen was 500 mbsf which is approximately the current base of the gas hydrate 
stability zone at Blake Ridge. Figure 7-45 plots a series of scatterplots illustrating the relationships 
between sampled input parameters (along the bottom axis) and specified output variables (along the 
left axis). At this location, the strongest positive correlation appears to be between heat flux and 
sediment temperature. Free gas and hydrate saturations both appear to be positively correlated to 
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seafloor organic carbon fraction and negatively correlated to sedimentation rate. In addition to 
scatterplots, statistical measurements of correlation coefficients between input parameters and 
output variables were also generated by Dakota and plotted in Figure 7-46. These correlation 
coefficients indicate that organic carbon fraction has a significant impact on dissolved methane 
concentrations, gas saturations, and hydrate saturations. Correlation coefficients also identify a 
positive relationship between seafloor temperature and heat flux on sediment temperature, and 
relationships between other input/output combinations appear mixed. 

 

 
Figure 7-48. Scatterplots of input variables (along the bottom axis) vs outputs (left axis) at 500 
mbsf at a location near Blake Ridge. 
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Figure 7-49. Dakota-derived correlation coefficients between input parameters and output 
variables. 

 
Data from all simulations were then aggregated at a global scale to get a picture of the global 
distribution of gas hydrate and free gas. The gas hydrate map (Figure 7-47) predicts the highest gas 
hydrate saturations along continental margins and in the Arctic. This is remarkably consistent in 
terms of location of hydrate deposits with a USGS map of gas hydrate inferred and recovered 
around the globe (Figure 7-48). While consistency between these two maps does not validate the 
accuracy of the specific quantities predicted by the simulations, it does demonstrate that a data-
driven approach to gas hydrate systems quantification can produce physically realistic results. A 
similar map of shallow free gas was produced through this workflow; this map predicts more sparse 
free gas accumulations but for the most part these free gas accumulations are collocated with gas 
hydrate (Figure 7-49). 
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Figure 7-50. Maximum gas hydrate saturation predicted from the workflow. 

 
 

 
Figure 7-51. Global distribution of inferred and recovered gas hydrate in sediments (adopted from 

USGS.gov). 
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Figure 7-52. Maximum free gas saturation predicted from the workflow 

 
One significant caveat with this work is that the physical conceptual model (steady sedimentation to 
steady-state, diffusion-dominated environment, standard marine mud lithology/physical properties) 
was applied in the same way to every location on the map. This is obviously physically unrealistic but 
it served as a first order approximation and as a launching point for advancing this framework at a 
global scale. To produce more realistic results, in the future flexibility needs to be added to the 
framework to heterogeneously apply different conceptual models and different sediment lithologies 
depending on the region of the globe being simulated.  

 

7.8. Seafloor Acoustic Calculations 
From Section 7.1, seafloor heat flux, porosity, total organic carbon, and gas and hydrate saturations 
with depth were input into the US Naval Research Laboratory’s GPSM (GeoPhysMod) program. 
This program ingests geological and geophysical values at the seafloor and with depth in the 
subsurface to estimate various resulting geophysical and geoacoustic profiles (e.g. density, P-wave 
velocities). Here, we demonstrate the effect hydrate and free methane gas has on sediment density 
and P-wave velocity.  

To model porosity vs depth, we used the Martin & Wood (2017) mechanical compaction model 
where the primary mechanism for porosity reduction is vertical effective stress resulting in grain 
rearrangement and rotation. This compaction model requires estimates of the total amount of 
sediment grains that are clay grains, called fraction clay. However, we do not have a predicted 
estimate of fraction clay for the seafloor. Therefore, we solve for the fraction clay by the 
rearrangement of Equation 7.3 found within Martin and Wood (2017) using our GPSM GML 
predicted seafloor porosity value. Using this fraction of clay, we solve for the residual porosity 
(Equation 7.4) assuming clay fractions are constant with depth. 
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𝜙𝜙0 =  𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦𝜙𝜙0𝑐𝑐𝑐𝑐𝑦𝑦 + �1 − 𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦� ∗  𝜙𝜙0𝑠𝑠𝑛𝑛𝑑𝑑    (Eq. 7.3) 

 

𝜙𝜙𝑟𝑟 =  𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦𝜙𝜙𝑟𝑟𝑐𝑐𝑐𝑐𝑦𝑦 + �1 − 𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦� ∗  𝜙𝜙𝑟𝑟𝑠𝑠𝑛𝑛𝑑𝑑   (Eq. 7.4) 

