Learning Wildfire Dynamics for Ignition Inversion

Zachary Morrow with Joseph Hart and Bart van Bloemen Waanders

Department of Scientific Machine Learning Center for Computing Research Sandia National Laboratories¹

Machine Learning & Deep Learning Workshop Albuquerque, NM Supported by ASCR

¹Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2023-06118PE

Zachary Morrow (zbmorro@sandia.gov)

Wildfire Ignition Inversion

MLDL Workshop

Context

- Injuries, deaths, billions of USD in damages each year
- Want to visualize Qols and sensitivities accessibly to front-line decision makers
- Complex physics inhibit rapid simulations
- Need computationally cheaper surrogate

Wildfire model

- e Neural-network surrogate
- Inverse problem with surrogate
- Inversion results

• Fire front propagates by level-set equation:²

 $\psi_t + S \|\nabla\psi\| = 0,$

where S = S(x, t) is the spread rate.

- $\psi > 0$: unburned
- $\psi = 0$: burning
- $\psi < 0$: burned
- $S({m x},t)$ depends on fuel, terrain, and atmospheric wind
 - ... which depends on the heat flux from the fire
- Implementation in WRF-SFIRE (Fortran)
 - Atmosphere: Finite differences and RK3; Navier–Stokes
 - Fire: Finite volume and RK2
 - Operator splitting to couple atmosphere and fire

²J. Mandel, J. D. Beezley, and A. K. Kochanski. "Coupled Atmosphere-Wildland Fire Modeling with WRE 3.3 and 2011." *Geosci. Model Dev.* 4.3 (2011), pp. 591–610. DOI: 10.5194/gmd-4-591-2011.

Zachary Morrow (zbmorro@sandia.gov)

Wildfire Ignition Inversion

Surrogate dynamics

• Data-driven: Collect ensemble of level-set trajectories

$$\{\boldsymbol{\psi}^i\}_{i=1}^M \subset \mathbb{R}^{d \times (N+1)}, \qquad \boldsymbol{\psi}_n^i = \boldsymbol{\psi}^i(t_n), \ n = 0, \dots, N$$

• Project snapshots into low-rank subspace:

$$ilde{oldsymbol{\psi}}_n^i = oldsymbol{U}^ op oldsymbol{\psi}_n^i \in \mathbb{R}^r, \qquad r \ll d$$

where U comes from an SVD of all snapshots.

• Learn flow map \hat{F} with DNN [Gulian; Day 2, Sess. 1]:³

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{M} \sum_{n=0}^{N-1} \sum_{p=1}^{P} \|\tilde{\boldsymbol{\psi}}_{n+p}^{i} - \hat{\boldsymbol{F}}^{p}(\tilde{\boldsymbol{\psi}}_{n}^{i}; \boldsymbol{\theta})\|_{2}^{2}$$

where
$$\hat{m{F}}(ilde{m{\psi}}_n;m{ heta}) = ilde{m{\psi}}_n + m{\mathcal{N}}m{\mathcal{N}}(ilde{m{\psi}}_n;m{ heta})$$

³J. Hart, M. Gulian, I. Manickam, and L. Swiler. "Solving High-Dimensional Inverse Problems with Auxiliary Uncertain View Operator Learning with Limited Data." *J. Mach. Learn. Model. Comput.* (2023).

Inversion

• Want to invert for point-source ignition z (deterministic)

• Optimize full-dimensional loss:

$$J(\boldsymbol{z}) = \frac{1}{2} \sum_{n=0}^{N} \|\boldsymbol{U} \hat{\boldsymbol{\psi}}_n(\boldsymbol{z}) - \boldsymbol{\psi}_n\|_2^2 + R(\boldsymbol{z})$$

where $\hat{\psi}_n(\boldsymbol{z})$ comes from DNN flow map starting at parameterized IC

• Form of $\psi({\pmb x},0)$ known explicitly:

$$\psi(x, 0; z) = C + ||z - x||_2$$

Useful for computing gradients:

$$abla_{m{z}} \psi(m{x}, 0; m{z}) = rac{m{z} - m{x}}{\|m{z} - m{x}\|_2}$$

Experiments

- Different regimes of synthetic/real terrain, and windy/still conditions •
 - Real terrain and fuel east of Pagosa Springs, CO
 - $\Delta x = \Delta y = 30$ m; integrate up to t = 3 hr

Generate 25 trajectories corresponding to different ignition points

Results

- $\bullet~15/5/5$ split for training, validation, and testing
- ${\sim}1\%~L^2$ validation error for forward simulation with flow maps
- Inverse problem with testing data

Experiment	Abs err (mean)	Abs err (max)
Still, synthetic (no lake)	$0.15\Delta x$	$0.27\Delta x$
Still, synthetic (lake)	$0.20\Delta x$	$0.32\Delta x$
Windy, synthetic (no lake)	$0.71\Delta x$	$2.48\Delta x$
Windy, synthetic (lake)	$1.01\Delta x$	$3.76\Delta x$
Windy, Colorado	$0.24\Delta x$	$0.44\Delta x$

Table: Ignition-point inversion for real/synthetic data and windy/still air.

Zachary Morrow (zbmorro@sandia.gov)

SciML-based digital twins

- Wildfire as test case for digital twins
- Surrogate-enabled inversion is one piece of the outer-loop
 - Sub-mesh inversion error when applied to real data!
- Additional methods/algorithms:
 - Reinforcement learning for wildfire suppression
 - Post-optimality sensitivities
 - Model-discrepancy update
- Physical system in real-time
 - Data acquisition
 - Meteorological/fire data assimilation

