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MOTIVATING APPLICATION

Understanding the effects of micro pores on the damage behavior of 

cast aluminum components.
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MULTISCALE SIMULATIONS
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Challenges:
• Extremely fine mesh 

• Very small explicit integration steps 

• Large storage requirements

• Long simulation time
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MICROSCALE ANALYSES

Analytical micromechanics: 
• Mori-Tanaka method

• Voigt and Reuss bounds

• Self-consistent theory

Mechanistic reduced-order model (ROM): 
• Transform field analysis

• Singular value decomposition: PCA, POD

• Clustering-based analysis Z. Liu et al., CMAME. 

330 (2018) 547–577

Jan Stransky, et al., 

Micromachines (2011): 

129-149.

Direct numerical simulation (DNS): 
• Finite element method 

• Boundary element method

• Meshfree method

• Fast Fourier Transformation   

Takayuki Otsuka, et al., 

Nippon Steel (2018), 18-25

B. Drach et al., IJSS, 96 

(2016) 48–63

Jacek Ptaszny, CM (2015) 

56:477–490
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EVEN MORE SPEEDUPS: DATA DRIVEN MICRO MODEL

Analysis Machine learning

Representation
(1) Characterization:

• Pore morphology

• Constitutive property

• Boundary conditions

(2)  Domain exploration:

• Explore input space with 

design of experiment (DoE)

• Check feasibility of each DoE 

point

(3)  Reconstruction:

• Generate microstructure 

designs according to design 

variables at each DoE point 

(5) Metamodeling development:

• Model training

• Sensitivity analysis

(4)  Reduced-order model

…
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CHALLENGES WITH THE ANALYSIS STEP

Explicit solvers: 
• Solves displacements via MU’’=F 

• Always positive definite mass matrix (M)

• Conditionally stable but smaller step sizes

• No convergence check on displacements

• Excessive scaling/damping/smoothing leads to 

unrealistic solutions

Solution 

Oscillation

Implicit solvers: 
• Solving displacement via KU=F

• Stiffness matrix (K) must be invertible

• Solutions convergence is checked

• Unconditionally stable 

• Large step sizes: high efficiency

• Job abortion due to damaged elements (singular K)

https://pmacslab.eng.uci.edu/
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PHYSICS-BASED REDUCED ORDER MODELS (ROMs)

Microscale FEA

Stresses

Macroscale FEA

Deformation

Stresses

Reduced-order 

micro model
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macro model

Deformation

Adaptive spatiotemporal reduction of degrees of freedom

Deng, S., Soderhjelm, C., Apelian, D., & Bostanabad, R. (2022). Reduced-order multiscale modeling of plastic deformations in 3D alloys with 

spatially varying porosity by deflated clustering analysis. Computational Mechanics, 70(3), 517-548.

Deng, Shiguang, Diran Apelian, and Ramin Bostanabad. "Adaptive spatiotemporal dimension reduction in concurrent multiscale damage analysis." 

Computational Mechanics 72.1 (2023): 3-35.
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PHYSICS-INFORMED NEURAL NETWORK

History dependent microstructure response → Sequence learning

Data-driven 

Material Model
History + 𝑬𝑛 𝑺𝑛 and 𝐷𝑛

https://pmacslab.eng.uci.edu/


https://pmacslab.eng.uci.edu/ 9

PHYSICS-INFORMED NEURAL NETWORK

History dependent microstructure response → Sequence learning

https://pmacslab.eng.uci.edu/
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MODEL ARCHITECTURE

We design the architecture based on the mechanics of the problem:

https://pmacslab.eng.uci.edu/
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LOSS FUNCTION

We design a composite loss function that is minimized via mini-batch 

stochastic gradient descent.

• 1st component is the reconstruction 

error at any arbitrary time instance:

• 2nd part requires the total internal 

work at an arbitrary macro 

integration point to be non-negative 

at any time instance:

Total loss:

https://pmacslab.eng.uci.edu/
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TEACHER FORCING

• It refers to networks whose 

outputs are fed back into model 

via recurrent connections.

• Training and testing are 

done differently: in training 

stage, we provide the 

ground truth at the previous 

time step as inputs at the 

next time step. In testing, we 

use the predictions at the 

previous time step since the 

ground truth is unavailable.

https://pmacslab.eng.uci.edu/
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IMPACTS OF PHYSICS CONSTRAINTS (SINGLE SCALE)

Microstructure under consideration:

The physics-informed 

model consistently 

improves the 

predictions.

https://pmacslab.eng.uci.edu/
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PREDICTION FOR RANDOM LOAD PATHS

https://pmacslab.eng.uci.edu/
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MULTISCALE SIMULATIONS

We match the benchmark where ROM is used at the microscale.

Teacher forcing for single-scale (with ground truth fed back):

https://pmacslab.eng.uci.edu/
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MULTISCALE DAMAGE: MESH CONVERGENCE

• A challenge in using continuum mechanics to simulate softening is 

preventing fracture bands from residing in single-element-wide layers. 

• We use our model to 

a new 3D model to 

assess its robustness 

in predicting damage 

behavior while 

changing the mesh 

size.

https://pmacslab.eng.uci.edu/
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CONCLUDING REMARKS 

• Leveraging mechanics principles reduces the reliance on 

expensive data. 

• Developing physics-based reduced order models is still 

needed for building/validating ML models.

• Advanced ML techniques such as teacher forcing do not 

directly translate to multiscale simulations. 

https://pmacslab.eng.uci.edu/
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ACKNOWLEDGMENT

Thank you!

Questions?
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