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Atmospheric Turbulence Video taken from https://www.youtube.com/watch?v=RKKILET6aYE

Atmospheric turbulence usually
refers to the three-dimensional,
chaotic flow of air in the Earth’s
atmosphere.
Atmospheric turbulence is
primarily caused by the
inhomogeneous refractive index
in air which arises due to
temperature variations and
convection throughout the
transmission path of the optical
wave.
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Atmospheric Turbulence
Images taken from Fazlali et al. (2022) and https://www.sciencedirect.com/science/article/abs/pii/S0030402620300115

The extent of wave degradation resulting from
atmospheric turbulence depends on the intensity
of fluctuations in the refractive index of air.
Estimation/correction of atmospheric turbulence
and its effects on light has many applications. For
example, long-distance aiming of laser (target
designation, energy focusing, and secure
communications) and long-range terrestrial
observations using visible and infrared imaging
systems are susceptible to degradations from
atmospheric turbulence.
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Isoplanatic Turbulence and Anisoplanatic Turbulence

If the degradation caused by the turbulence is uniform across the field of view of the
imaging system, the turbulence can be considered isoplanatic.
Anisoplanatic turbulence, on the other hand, introduces varying degrees of degradation
throughout the field of view, making it more difficult to correct the turbulence-degraded
images as opposed to isoplanatic turbulence.
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Motivation Images taken from Fazlali et al. (2022) and https://www.laserfocusworld.com/

In long-range imaging, the quality of an image is degraded by atmospheric turbulence.
Reflected light from a distant object passes several turbulent layers to reach the camera.
Geometric distortion and blurring in the image.
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Motivation Li et al. (2018) Figure taken from Wikipedia contributors (2023)

The point spread function (PSF) refers to
the impulse response of an imaging
system.
The degradation of an image caused by
turbulence can be described by the point
spread function.
Under anisoplanatic imaging conditions,
the degradation is modeled by a spatially
varying PSF across the pixels.
Estimating the PSF from a degraded
image is the initial step for correcting
image distortion.
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Motivation

The point spread function (PSF) can be modeled by a Pupil Function and a Phase
Distortion Function
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Purpose of Work
Jin et al. (2018); Paine and Fienup (2018); Zhang et al. (2019); Tian et al. (2019); Lu et al. (2022) Figures taken from Nishizaki et al. (2019)

A common way to parameterize the distortions is by modeling the phase distortions of
monochromatic waves with Zernike coefficients.
Unfortunately, other researchers have had little success trying to directly predict Zernike
coefficients from intensity images alone.
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Imaging Model Lu et al. (2022)

Imaging Modelp(x, y)

ϕ(x, y)

I0(x, y)

I(x, y)

Incoherent imaging of an object can be
modeled using a linear, space-invariant
forward model

I(x, y) = h(x, y) ∗ I0(x, y)

I(x, y) is intensity image of a source
object I0(x, y).
PSF h(x, y) can be expressed as

h(x, y) ∝
∣∣F{

p(x, y)e jϕ(x,y)}∣∣2,

where p(x, y) is the pupil function,
and ϕ(x, y) is the wavefront phase
distortion.
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Imaging Model

In a vacuum, light originating at the source spherically propagates outward until it
reaches the entrance pupil of the physical aperture.
Assuming a long-range imaging scenario, the curvature of the wavefront arriving at the
aperture is roughly flat.
The resulting image has no distortion due to turbulence, rather the image is
diffraction-limited by the physical system.
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Imaging Model

The propagation of light through a medium such as the atmosphere introduces
wavefront aberrations a the aperture plane that further degrade the images.
In this case, the PSF captures the combined effects of both the diffraction-limited
imaging system and the distortion due to turbulence.
Therefore, estimation of the combined system and medium PSF can potentially quantify
the aberations so that image correction can be performed.
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Imaging Model

To simply our initial investigation, we investigate the effects of a single phase screen.
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Turbulence Jousef Murad (2023)

Osborne Reynolds (1842-1912) was a pioneer
in the study of fluid dynamics,
In 1883, he performed a simple but elegant
experiment to investigate the flow of fluids
through tubes.
Reynolds passed water through a pipe at
different flow velocities and introduced dye
into the tubes to visualize fluid flow behavior.
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Jousef Murad (2023), Video taken from https://www.youtube.com/watch?v=vhDaCZZ0Sc4

