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Multiscale Phenomena

Image courtesy of Paul Ullrich, University of California, Davis

https://www.energy.gov/science/doe-explainsearth-system-and-climate-models

The Energy Exascale Earth System Model (E3SM) Project

https://e3sm.org/

https://www.energy.gov/science/doe-explainsearth-system-and-climate-models
https://e3sm.org/
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Reduced Complexity Modeling
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Reduced Complexity Modeling

Allen Institute for AI – https://allenai.org/climate-modeling
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Projection Reduced Order Modeling (PROM)

Closure Problem

Ahmed, S. E., San, O., Rasheed, A., & Iliescu, T. (2020). A long short-term memory embedding for hybrid uplifted reduced order models. Physica D: 

Nonlinear Phenomena.
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Projection Reduced Order Modeling (PROM)

Proper Orthogonal 

Decomposition (POD)
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Projection Reduced Order Modeling (PROM)

Galerkin

Projection
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Multifidelity Learning for Closure Modeling

Low Fidelity Model

High Fidelity Model
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Operator Learning (Quick Detour)

Universal Approximation Theorem for Functions: Suitable for similar conditions, fixed initial/boundary 

conditions, fixed parameters, etc.   

Universal Approximation Theorem for Operators: Generalizable for wide range of conditions, 

varying initial/boundary conditions, different parameters, etc.  

Deep Operator Network (DeepONet)

Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators 

via DeepONet based on the universal approximation theorem of operators. Nature machine 

intelligence.
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Multifidelity Operator Learning

Howard, A. A., Perego, M., Karniadakis, G. E., & Stinis, P. (2022). Multifidelity deep operator networks. arXiv preprint arXiv:2204.09157.
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Multifidelity Operator Learning for Closure 
Modeling
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Multifidelity Operator Learning for Closure 
Modeling – In-The-Loop Training

Differentiable Programming/Automatic Differentiation + Machine Learning ➔ (Coupled) In-The-Loop Training

Ahmed, S. E., & Stinis, P. (2023). A Multifidelity deep operator network approach to closure for multiscale systems. CMAME.
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Multifidelity Operator Learning for Closure 
Modeling – In-The-Loop Training

Differentiable Programming/Automatic Differentiation + Machine Learning ➔ (Coupled) In-The-Loop Training



14

Multifidelity Operator Learning for Closure 
Modeling – In-The-Loop Training

Differentiable Programming/Automatic Differentiation + Machine Learning ➔ (Coupled) In-The-Loop Training
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Numerical Tests – Vortex Merger Problem

Full Order Model (FOM):

Finite Difference Method

256 × 256, Δ𝑡 = 10−4

Reduced Order Model (ROM):

Galerkin POD

10 modes, Δ𝑡 = 10−2

Training:

Reynolds number ∈ 1000,2000
𝜃 ∈ {0,45,90,135}
𝑡 ∈ [0,20]
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Results – Vortex Merger Problem 
(Interpolation)

Reynolds number = 𝟏𝟓𝟎𝟎, 𝜽 = 𝟔𝟎, 𝒕 ∈ [𝟎, 𝟐𝟎]
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Results – Vortex Merger Problem 
(Interpolation)
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Results – Vortex Merger Problem 
(Extrapolation)

Reynolds number = 𝟑𝟎𝟎𝟎, 𝜽 = 𝟒𝟓, 𝒕 ∈ [𝟎, 𝟒𝟎]
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Results – Vortex Merger Problem 
(Extrapolation)
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Conclusions

• Reduced order (complexity) modeling of multiscale phenomena lead to the 
closure problem

• Closure modeling can be viewed as a multifidelity learning problem

• Multifidelity operator network can learn closure terms for a wide range of initial 
conditions and/or parameters

• In-the-loop training provides a feedback loop so that the machine learning 
model sees the effect of its previous predictions during the training

Ahmed, S. E., & Stinis, P. (2023). A Multifidelity deep operator network approach to closure for multiscale systems. Computer Methods in Applied 

Mechanics and Engineering.



Thank you

https://arxiv.org/abs/2303.08893
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Galerkin POD Model
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Galerkin POD Model
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Numerical Tests – Burgers Problem

Full Order Model (FOM):

Finite Difference Method

𝑛𝑥 = 4096, Δ𝑡 = 10−4

Reduced Order Model (ROM):

Galerkin POD

10 modes, Δ𝑡 = 10−2

Training:

Reynolds number ∈ 2500,10000
𝑤𝑝 ∈ {0.25,0.50,0.75}

𝑡 ∈ [0,1]
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Results – Burgers Problem (Interpolation)

Reynolds number = 𝟒𝟎𝟎𝟎, 𝒘𝒑 = 𝟎. 𝟔𝟕𝟓, 𝒕 ∈ [𝟎, 𝟏]
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Results – Burgers Problem (Interpolation)

Reynolds number = 𝟒𝟎𝟎𝟎, 𝒘𝒑 = 𝟎. 𝟔𝟕𝟓, 𝒕 ∈ [𝟎, 𝟏]
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Results – Burgers Problem (Extrapolation)

Reynolds number = 𝟏𝟓𝟎𝟎𝟎, 𝒘𝒑 = 𝟎. 𝟖𝟓, 𝒕 ∈ [𝟎, 𝟐]
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Results – Burgers Problem (Extrapolation)

Reynolds number = 𝟏𝟓𝟎𝟎𝟎, 𝒘𝒑 = 𝟎. 𝟖𝟓, 𝒕 ∈ [𝟎, 𝟐]
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Results – Burgers Problem (Extrapolation)
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Results – Burgers Problem (Accuracy vs Efficiency)
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Results – Burgers Problem (Extrapolation)