 

In Equation 7.3 and 7.4, 𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦is the fraction of sediment grains that are clay for a parcel of sediment. 
For a sediment column containing 100% clay, we assume depositional (𝜙𝜙0𝑐𝑐𝑐𝑐𝑦𝑦 ) and residual (𝜙𝜙𝑟𝑟𝑐𝑐𝑐𝑐𝑦𝑦) 
porosities to be 0.85 and 0.05 respectively. Conversely, for a sediment column containing 100% 
sand, we assume depositional (𝜙𝜙0𝑠𝑠𝑛𝑛𝑑𝑑) and residual (𝜙𝜙𝑟𝑟𝑠𝑠𝑛𝑛𝑑𝑑) porosities to be 0.39 and 0.22 
respectively. These porosities of sand and clay are used to calculate the final depositional (𝜙𝜙0) and 
residual (𝜙𝜙𝑟𝑟) porosity for a given grid cell or location.  

For each depth (1 meter discretization) and corresponding porosity we calculate the density of the 
sediment where pore space is occupied by some fraction of hydrate and/or gas. Hydrate is 
considered to be a pore fill in this model, and therefore porosity will decrease slightly in depth 
voxels where hydrate saturation increases. The density of the sediment is calculated using Equation 
7.5. The density of the pore fill is determined by density of the fluid and includes gas using 
conventions discussed in Batzle and Wang (1992) and Mavko et al. (1998). Density of the grain 
material includes hydrate. Grains, excluding hydrate, are calculated from the weighted average of clay 
and sand components where clay and sand densities are 2.6 and 2.625 g/cm3 respectively. Fraction 
clay percentages used here are determined in the same routine as porosity fraction clay values 
(Equation 7.3; 𝑓𝑓𝑐𝑐𝑐𝑐𝑦𝑦), whereby the remaining components are assumed hydrate or sand. 

 

𝜌𝜌𝑠𝑠𝑐𝑐𝑑𝑑 = �𝜌𝜌𝑝𝑝𝑝𝑝𝑟𝑟𝑐𝑐 ∗ 𝜙𝜙𝑧𝑧� +  𝜌𝜌𝑔𝑔𝑟𝑟𝑠𝑠𝑖𝑖𝑛𝑛 ∗ (1 − 𝜙𝜙𝑧𝑧)   (Eq. 7.5) 

 
Finally, to calculate the p-wave velocity (Equation 7.6), the effective moduli (bulk;𝑘𝑘 and shear;𝜇𝜇) of 
the sediment are needed. The bulk moduli of the sediment were calculated using the Gassmann 
equation (Gassmann, 1951). The shear moduli of the sediment were calculated using Helgerud 
(1999). Both the bulk and shear modulus of the sediment were then implemented into Equation 7.6 
to calculate the p-wave velocity.  

𝑉𝑉𝑝𝑝 =  �
𝑘𝑘+ 43𝜇𝜇

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠
     (Eq. 7.6) 

 

From the Blake Ridge region (Section 7.1) 100 ensembles of various porosity, gas, and hydrate 
saturations with depth were given as input to GeoPhysMod. We ran these 100 ensembles for each 
location. Two locations from an ensemble were pulled to highlight p-wave velocity and density. 
These profiles represent locations where 1) there is no hydrate or gas formation (green in Figure 
Figure 7-50) and 2) where there are reasonably high values for gas and hydrate saturation (blue in 
Figure 7-50). The blue and green lines on Figure 6.7.1 correspond to latitude and longitude locations 
34°37.5′N 75°27.48′W and 32° 57.48’ N 75° 2.5’ respectively. Heat flux and TOC for the no gas and 
hydrate formation were 53.631 W/m3 and 1.4249 percent dry weight (pdw). Heat flux and TOC for 
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the scenario where gas and hydrate formation occurred was 71.82 W/m3 and 1.8754 pdw. The 
maximum hydrate and gas saturations occur at 303 and 586 mbsf, respectively. 

Generally, hydrate does not significantly affect the density of the sediment. Hydrate only slightly 
increases the velocity of the sediment. However, the inclusion of gas can decrease the density of the 
sediment and the P-wave velocity of the sediment (Figure 7-50). Our 1-D results of the P-wave and 
density of the sediment with depth are consistent with these findings.  

