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Source Inversion / Identification in Climate Systems

I The identification of sources in climate systems is vital for attribution and
prediction, which inform policy decisions.

I Inability to isolate sources while observing the climate, and the cost of simulating
computational models is high.

I Surrogate models enable the many-query algorithms required for source
identification, but challenges arise due to:

I High dimensionality of the state and source;
I Limited ensembles of costly model simulations to train a surrogate model, and
I Few and potentially noisy state observations for inversion due to measurement

limitations.

I The influence of auxiliary processes adds an additional layer of uncertainty that
further confounds source identification.

I Inversion for a source is an ill-posed problem. It is natural to state the problem in a
probabilistic way.

I We develop a Bayesian method that predicts the most probable source and
quantifies uncertainty in the predicted source.
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Summary of Method, Exemplar, and Results

I We introduce a framework based on

1. Calibrating deep neural network surrogates to the flow maps provided by an
ensemble of simulations obtained by varying sources, then

2. Using these surrogates in a Bayesian framework to identify sources from
observations via optimization.

I We focus on an atmospheric dispersion exemplar in which the source represents
injection of SO2 and we observe concentratation.

I The expressive and computationally efficient nature of the deep neural network
operator surrogates in reduced dimension allows for source identification with
uncertainty quantification using limited data.

I To stress the algorithm, we then introduce a variable wind field as an auxiliary
process that confounds source inversion.

I A Bayesian approximation error (BAE) approach becomes essential for reliable
inversion.

I Derivative-based optimization and sampling algorithms leverage algorithmic
differentiation tools to efficiently generate approximate samples from the posterior.
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Problem Formulation and Solution Outline

I We consider time-dependent models of the form

∂u

∂t
+A(u, z, w) = f(z, w) on Ω× (0,∞) (1)

B(u, z, w) = 0 on ∂Ω× (0,∞) (2)

u = u0 on Ω× {0} (3)

where u : Ω× [0,∞)→ R represents a state defined for time t ≥ 0 on a domain Ω.

I We seek to estimate z by solving an inverse problem which combines the
computational model (1) with sparse and noisy observations of the state variable u.

I The other parameter w, sometimes referred to as a nuisance parameter, is also
assumed to be uncertain but is not of primary interest; it represents an auxiliary
process.

I We assume that the computational model (1) may be solved for any z and w, and
that we have access to an ensemble of such simulations.

I We utilize a DNN approximation of the flow map operator of the model (1),
mapping the state and parameters at time t to the state at time t+ ∆t.
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Flow Map & Ensemble of Simulation Data for Training and Validation

I We work with a discretization of the PDE model (1). Let

tn, n = 0, 1, 2, . . . , N (4)

denote increasing points in time, with t0 = 0 and tN = T .

I We seek to build a surrogate for the flow map, defined as the function

F : Rm × Rs × Rq → Rm

which evolves the state from time tn to tn+1, i.e.

un+1 = F(un, zn,wn). (5)

I Assume that M samples of z and w are given. Denote them as

zin ∈ Rs, wi
n ∈ Rq, i = 1, 2, . . . ,M, n = 0, 1, . . . , N.

I Integrating the model (1) with these parameters yields a set of M trajectories{
ui
n

}N
n=0
⊂ Rm, i = 1, 2, . . . ,M.
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Spatial Dimension Reduction of State and Parameters

I The high dimensionality of ui
n ∈ Rm poses significant challenges to learning F .

I We obtain a lower-dimensional linear subspace using the PCA/POD/EOF method.
We compute the singular value decomposition Y = UΣV> of the matrix

Y =
(

u1
0 u1

1 · · · u1
N u2

0 · · · u2
N · · · uM

0 · · · uM
N

)
∈ Rm×(N+1)M .

I The idea of our approach is that if the state trajectory {un}Nn=0 is approximately
contained in the range of Ur then the following diagram approximately commutes:

un un+1

cn cn+1

F(·,zn,wn)

PCA projection=U>r

Fr(·,zn,wn)

PCA reconstruction=Ur

I We seek to learn a DNN approximation of Fr using the MN training data pairs{
(cin, z

i
n,w

i
n), cin+1

}
n = 0, 1, . . . , N − 1, i = 1, 2, . . . ,M,
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Flow Map Approximation Architecture and Training

I Consider DNN approximations N ≈ Fr of the form

N : (c, z,w; ξ) 7→ c + ∆tE(c, z,w; ξ)

where E(c, z,w; ξ) is a dense feedforward DNN with weights and biases ξ ∈ R`.

