Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data

Joseph Hart, Mamikon Gulian, Indu Manickam, and Laura Swiler

Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND number: SAND2023-02512C.

Source Inversion / Identification in Climate Systems

- ▶ The identification of sources in climate systems is vital for **attribution** and prediction, which inform policy decisions.
- ▶ Inability to isolate sources while observing the climate, and the cost of simulating computational models is high.
- Surrogate models enable the many-query algorithms required for source identification, but challenges arise due to:
 - ▶ High dimensionality of the state and source;
 - ▶ Limited ensembles of costly model simulations to train a surrogate model, and
 - Few and potentially noisy state observations for inversion due to measurement limitations.
- The influence of **auxiliary processes** adds an additional layer of uncertainty that further confounds source identification.
- ▶ Inversion for a source is an ill-posed problem. It is natural to state the problem in a probabilistic way.
- We develop a **Bayesian method** that predicts the most probable source and quantifies uncertainty in the predicted source.

Summary of Method, Exemplar, and Results

- ▶ We introduce a framework based on
 - 1. Calibrating **deep neural network** surrogates to the flow maps provided by an ensemble of simulations obtained by varying sources, then
 - 2. Using these surrogates in a Bayesian framework to identify sources from observations via **optimization**.
- ▶ We focus on an **atmospheric dispersion exemplar** in which the source represents injection of SO₂ and we observe concentratation.
- ► The expressive and computationally efficient nature of the deep neural network operator surrogates in **reduced dimension** allows for source identification with uncertainty quantification using limited data.
- ▶ To stress the algorithm, we then introduce a variable wind field as an auxiliary process that **confounds** source inversion.
- ▶ A Bayesian approximation error (BAE) approach becomes essential for reliable inversion.
- Derivative-based optimization and sampling algorithms leverage algorithmic differentiation tools to efficiently generate approximate samples from the posterior.

Problem Formulation and Solution Outline

▶ We consider time-dependent models of the form

$$\frac{\partial u}{\partial t} + \mathcal{A}(u, z, w) = f(z, w) \qquad \qquad \text{on } \Omega \times (0, \infty) \tag{1}$$

$$\mathcal{B}(u, z, w) = 0$$
 on $\partial \Omega \times (0, \infty)$ (2)

$$u = u_0 \qquad \qquad \text{on } \Omega \times \{0\} \tag{3}$$

where $u: \Omega \times [0, \infty) \to \mathbb{R}$ represents a state defined for time $t \ge 0$ on a domain Ω .

- We seek to estimate z by solving an inverse problem which combines the computational model (1) with sparse and noisy observations of the state variable u.
- ▶ The other parameter *w*, sometimes referred to as a **nuisance parameter**, is also assumed to be uncertain but is not of primary interest; it represents an auxiliary process.
- We assume that the computational model (1) may be solved for any z and w, and that we have access to an **ensemble** of such simulations.
- We utilize a DNN approximation of the **flow map** operator of the model (1), mapping the state and parameters at time t to the state at time $t + \Delta t$.

Flow Map & Ensemble of Simulation Data for Training and Validation

▶ We work with a **discretization** of the PDE model (1). Let

$$t_n, \quad n = 0, 1, 2, \dots, N$$
 (4)

denote increasing points in time, with $t_0 = 0$ and $t_N = T$.

▶ We seek to build a surrogate for the flow map, defined as the function

 $\mathcal{F}: \mathbb{R}^m \times \mathbb{R}^s \times \mathbb{R}^q \to \mathbb{R}^m$

which evolves the state from time t_n to t_{n+1} , i.e.

$$\mathbf{u}_{n+1} = \mathcal{F}(\mathbf{u}_n, \mathbf{z}_n, \mathbf{w}_n). \tag{5}$$

 \blacktriangleright Assume that M samples of **z** and **w** are given. Denote them as

$$\mathbf{z}_n^i \in \mathbb{R}^s, \quad \mathbf{w}_n^i \in \mathbb{R}^q, \quad i = 1, 2, \dots, M, \quad n = 0, 1, \dots, N.$$

• Integrating the model (1) with these parameters yields a set of M trajectories

$$\left\{\mathbf{u}_{n}^{i}\right\}_{n=0}^{N} \subset \mathbb{R}^{m}, \quad i=1,2,\ldots,M.$$