 

 
Figure 7-53. Predicted profiles for two locations (34°37.5′N 75°27.48′W and 32° 57.48’ N 75° 2.5’). 
Profiles show depth versus (a) hydrate saturation, (b) gas saturation, (c) porosity, (d) sediment 
density, and (e) sediment p-wave velocity. The blue lines are for 34°37.5′N 75°27.48′W (1311 mbsl – 
with gas and hydrate generation), while the green lines are for 32° 57.48’ N 75° 2.5’ W (4113 mbsl – 
no gas generation).   

 
In addition, a 2D map of the depth-averaged p-wave velocity from the Blake Ridge region (Section 
7.1) was created to show how p-wave velocity of the sediments varies in space (Figure 7-51). 
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Figure 7-54. Variation of the depth-averaged p-wave velocity calculated at the Blake Ridge gas 
hydrate province, using GPSM GeoPhysMod, and based on the simulations presented in Section 
7.1. 
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8. K-MEANS CLUSTERING 

8.1. Motivation and Conceptual Reasoning 
As a novel implementation of the workflow, we have developed the capability to drive PFLOTRAN 
simulations based on k-means clustering of the GPSM data set. K-means clustering assigns members 
of a data set into k distinct groups based on similarities in parameter space (Arthur and Vassilvitskii, 
2007). To avoid biasing the clustering algorithm based on the range of magnitudes among 
component variables, the GPSM data for the Greenland study area were normalized by subtracting 
the mean for the entire study area for each parameter then dividing by the standard deviation. The 
algorithm was initiated by randomly selecting k sets of normalized values of sedimentation rate, 
TOC, heat flux, seafloor temperature, and seafloor depth at k locations from the study area which 
serve as centroids. We used the L2 norm to calculate the squared Euclidean distance between these 
centroids and every location’s parameter set and assign each location to the centroid for which this 
distance is minimal to define a cluster. Once all nodes were assigned a value, the centroids for each 
cluster were re-calculated by taking the average of all members and the clustering algorithm was run 
again until the total distance for all members did not decrease. The full algorithm was run for 100 
iterations to achieve a global minimum for the data.  

To benchmark this capability, we clustered the data from the Greenland study area (Figure 8-1) into 
48 clusters (k = 48) and run simulations on each of the 48 processors available on a local Linux 
cluster. The visualization of the clusters can be mapped by color coding the individual regions 
representing each cluster based on free gas formation and gas hydrate formation. From these 
centroid outputs, we rescale the normalized data and determine the μ and σ for each parameter that 
are then used in our Dakota-PFLOTRAN workflow (Table 8-1). Similar to the simulations 
described in Section 7.4, we sampled 500 times on the sets of μ and σ for each cluster and ran 
PFLOTRAN for 500 kyr to evaluate the formation rate of free gas and gas hydrate. These formation 
rates were then used to determine the probability of occurrence for each cluster and mapped back to 
their corresponding geographic locations. 

While the individual simulations of 50 samples described in Section 7.4 take weeks to complete on 
our Linux cluster, the k-means driven simulations take less than 8 hours to run 500 samples for all 
centroids. The process therefore enables dimension reduction of the model and elucidates the 
strongest patterns underlying the data. By verifying the results from the k-means driven simulations 
against individual simulation outputs, we can make preliminary assessments of the probability for 
free gas and gas hydrate occurrence in a large study area very efficiently. 
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Figure 8-1. Clustering outputs for Greenland-Norwegian study area (48 clusters). Associated 

GPSM μ and σ values are provided in Table 8-1. Land is shown in black. 
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Table 8-1. Greenland k-means centroid values of averages and uncertainties. The number of 
locations assigned to each cluster are indicated in the Members column. 

 
 

Cluster Members Sed Rate μ
(mm/yr)

Sed Rate σ
(mm/yr)

TOC μ
(%)

TOC σ
(%)

Heat Flux  μ
(mW/m2)

Heat Flux  σ
(mW/m2)

Depth μ
(mbsl)

Depth σ
(mbsl)

Temp μ
(°C)

Temp σ
(°C)

