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Joint Entity-relation Extraction
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Semi-supervised learning

While Labeled data is expensive.

Unlabeled data is cheap and 

plentiful (e.g. Wikipedia dump).

Semi supervised learning (SSL): utilizes 
both labeled and unlabeled data to improve 
predictions.
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ASPER

- Inconsistencies:

- Overlapped entities:

- Hidden relations:

There are many consistent sets of pseudo 
labels.

1. How to find all of them?

2. Which set is "the best" to include in 

the training set?
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ASPER

• Pseudo labels as atoms
• Three special predicates:

• ok(X): accept X

• nok(X): rejects X

• pi(X): X could be rejected

• Knowledge are encoded as rules:
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type_def(liveIn, peop, loc).
type_def(locatedIn, peop, loc).
type_def(orgbasedIn, org, loc).
type_def(workFor, peop, org).
type_def(kill, peop, peop).

2{pi(relation(R,B,E,B',E');pi(entity(N,B,E))} <- type_def(R,N1,N2), atom(relation(R,B,E,B',E')), atom(N,B,E)),N1 != N.
<- ok(relation(R,B,E,_,_)), ok(entity(N,B,E)), type_de(R,N',_), N!= N'.



ASPER

• Each answer set contains ok(…) atoms.
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ok(entity(org,0,2))
ok(entity(loc,7,9))
ok(entity(loc,10,11))
ok(entity(loc,12,13))

ok(relation(locatedIn,7,9,10,11))
ok(relation(locatedIn,10,11,12,13))
ok(relation(locatedIn,7,9,12,13))

ok(entity(loc,7,9))
ok(entity(loc,10,11))
ok(entity(loc,12,13))
ok(entity(loc,0,2))

ok(relation(locatedIn,7,9,10,11))
ok(relation(locatedIn,10,11,12,13))
ok(relation(locatedIn,7,9,12,13))
ok(relation(locatedIn,0,2,12,13))



ASPER

• Which answer set is better?
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While both are consistent
2nd seems to be better 
because it keeps as much as 

what the model originally 
predicted.



ASPER

• Selection of consistent pseudo labels

• Each answer set has two scores
• Preference:

• Confidence:

• Answer sets are selected based on preference.
• Sentences are selected based on confidence.
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prob(X,P) <- atom(X,P), ok(X)

invprob(X,P) <- atom(X,P), nok(X).

min{p | prob(l,p) ∈ W}

∏prob(a,p)∈Wp×∏invprob(a,p)∈W(1-p)



Experiments

• We use two datasets, CoNLL04 and SciERC which have been utilized in other 
entity/relation extraction work.

• The CoNLL04 dataset extracted from newspapers with train/dev/test split 
as 922/231/288 sentences.

• The SciERC dataset extracted from artificial intelligence research papers with 
train/dev/test split as 1861/275/551 sentences.

• We use a portion of training set (10%) as labeled data and the rest as unlabeled data.

• To get stable results, we randomly choose five subsets from the training data and train 
five models and report the average result.

• Comparison methods: Self-training (Lee 2013), Curriculum labeling (Cascante-Bonilla et al 

2021)  and Tri-training (Zhou&Li 2005, Ruder and Plank 2018).
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Experiments

Performance of ASPER with 10% labeled data
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Experiments

ASPER's performance when we vary the portion of labeled data
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Conclusions

• ASPER leverages ASP to improve NN models in the joint recognition of entities and relation task 
when limited amount of training data is available.

• The ASP program encodes different types of commonsense rules by taking advantage of the 
commonsense domain knowledge.

• The experiments on two real datasets show that ASPER can report significantly better results 
than the other baselines in most cases.

• ASPER is a framework that can be extended for Semi-supervised learning when pseudo labels 
have clear semantic.
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