Spatial Dimension Reduction of State and Parameters

- ▶ The high dimensionality of $\mathbf{u}_n^i \in \mathbb{R}^m$ poses significant challenges to learning \mathcal{F} .
- ► We obtain a lower-dimensional linear subspace using the PCA/POD/EOF method. We compute the singular value decomposition $\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ of the matrix

▶ The idea of our approach is that if the state trajectory $\{\mathbf{u}_n\}_{n=0}^N$ is approximately contained in the range of \mathbf{U}_r then the following diagram approximately commutes:

$$\begin{array}{c|c} \mathbf{u}_n & \xrightarrow{\mathcal{F}(\cdot, \mathbf{z}_n, \mathbf{w}_n)} & \mathbf{u}_{n+1} \\ \text{PCA projection} = \mathbf{U}_r^\top & & \uparrow \text{PCA reconstruction} = \mathbf{U}_r \\ \mathbf{c}_n & \xrightarrow{\mathcal{F}_r(\cdot, \mathbf{z}_n, \mathbf{w}_n)} & \mathbf{c}_{n+1} \end{array}$$

▶ We seek to learn a DNN approximation of \mathcal{F}_r using the MN training data pairs

$$\{(\mathbf{c}_{n}^{i}, \mathbf{z}_{n}^{i}, \mathbf{w}_{n}^{i}), \mathbf{c}_{n+1}^{i}\}$$
 $n = 0, 1, \dots, N-1, \quad i = 1, 2, \dots, M,$

Flow Map Approximation Architecture and Training

▶ Consider DNN approximations $\mathcal{N} \approx \mathcal{F}_r$ of the form

$$\mathcal{N}: (\mathbf{c}, \mathbf{z}, \mathbf{w}; \xi) \mapsto \mathbf{c} + \Delta t \mathcal{E}(\mathbf{c}, \mathbf{z}, \mathbf{w}; \xi)$$

where $\mathcal{E}(\mathbf{c}, \mathbf{z}, \mathbf{w}; \xi)$ is a **dense feedforward DNN** with weights and biases $\xi \in \mathbb{R}^{\ell}$.

- ▶ The surrogate must provide stable and accurate evolution of the state starting from **u**₀, through many timesteps.
- We train with the loss function that includes repeated compositions of \mathcal{N} :

$$\mathcal{L}(\xi) = \sum_{i=1}^{M} \sum_{n=0}^{N-1} \sum_{p=1}^{P(n)} \|\mathbf{c}_{n+p}^{i} - \mathcal{N}^{[p]}(\mathbf{c}_{n}^{i}, \{\mathbf{z}_{j}^{i}, \mathbf{w}_{j}^{i}\}_{j=n}^{n+p-1}, \xi)\|_{\ell^{2}}^{2}$$
(6)

where $\mathcal{N}^{[p]}(\mathbf{c}_n^i, \{\mathbf{z}_j^i, \mathbf{w}_j^i\}_{j=n}^{n+p-1}, \xi)$ denotes the composition of \mathcal{N} with itself p times.

The Inverse Problem

- Our ultimate goal is solving an inverse problem to estimate z given sparse and noisy measurements of u.
- Let $\mathbf{d}_n \in \mathbb{R}^L$, n = 1, 2, ..., N, denote observations of the state u at L spatial locations at each n^{th} time step.
- Let $\mathcal{O}: \mathbb{R}^m \to \mathbb{R}^L$ denote the observation operator where $\mathbf{d}_n = \mathcal{O}(\mathbf{u}_n) + \boldsymbol{\epsilon}_n$, for noise vectors $\boldsymbol{\epsilon}_n, n = 1, 2, \dots, N$.
- We model $\{\epsilon_n\}_{n=1}^N$ as independent identically distributed random vectors which follow a mean zero Gaussian distribution.

Bayesian Posterior Distribution

- We assume some prior knowledge of possible z's in the form of a Gaussian prior distribution π_{prior}(z) with mean z̄ and covariance Γ_{prior}.
- \blacktriangleright With the assumption of additive Gaussian noise ϵ contaminating the observed data

$$\mathbf{d} = (\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_N) \in \mathbb{R}^{LN},\tag{7}$$

we have a Gaussian likelihood $\pi_{\text{like}}(\mathbf{d}|\mathbf{z})$.