1 2220 0.0467 0.0260 0.554 0.092 87.91 6.26 -448.8 273.1 -0.10 0.50
2 4328 0.0195 0.0103 0.531 0.072 65.18 3.55 -3373.0 254.1 -0.88 0.02
3 765 0.3285 0.0544 0.499 0.218 90.99 5.59 -168.1 97.3 -0.44 0.46
4 816 0.0400 0.0420 1.257 0.164 65.94 5.25 -230.5 141.4 1.75 0.88
5 1276 0.1476 0.0352 1.113 0.127 110.99 3.55 -2093.1 557.4 -0.84 0.23
6 1729 0.0974 0.0377 0.630 0.142 60.35 1.24 -298.3 109.2 7.04 0.46
7 1587 0.1227 0.0355 1.893 0.177 76.01 7.86 -138.9 80.0 0.41 0.52
8 2870 0.0395 0.0265 0.658 0.099 93.28 5.04 -1594.2 311.1 -0.76 0.22
9 1381 0.4675 0.0438 0.491 0.136 77.80 9.34 -247.4 219.3 -0.35 0.59
10 2359 0.1628 0.0379 0.738 0.091 61.00 3.89 -1499.5 289.2 -0.64 0.36
11 2149 0.2668 0.0370 1.607 0.157 65.71 3.73 -344.6 106.4 2.54 0.71
12 1233 0.1834 0.0422 0.608 0.079 63.70 5.17 -1028.8 435.2 1.77 0.71
13 1504 0.0534 0.0331 0.582 0.158 68.46 7.57 -326.8 331.4 5.02 0.69
14 2885 0.0847 0.0217 0.659 0.082 87.96 4.21 -2854.5 300.7 -0.97 0.05
15 3272 0.0381 0.0305 0.652 0.119 111.88 4.15 -1406.5 314.0 -0.71 0.17
16 3220 0.0648 0.0283 0.661 0.077 59.96 3.04 -2674.2 273.0 -0.68 0.48
17 973 0.3184 0.0401 0.869 0.184 63.54 2.91 -400.2 89.2 3.15 0.87
18 1758 0.0333 0.0220 0.835 0.107 89.33 4.75 -330.0 175.7 0.79 0.68
19 360 0.0035 0.0091 1.388 0.103 42.97 4.41 -34.2 46.6 3.86 0.40
20 1229 0.1875 0.0422 1.114 0.136 71.20 5.72 -319.6 87.1 3.29 0.81
21 1699 0.1598 0.0368 0.694 0.124 88.56 5.95 -478.7 346.2 0.07 0.58
22 1507 0.0544 0.0266 1.766 0.171 59.53 5.35 -132.2 89.3 -0.08 0.56
23 1724 0.1696 0.0434 0.519 0.098 108.25 6.42 -653.8 461.4 -0.23 0.42
24 1541 0.2129 0.0390 0.898 0.168 102.08 4.75 -418.2 304.8 1.57 0.74
25 3131 0.0422 0.0194 0.598 0.094 71.82 4.26 -1813.0 355.6 -0.89 0.09
26 1390 0.0108 0.0203 0.840 0.093 97.84 8.95 -150.2 124.3 3.80 0.79
27 2253 0.1765 0.0293 0.675 0.079 87.45 5.45 -2140.0 343.8 -0.85 0.25
28 1300 0.0341 0.0239 1.006 0.125 78.57 5.40 -316.9 219.3 -0.38 0.46
29 1971 0.0876 0.0368 0.742 0.101 109.86 3.37 -2610.7 339.3 -0.92 0.07
30 1432 0.2866 0.0494 0.677 0.125 71.01 5.83 -216.9 69.7 0.25 0.68
31 6468 0.0217 0.0113 0.661 0.052 70.35 2.91 -3044.8 258.2 -0.93 0.06
32 1584 0.0321 0.0220 1.201 0.128 59.96 5.54 -164.5 97.1 -0.39 0.46
33 1698 0.0196 0.0210 0.618 0.155 68.11 6.09 -396.8 424.7 2.30 0.81
34 1802 0.2455 0.0502 1.541 0.147 83.10 8.09 -114.7 64.8 0.61 0.59
35 110 0.6097 0.1231 0.646 0.033 112.76 5.87 -258.0 97.4 4.53 1.03
36 2524 0.0909 0.0358 0.514 0.093 69.84 4.89 -375.5 256.6 -0.53 0.41
37 3341 0.1250 0.0268 0.669 0.059 76.98 4.45 -2167.4 367.6 -0.89 0.12
38 2092 0.1879 0.0327 1.774 0.186 65.69 3.16 -323.7 112.2 1.81 0.77
39 5291 0.0288 0.0174 0.696 0.061 79.86 2.98 -2538.3 240.2 -0.96 0.07
40 2481 0.0371 0.0259 0.845 0.113 86.79 4.26 -1216.4 311.6 -0.54 0.37
41 2222 0.1334 0.0397 0.790 0.111 64.87 4.48 -262.2 135.6 0.55 0.52
42 977 0.0756 0.0349 1.074 0.121 102.85 4.70 -281.7 238.5 1.33 0.74
43 1112 0.0507 0.0286 1.170 0.113 111.96 3.48 -2756.5 730.1 -0.90 0.02
44 510 0.2858 0.0687 0.754 0.140 102.93 8.38 -2366.0 378.5 -0.82 0.24
45 1303 0.2026 0.0392 0.587 0.125 63.51 6.49 -381.5 195.7 5.01 0.73
46 280 0.1683 0.0954 0.735 0.165 114.96 4.06 -188.4 121.7 6.12 2.23
47 5722 0.0228 0.0146 0.652 0.050 81.96 2.69 -3311.4 257.2 -0.99 0.06
48 1478 0.1191 0.0482 1.449 0.148 100.67 4.33 -137.7 89.0 1.40 0.65
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8.2. Verification of Clustering Procedure at Norwegian Sea  
We verify this clustering process by calculating the probability of gas and hydrate formation for each 
cluster in two ways: 1) the number of runs from the k-means driven simulations that resulted in 
gas/hydrate formation divided by the total number of runs (500) and 2) the number of runs from 
the individual simulations that resulted in gas/hydrate formation divided by the total number of runs 
at all member locations (50 × N, where N is the number of member locations for a given cluster). 
By comparing these two formation rates, we demonstrate that this clustering-based approach 
performs exceptionally well in capturing the expected likelihood of gas formation and exhibits more 
complicated behavior with regards to predicting hydrate occurrence.  