I The surrogate must provide stable and accurate evolution of the state starting from
u0, through many timesteps.

I We train with the loss function that includes repeated compositions of N :

L(ξ) =

M∑
i=1

N−1∑
n=0

P (n)∑
p=1

‖cin+p −N [p](cin, {zij ,wi
j}

n+p−1
j=n , ξ)‖2`2 (6)

where N [p](cin, {zij ,wi
j}

n+p−1
j=n , ξ) denotes the composition of N with itself p times.
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The Inverse Problem

Inversion

I Our ultimate goal is solving an inverse problem to estimate z given sparse and noisy
measurements of u.

I Let dn ∈ RL, n = 1, 2, . . . , N , denote observations of the state u at L spatial locations
at each nth time step.

I Let O : Rm → RL denote the observation operator where dn = O(un) + εn, for noise
vectors εn, n = 1, 2, . . . , N .

I We model {εn}Nn=1 as independent identically distributed random vectors which
follow a mean zero Gaussian distribution.
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Bayesian Posterior Distribution

I We assume some prior knowledge of possible z’s in the form of a Gaussian prior
distribution πprior(z) with mean z and covariance Γprior.

I With the assumption of additive Gaussian noise ε contaminating the observed data

d = (d1,d2, . . . ,dN ) ∈ RLN , (7)

we have a Gaussian likelihood πlike(d|z).

I Bayes’ Theorem gives the posterior distribution of z as

πpost(z) ∝ πprior(z)πlike(d|z). (8)

I The point of greatest posterior probability is called the maximum a posteriori
probably (MAP) point and gives a best estimate of z.

I Drawing samples from the posterior distribution quantifies uncertainty about the
MAP due to limitations on data availability and quality.
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Parameter-to-Observable Map and Bayesian Approximation Error

I Our surrogate model for the mapping from (z,w) to the observations of the state at
time step tn given u0 is

Fn(z,w) = O
(
UrN [n](U>r u0, {zj ,wj}nj=0, ξ)

)
. (9)

I The parameter-to-observable map is defined by concatenating Fn(z,w) for all
time steps,

F(z,w) = [ F1(z,w), F2(z,w), . . . ,FN (z,w) ] ∈ RLN .

I The Bayesian posterior implicitly depends on w which is uncertain. We assume that
a probabilistic model (for which samples may be computed) for w is given.

I Merely fixing w = w to its best estimate and solving the inverse problem for z using
F(z,w) fails to incorporate uncertainty in w and may provide poor UQ.

I In the Bayesian approximation error (BAE) approach, we model error about
F(z, true w) from both noise and misspecification of w using an empirical Gaussian.

I Rather than a noise model with mean zero and covariance Γnoise, we use the noise
model ν with mean e and covariance ΓBAE = Γnoise + Γe.

10



Maximum a Posteriori (MAP) Point Estimation and Posterior Sampling

I To determine the MAP point, we formulate an optimization problem to maximize the
posterior PDF given observations:

min
z

{
J(z) =

1

2

N∑
n=1

‖Fn(z) + e− dn‖2Γ−1
BAE

+
1

2
‖z− z‖2

Γ−1
prior

}
. (10)

I We utilized derivative-based algorithms in the Rapid Optimization Library
(ROL), part of the Trilinos package provided by Sandia National Laboratories.

I To obtain required derivatives, we leveraged algorithmic, or automatic, differentiation
at each time step when evaluating the flow map approximation.

I To rapidly quantify uncertainty, we compute samples from a Laplace approximation
of the posterior.

I This assumes that Fn(z) is linear in z, which is valid in a neighborhood of the MAP
point.
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Numerical Example: Atmospheric Aerosol (SO2) Dispersion Model

I Data is generated from the advection-diffusion-reaction PDE

∂u

∂t
− κ∇2u+ v(w) · ∇u− Sey · ∇u = R(u) + f(z) on Ω× (0,∞) (11)

∇u · n = 0 on ∂Ω× (0,∞)

u = 0 on Ω× {0}

I The source is defined as f(z) = z(t)F (x, y) where z : [0, T ]→ R is the time varying
source magnitude being inferred and

F (x, y) = exp
(
−100(x− 5)2

)
exp

(
−0.1(y − 9)2

)
.