▶ Bayes' Theorem gives the **posterior distribution** of **z** as

$$\pi_{\text{post}}(\mathbf{z}) \propto \pi_{\text{prior}}(\mathbf{z}) \pi_{\text{like}}(\mathbf{d}|\mathbf{z}).$$
 (8)

- ▶ The point of greatest posterior probability is called the maximum a posteriori probably (MAP) point and gives a **best estimate** of **z**.
- Drawing samples from the posterior distribution quantifies uncertainty about the MAP due to limitations on data availability and quality.

Parameter-to-Observable Map and Bayesian Approximation Error

 Our surrogate model for the mapping from (z, w) to the observations of the state at time step t_n given u₀ is

$$\mathbf{F}_{n}(\mathbf{z}, \mathbf{w}) = \mathcal{O}\left(\mathbf{U}_{r} \mathcal{N}^{[n]}(\mathbf{U}_{r}^{\top} \mathbf{u}_{0}, \{\mathbf{z}_{j}, \mathbf{w}_{j}\}_{j=0}^{n}, \xi)\right).$$
(9)

• The **parameter-to-observable map** is defined by concatenating $\mathbf{F}_n(\mathbf{z}, \mathbf{w})$ for all time steps,

$$\mathbf{F}(\mathbf{z},\mathbf{w}) = [\mathbf{F}_1(\mathbf{z},\mathbf{w}), \mathbf{F}_2(\mathbf{z},\mathbf{w}), \dots, \mathbf{F}_N(\mathbf{z},\mathbf{w})] \in \mathbb{R}^{LN}$$

- ▶ The Bayesian posterior implicitly depends on **w** which is uncertain. We assume that a probabilistic model (for which samples may be computed) for **w** is given.
- ► Merely fixing w = w to its best estimate and solving the inverse problem for z using F(z, w) fails to incorporate uncertainty in w and may provide poor UQ.
- ► In the Bayesian approximation error (BAE) approach, we model error about F(z, true w) from both noise and misspecification of w using an empirical Gaussian.
- Rather than a noise model with mean zero and covariance Γ_{noise} , we use the noise model ν with mean $\overline{\mathbf{e}}$ and covariance $\Gamma_{\text{BAE}} = \Gamma_{\text{noise}} + \Gamma_{\mathbf{e}}$.

Maximum a Posteriori (MAP) Point Estimation and Posterior Sampling

• To determine the MAP point, we formulate an optimization problem to maximize the posterior PDF given observations:

$$\min_{\mathbf{z}} \left\{ J(\mathbf{z}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{F}_{n}(\mathbf{z}) + \overline{\mathbf{e}} - \mathbf{d}_{n}\|_{\mathbf{\Gamma}_{\text{BAE}}^{-1}}^{2} + \frac{1}{2} \|\mathbf{z} - \overline{\mathbf{z}}\|_{\mathbf{\Gamma}_{\text{prior}}^{-1}}^{2} \right\}.$$
(10)

- ▶ We utilized **derivative-based algorithms** in the Rapid Optimization Library (**ROL**), part of the Trilinos package provided by Sandia National Laboratories.
- ▶ To obtain required derivatives, we leveraged algorithmic, or automatic, differentiation at each time step when evaluating the flow map approximation.
- ▶ To rapidly quantify uncertainty, we compute samples from a Laplace approximation of the posterior.
- ▶ This assumes that $\mathbf{F}_n(\mathbf{z})$ is linear in \mathbf{z} , which is valid in a neighborhood of the MAP point.

Numerical Example: Atmospheric Aerosol (SO₂) Dispersion Model

▶ Data is generated from the advection-diffusion-reaction PDE

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u + \mathbf{v}(w) \cdot \nabla u - S \mathbf{e}_y \cdot \nabla u = \mathcal{R}(u) + f(z) \qquad \text{on } \Omega \times (0, \infty) \qquad (11)$$

$$\nabla u \cdot \mathbf{n} = 0 \qquad \qquad \text{on } \partial\Omega \times (0, \infty)$$

$$u = 0 \qquad \qquad \qquad \text{on } \Omega \times \{0\}$$

▶ The source is defined as f(z) = z(t)F(x, y) where $z : [0, T] \to \mathbb{R}$ is the time varying source magnitude being inferred and

$$F(x,y) = \exp\left(-100(x-5)^2\right)\exp\left(-0.1(y-9)^2\right).$$

 \triangleright **z** is a vector with length being the number of time steps N in the discretized data.

Training & Test Data Generation: 4 Source Magnitudes \times 4 Wind Fields

Figure 1: We generate a dataset by solving the model for M = 16 combinations. The discretized data has N = 120 time nodes and m = 101101 spatial nodes.