 
Table 8-2. Probabilities of free gas and gas hydrate associated with individual and k-means 
simulations. 

 
 

The probabilities for free gas and gas hydrate formation in each cluster are shown in Table 8-2. The 
outputs from the k-means driven simulations show that the study area includes vast regions which 
are expected to form free gas in the sediment column, with 34 clusters including at least 1 simulation 
with formation (Table 8-2). Disagreement (i.e., one set of simulations predicts formation whereas 
the other predicts no formation) exists only in clusters 10, 15, 40, and 43, but note that the 
maximum gas formation rate for any of these clusters is 0.20%. The agreement between formation 

Individual Kmeans Individual Kmeans Individual Kmeans Individual Kmeans
1 17.12% 6.52% 0.00% 0.00% 25 0.00% 0.00% 0.00% 0.00%
2 0.00% 0.00% 0.00% 0.00% 26 19.71% 34.98% 0.00% 0.00%
3 99.22% 87.68% 0.00% 0.00% 27 0.00% 0.00% 0.00% 0.13%
4 54.53% 52.78% 0.43% 0.43% 28 36.62% 16.36% 0.00% 5.38%
5 0.55% 0.80% 0.00% 0.00% 29 0.00% 0.00% 0.00% 0.00%
6 74.49% 51.19% 0.00% 0.00% 30 99.44% 98.41% 0.23% 30.17%
7 98.93% 99.49% 1.01% 1.01% 31 0.00% 0.00% 0.00% 0.00%
8 0.00% 0.00% 0.00% 0.00% 32 66.60% 46.61% 0.41% 10.35%
9 98.91% 67.89% 0.00% 0.00% 33 18.79% 4.21% 0.00% 0.00%
10 0.04% 0.00% 0.00% 0.00% 34 99.28% 100.00% 0.00% 0.00%
11 99.86% 100.00% 12.64% 12.64% 35 100.00% 100.00% 0.00% 0.00%
12 12.00% 4.21% 0.00% 0.00% 36 37.16% 14.14% 0.00% 16.72%
13 47.87% 15.37% 0.00% 0.00% 37 0.00% 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.00% 0.00% 38 99.62% 100.00% 25.06% 57.60%
15 0.18% 0.00% 0.00% 0.00% 39 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 40 0.00% 0.20% 0.00% 0.00%
17 96.51% 89.98% 0.85% 0.85% 41 88.93% 67.85% 0.22% 53.20%
18 24.74% 15.99% 0.00% 0.00% 42 78.30% 58.50% 0.00% 0.20%
19 8.06% 24.14% 0.00% 0.00% 43 0.00% 0.20% 0.00% 0.00%
20 98.70% 98.61% 0.46% 0.46% 44 0.00% 0.00% 0.00% 6.86%
21 66.39% 32.50% 0.00% 0.00% 45 79.66% 44.57% 0.00% 0.08%
22 99.14% 87.61% 3.48% 3.48% 46 87.86% 85.53% 0.00% 0.00%
23 49.77% 17.01% 0.00% 0.00% 47 0.00% 0.00% 0.00% 0.00%
24 87.99% 67.72% 0.00% 0.00% 48 97.83% 97.64% 0.00% 0.07%