I z is a vector with length being the number of time steps N in the discretized data.
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Training & Test Data Generation: 4 Source Magnitudes × 4 Wind Fields
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Figure 1: We generate a dataset by solving
the model for M = 16 combinations. The
discretized data has N = 120 time nodes and
m = 101101 spatial nodes.

I z is represented by a vector in R120 and u,w are represented by a matrix in
R101101×120.

I To test inversion, we generated a test dataset “in the middle” of the training data.

I The relative `2 distance between the test and mean wind field is 3.6% and the relative
`2 distances between the test and training wind fields ranges from 4.7% to 6.5%.

I We contaminate the state data with multiplicative Gaussian noise whose mean is 1
and standard deviation is 0.02, i.e. 2% of the data magnitude.

I To mimic realistic uncertainties, we invert with the mean wind field w as our best
estimate of the wind despite test data being generated with the testing wind field w?.
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Building the Surrogate Model: Hyperparameters, Training, and Tuning

I We compress the state with a rank r = 70 PCA representation, with maximum
relative `2 reconstruction error on the validation set of 0.6%.

I We also compress the wind fields using r = 10 modes with 0.7% reconstruction error.

I Since the source magnitude is scalar, the reduced flow map Fr maps R81 into R70.

I We divided our ensemble into a training dataset consisting of data from 12 PDE
solves and a validation dataset consisting of 4 PDE solves.

I The validation set is used to tune the flow map architecture. For all experiments,
we used the ADAM optimizer and ELU nonlinear activation layers.

I We examined the impact of increasing P , the number of DNN compositions used in
the loss function (6) which increases the network accuracy as well as stability, and
selected P = 25

I A hyperparameter study suggested optimal width 200, depth 2, and learning rate
0.0008.
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Inversion Results: Improvement over Prior, and Importance of BAE
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I We observe that the posterior in the traditional Bayesian approach has oscillations
due to modeling error which is not characteristic of the testing data.

I It also has a small variance about this solution indicating confidence in an
erroneous MAP point.

I This highlights the importance of BAE formulation, which largely avoided the
oscillations and overconfidence seen in the traditional posterior.

I This also highlights the utility of incorporating the wind, the auxiliary source of
uncertainty, into our flow map training so it could be properly handed in inversion.
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Testing with Greater Wind Variability

I In a second study, the wind field variability (or range of uncertainty) is increased
to understand limitations of the proposed approach.

I The relative `2 differences between the training samples and mean wind range from
9.7% to 10.8% (recall a range of 3.3% to 3.7% in the lesser wind variability case).

I With increased wind variability, we observe greater error in the flow map
approximation and inversion, as is expected.

I The quality of the result as the posterior shown in Figure 16 is based on using only
M = 16 PDE solves to generate training data for this more difficult scenario.
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Comparing BAE vs Traditional Posterior using Relative `2 and Mahalanobis Metrics

I The Mahalanobis distance between the posterior distribution and the test source is a
commonly used metric to measure distance between a distribution and a point.

I The much larger Mahalanobis distance for the traditional posterior demonstrates the
significant advantage of BAE to provide uncertainty quantification.

I This is crucial in limited data settings.
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Figure 2: Bar plots comparing the error estimating the test data source. Left panel: the
relative `2 error between the MAP point and the test data source. Right panel: the
Mahalanobis distance between the posterior and the test data source.
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Conclusions

I Our approach combines learning data-driven surrogate operators parametrized
by DNNs with Bayesian approximation error for inversion.

I We leveraged algorithmic differentiation to enable optimization and approximate
posterior sampling without the need for extensive tuning to achieve convergence.

I Rapid source inversion with UQ when confounded by auxiliary unobserved
processes, high state dimension, and small ensembles of training data.

I We do not require intrusion to obtain derivative information.

I Method was tested and analyzed in a setting that mimics the challenges faced
when working with earth system model (ESM) and satellite observation data.

Figure 3: This work was supported by CLDERA
(CLimate impact: Determining Etiology thRough
pAthways) GC LDRD at Sandia National
Laboratories. It will be published in a forthcoming
article in the Journal of Machine Learning for
Modeling and Computing.
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