- ▶ **z** is represented by a vector in \mathbb{R}^{120} and **u**, **w** are represented by a matrix in $\mathbb{R}^{101101 \times 120}$.
- ▶ To test inversion, we generated a test dataset "in the middle" of the training data.
- The relative ℓ^2 distance between the test and mean wind field is 3.6% and the relative ℓ^2 distances between the test and training wind fields ranges from 4.7% to 6.5%.
- ▶ We contaminate the state data with multiplicative Gaussian noise whose mean is 1 and standard deviation is 0.02, i.e. 2% of the data magnitude.
- ▶ To mimic realistic uncertainties, we invert with the mean wind field $\overline{\mathbf{w}}$ as our best estimate of the wind despite test data being generated with the testing wind field \mathbf{w}^* .

Building the Surrogate Model: Hyperparameters, Training, and Tuning

- We compress the state with a rank r = 70 PCA representation, with maximum relative ℓ_2 reconstruction error on the validation set of 0.6%.
- ▶ We also compress the wind fields using r = 10 modes with 0.7% reconstruction error.
- Since the source magnitude is scalar, the **reduced flow map** \mathcal{F}_r maps \mathbb{R}^{81} into \mathbb{R}^{70} .
- ▶ We divided our ensemble into a **training dataset** consisting of data from 12 PDE solves and a **validation dataset** consisting of 4 PDE solves.
- ▶ The validation set is used to **tune the flow map architecture**. For all experiments, we used the ADAM optimizer and ELU nonlinear activation layers.
- We examined the impact of increasing P, the number of DNN compositions used in the loss function (6) which increases the network accuracy as well as **stability**, and selected P = 25
- ► A hyperparameter study suggested optimal width 200, depth 2, and learning rate 0.0008.

Inversion Results: Improvement over Prior, and Importance of BAE

- ▶ We observe that the posterior in the traditional Bayesian approach has oscillations due to modeling error which is not characteristic of the testing data.
- It also has a small variance about this solution indicating confidence in an erroneous MAP point.
- ▶ This highlights the importance of **BAE formulation**, which largely avoided the oscillations and overconfidence seen in the traditional posterior.
- ▶ This also highlights the utility of **incorporating the wind**, the auxiliary source of uncertainty, into our flow map training so it could be properly handed in inversion.

Testing with Greater Wind Variability

- ▶ In a second study, the **wind field variability** (or range of uncertainty) is **increased** to understand limitations of the proposed approach.
- ▶ The relative ℓ_2 differences between the training samples and mean wind range from 9.7% to 10.8% (recall a range of 3.3% to 3.7% in the lesser wind variability case).
- ▶ With increased wind variability, we observe **greater error** in the flow map approximation and inversion, as is expected.
- The quality of the result as the posterior shown in Figure 16 is based on using only M = 16 PDE solves to generate training data for this more difficult scenario.

Comparing BAE vs Traditional Posterior using Relative ℓ^2 and Mahalanobis Metrics

- ▶ The Mahalanobis distance between the posterior distribution and the test source is a commonly used metric to measure distance between a **distribution** and a **point**.
- ► The much larger Mahalanobis distance for the traditional posterior demonstrates the **significant advantage of BAE** to provide uncertainty quantification.
- ▶ This is crucial in **limited data settings**.

Figure 2: Bar plots comparing the error estimating the test data source. Left panel: the relative ℓ^2 error between the MAP point and the test data source. Right panel: the Mahalanobis distance between the posterior and the test data source.

Conclusions

- Our approach combines learning **data-driven surrogate operators** parametrized by DNNs with **Bayesian approximation error** for inversion.
- ▶ We leveraged **algorithmic differentiation** to enable optimization and approximate posterior sampling without the need for extensive tuning to achieve convergence.
- ▶ Rapid source inversion with **UQ** when **confounded** by auxiliary unobserved processes, high state dimension, and small ensembles of training data.
- ▶ We do not require intrusion to obtain derivative information.
- Method was tested and analyzed in a setting that mimics the challenges faced when working with earth system model (ESM) and satellite observation data.

Figure 3: This work was supported by **CLDERA** (**CL**imate impact: **D**etermining **E**tiology th**R**ough p**A**thways) GC LDRD at Sandia National Laboratories. It will be published in a forthcoming article in the Journal of Machine Learning for Modeling and Computing.