Gas Formation Hydrate FormationCluster Cluster Gas Formation Hydrate Formation
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rate predictions indicate a Pearson correlation coefficient of r=0.9563 (p<0.01). By mapping these 
gas formation rates onto their source location, comparisons can be made between the individual 
simulation outputs (Figure 8-2) and the k-means simulation outputs (Figure 8-3). The two maps are 
nearly identical and indicate exceptionally high formation rates in nearshore locations along eastern 
Greenland, northern Iceland, and between Svalbard and Norway. 

While the outputs for hydrate formation are similar, more discrepancy exists between the predictions 
based on k-means driven simulations and individual simulations and the correlation is not significant 
(r=0.1971, p=0.1794). Under the individual simulations (Figure 8-4), 20 clusters yielded at least one 
simulation whereas hydrate formed while 17 clusters yielded hydrate formation based on the k-
means driven simulations (Figure 8-5). The maximum formation rate for individual simulations was 
42.76% (Cluster 11) and for k-means simulations was 57.60% (Cluster 38). Disagreement exists in 17 
of the 48 clusters, suggesting that the greater complexities associated with gas hydrate systems are 
not as easily captured by the k-means process compared to the free gas system.  

These probability maps can be used for quick and efficient prediction of free gas and gas hydrate 
occurrence without the need for rigorous simulation. The strong agreement between the individual 
and k-means driven forecasts for free gas formation indicates that this technique is highly effective, 
but the discrepancy between forecasts for gas hydrate formation based on k-means simulations 
demands higher scrutiny. We hypothesize that formation of gas hydrate is much more sensitive to 
location-dependent parameters (especially to heat flux and depth at each site) and by generalizing the 
parameter space, the nuances of the system are often missed. 

 

 
Figure 8-2. Free gas formation probability from individual simulations. 
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Figure 8-3. Free gas formation probability from k-means simulations. 

 
 

 
Figure 8-4. Gas hydrate formation probability from individual simulations. 
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Figure 8-5. Gas hydrate formation probability from k-means simulations. 

 

8.3. Global Clustering Extension and Forecasting 
Because the presence of free gas in the sediment column will significantly drop acoustic velocity of 
these materials even if saturation reaches only 1-5% (Ellis & Singer, 2007; Murphy et al., 1993), 
corresponding locations with high probability of free gas formation are likely to affect seafloor 
acoustics and warrant further research. The k-means simulations can quickly indicate geographic 
areas which would benefit from a more intense simulation strategy while avoiding areas that are 
unlikely to form gas. In this way, we envision utilizing the strategy on the full GPSM dataset to 
cluster the entire globe into 48 regions (Figure 8-6) based on their common parameters (Table 8-3). 

Predictions made from these clusters can be used in multiple ways. First, we can construct full global 
predictions based on free gas occurrence. While we have chosen to define occurrence as the 
presence of free gas anywhere in the sediment columns, we can also be more restrictive where we 
use the technique to identify areas exhibiting a minimum mass of gas formation or locations where 
gas formation reaches a target depth. Additionally, we can prioritize new study areas that would 
benefit from full simulations. Even in the Greenland study area described in Sections 7.4 and 8.2, we 
found that free gas and hydrate formation was much more prevalent in the northeastern section of 
the map and plan to fully evaluate this region further without needlessly extending the individual 
simulations to locations unlikely to form either phase. 

Future work will include conducting the global k-means simulations and verifying the results against 
individual simulations within a subset of clusters. The tandem of k-means driven and individual 
simulations based on GSPM data allows for probabilistic forecasts of free gas and gas hydrate 
formation in diverse study areas. Ongoing research on the workflow demonstrates that k-means 
driven simulation represents an efficient computational technique to predict the occurrence of free 
gas and may be applicable to other simulation strategies beyond free gas and gas hydrate systems. 
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Figure 8-6. Clustering outputs for entire GPSM data set (48 clusters). Associated GPSM μ and σ 

values are provided in Table 8-3. Land is shown in black. 
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Table 8-3. Global k-means centroid values of averages and uncertainties. 

 

Cluster Members Sed Rate μ
(mm/yr)

Sed Rate σ
(mm/yr)

TOC μ
(%)

TOC σ
(%)

Heat Flux  μ
(mW/m2)

Heat Flux  σ
(mW/m2)

Depth μ
(mbsl)

Depth σ
(mbsl)

Temp μ
(°C)

Temp σ
(°C)

1 93470 0.0708 0.0159 1.227 0.271 66.45 10.42 -511.2 674.4 -0.13 1.21
2 194820 0.0151 0.0110 0.393 0.133 78.67 6.40 -2890.2 512.9 1.37 1.06
3 278157 0.0065 0.0071 0.720 0.111 53.05 5.24 -5433.2 503.3 1.25 0.52
4 49548 0.0222 0.0179 0.406 0.264 65.37 13.41 -66.3 111.0 25.20 2.55
5 50191 0.1404 0.0215 0.510 0.246 65.47 11.72 -1206.0 1029.8 0.59 1.70
6 134194 0.0127 0.0098 0.497 0.186 58.73 9.29 -781.3 617.3 2.67 1.17
7 72492 0.0229 0.0148 0.640 0.284 100.36 12.26 -756.9 624.7 1.41 1.97
8 570054 0.0033 0.0028 0.382 0.080 58.47 4.96 -5370.0 355.0 1.37 0.51
9 125908 0.0091 0.0104 1.585 0.197 57.03 9.77 -4376.9 692.8 1.59 0.66

10 19593 0.0274 0.0185 2.749 0.333 135.03 20.15 -2665.8 821.7 2.36 0.81
11 81909 0.0072 0.0087 1.004 0.186 114.48 9.87 -3367.2 525.8 1.50 0.63
12 147986 0.0437 0.0112 0.726 0.155 83.56 6.97 -3911.4 509.0 -0.32 0.84
13 9491 0.3428 0.0704 0.949 0.503 84.48 19.95 -424.2 724.8 0.57 1.36
14 208396 0.0348 0.0095 0.409 0.144 58.84 6.94 -3713.3 532.7 0.45 0.96
15 46201 0.0125 0.0166 1.484 0.301 150.98 14.79 -2957.7 759.8 2.19 1.58
16 49157 0.0243 0.0178 1.595 0.353 67.43 13.88 -424.9 641.3 7.75 2.50
17 47084 0.0346 0.0240 0.701 0.288 78.22 15.52 -418.1 695.4 14.60 2.35
18 51081 0.0885 0.0212 0.930 0.269 119.88 17.50 -3141.7 820.2 -0.38 1.06
19 112161 0.0296 0.0150 0.432 0.157 65.35 8.93 -551.7 473.4 -0.65 0.91
20 90938 0.0111 0.0114 1.589 0.262 44.58 10.91 -207.8 363.2 0.59 1.54
21 80121 0.0126 0.0130 0.527 0.225 142.29 10.04 -2913.9 758.2 1.57 1.32
22 417363 0.0098 0.0066 0.313 0.066 55.46 4.50 -4442.6 401.0 0.45 0.73
23 79338 0.0782 0.0159 0.725 0.260 59.21 11.66 -3079.3 689.3 0.88 1.43
24 46182 0.1315 0.0207 1.353 0.335 69.42 11.83 -428.2 643.4 -0.03 1.52
25 208629 0.0059 0.0066 1.069 0.130 52.25 7.24 -4642.0 549.4 1.48 0.48
26 78013 0.0119 0.0127 1.753 0.226 101.45 13.52 -3560.3 640.3 1.70 0.69
27 56004 0.0294 0.0210 2.212 0.286 62.99 12.53 -2363.8 1274.7 2.77 1.46
28 395172 0.0054 0.0050 0.388 0.089 47.14 4.24 -4912.0 429.1 1.59 0.67
29 131839 0.0204 0.0132 0.893 0.188 53.92 8.36 -2695.9 601.1 2.45 1.06
30 17065 0.0191 0.0132 1.479 0.493 63.06 9.72 -69.7 168.5 21.04 3.50
31 52191 0.0751 0.0195 0.575 0.260 57.65 11.14 -659.6 672.8 4.62 2.28
32 192491 0.0070 0.0063 0.393 0.124 89.52 6.48 -3896.0 469.6 1.38 0.66
33 525427 0.0066 0.0057 0.371 0.094 68.92 4.64 -4409.5 418.5 0.99 0.73
34 92053 0.0313 0.0115 0.636 0.121 106.48 8.64 -3782.3 533.5 -0.34 0.72
35 126379 0.0086 0.0093 1.004 0.184 83.44 8.25 -3766.7 564.5 1.66 0.66
36 229696 0.0087 0.0065 0.388 0.118 55.53 6.01 -3063.9 544.8 1.48 0.94
37 21214 0.0202 0.0177 3.150 0.413 63.78 12.81 -1291.4 1350.5 4.60 3.36
38 33029 0.0309 0.0173 0.640 0.287 39.55 8.34 -1333.0 1178.5 13.16 2.29
39 20036 0.1745 0.0320 0.821 0.392 120.87 18.56 -2087.7 1303.0 -0.04 1.49
40 31354 0.2146 0.0272 1.268 0.448 65.54 11.15 -430.1 503.9 0.42 1.53
41 153439 0.0177 0.0098 0.736 0.136 60.49 6.57 -2295.8 569.6 -0.22 0.52
42 72940 0.0193 0.0145 0.486 0.252 67.23 11.19 -377.9 514.8 7.62 1.67
43 14892 0.0380 0.0317 0.639 0.267 121.09 18.11 -206.4 349.5 24.19 3.14
44 137115 0.0095 0.0089 0.355 0.113 114.02 8.02 -3391.9 529.5 1.52 0.79
45 35660 0.0845 0.0206 0.541 0.230 93.80 14.07 -678.8 615.0 -0.37 1.33
46 335181 0.0073 0.0067 0.644 0.107 59.08 6.23 -4301.8 402.0 1.40 0.62
47 127879 0.0204 0.0124 1.070 0.194 63.55 10.59 -401.2 479.5 0.56 1.45
48 5303 0.2014 0.0547 0.653 0.237 84.60 21.07 -1906.1 1131.6 13.79 3.19
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9. SUMMARY OF OUTCOMES AND FUTURE WORK 
We have developed a novel software workflow that produces probabilistic maps of geoacoustic and 
geomechanical sediment properties from an integration of spatially continuous forecasts of seabed 
characteristics produced with geospatial machine learning algorithms, and sediment physical 
numerical modeling. We’ve demonstrated the use of this workflow at several sites, such as the Blake 
Ridge, North Atlantic margin, the Greenland Norwegian Sea, the Alaskan North Slope (Beaufort 
Sea), the Gulf of Mexico, as well as globally at lower resolution. The probabilistic maps produced 
using this method provide the most reliable estimates of free methane gas and gas hydrate 
distribution over large regions of the seafloor. The ability to make probabilistic predictions is 
important because understanding the uncertainty of any forecast is usually just as important as the 
forecast itself. The accuracy of the forecasts can be improved over time through the collection of 
more observations in regions where there is high uncertainty. Therefore, the probabilistic maps 
produced using this workflow provide value along two axes: 1) in the predictions themselves, and 2) 
in their ability to highlight regions where data collection campaigns should be focused to provide the 
greatest benefit. 

Over the course of this work, we have shared the development process and scientific outcomes, 
resulting in more than 30 publications and presentations (selected works listed in Appendix A): 10 
scientific, peer-review journal publications, 16 international and domestic conferences, and 3 invited 
presentations.  

Although this report has focused on the objective of producing probabilistic maps to predict seabed 
acoustic properties, the workflow can also provide insight in other scientific disciplines. For 
example, the suite of maps can be used to improve shallow tomographic models of the Arctic basin 
by constraining shallow structure, thereby improving the capability to use ocean bottom 
seismometers for nuclear treaty compliance monitoring. The maps of gas hydrate distribution can be 
used to provide the most reliable resource quantification for natural gas along U.S. continental 
margins, or globally. Maps of free methane gas can be used to estimate the potential source of 
greenhouse gas emission from the seabed, into the water column, and potentially into the 
atmosphere where they can contribute to climate warming. Finally, the entire software workflow is 
not limited to seabed and marine sediment modeling. The GPSM predictions and PFLOTRAN 
simulations can easily be extended to terrestrial locations, where the application space grows 
considerably. For example, such a workflow can be used to produce probabilistic simulations for the 
performance of geologic nuclear waste repositories, where input uncertainty is often high, and 
decisions are based on the statistics of certain outcomes. 
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