Reynolds showed most effectively that the
characteristics of the flow vary with the flow
velocity, and demonstrated the features of
laminar and turbulent flow.
Moreover, the transition point between the
two types of flow could be predicted by one
simple number (the Reynolds number).
The Reynolds number remains the standard
mathematical framework to study laminar &
turbulent fluid systems.
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Modeling Atmospheric Turbulence: Kolmogorov’s Theory Figures taken from

Kolmogorov’s theory offers a
mathematical expression for the
statistics of the atmosphere’s refractive
index variations.
Wind breaks down large-scale
inhomogeneities into smaller ones and
the turbulent air motion gives rise to
eddies with varying sizes and speeds.
Kolmogorov considers the span of
turbulence flows from macroscale
structure to microscale structure.
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Modeling Atmospheric Turbulence: Kolmogorov’s Theory Figures taken from

Assumptions:
As the characteristic diameter of the
eddy decreases, the characteristic
orbital velocity of the eddy
decreases.
Small-scale eddies are statistically
homogeneous and isotropic.
Separation of scales is high or
infinity.
At the macroscale, energy is
supplied to turbulence flow from
wind shear or convection.

Kolmogorov’s view:
Energy transfers from large-scale
eddies to small-scale eddies.
At the microscale (l0), energy is
dissipated as heat due to viscosity.

For inertial subrange, the spectral power
spectral density Φn(K⃗) of the refractive
index of the atmosphere (n)

Φn(K⃗) = 0.033C2
nK−11/3,

where K⃗ is the spatial wave number
vector and C2

n is the structure constant of
refractive index fluctuations.

A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 18 / 45



Introduction Background Methods Results & Discussion Acknowledgements References

Wavefront Distortion Representation Lakshminarayanan and Fleck (2011)

The wavefront phase distortion can be
represented by a linear superposition of
Zernike polynomials

ϕ(x, y) =
∑
n,m

anmZm
n (x, y)

ϕ(x, y) =
∑

q

aqZq(x, y)

Zernike polynomials form a set of
orthogonal functions defined over the
unit circle.

Zm
n (ρ, φ) =

{
R

|m|
n (ρ) cos(mφ), if m ≥ 0

R
|m|
n (ρ) sin(mφ), if m < 0

Single indexing: q = (n(n + 2) + m)/2

= a0

( )
+ a1

( )
+ a2

( )
+ a3

( )
+ a4

( )
+ a5

( )
+ · · ·
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Zernike Polynomials Lakshminarayanan and Fleck (2011)
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Relationship between Zernike Coefficients and Intensity Image

Imaging Modelp(x, y)

ϕ(x, y)

I0(x, y)

I(x, y)

Wavefront phase distortion with
single-indexed Zernike polynomials

ϕ(x, y) =
∑

q

aqZq(x, y)

Already observed that intensity image
I(x, y) = h(x, y) ∗ I0(x, y) and PSF
h(x, y) ∝

∣∣F{
p(x, y)e jϕ(x,y)}∣∣2

Zernike coefficients aq correspond to a
particular I(x, y) and can be used to
parameterize the associated PSF of an
aberrated imaging system.
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Ambiguity for Predicting the Zernike Coefficients from Intensity Images
Jin et al. (2018); Paine and Fienup (2018); Zhang et al. (2019); Tian et al. (2019); Lu et al. (2022) Figures taken from Nishizaki et al. (2019)

Utilize deep learning (DL)
models to predict Zernike
coefficients from intensity
images
Ambiguity involving the
prediction of Zernike
coefficients
Some Zernike polynomials Zq

generate the same PSF intensity
image for oppositely-signed
Zernike coefficients
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Ambiguity Bracewell and Bracewell (1986)

Imaging Modelp(x, y)

ϕ(x, y)

I0(x, y)

I(x, y)

Identify the Zernike polynomials which are susceptible to ambiguity
Use symmetry properties of the Fourier transform to mathematically prove that
angularly even polynomials introduce ambiguity
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PSF intensity images of a point object with Z6

(a) (b)

Figure: The PSF intensity images of a point object with: (a) Zernike coefficient value +5 for Z6
(b) Zernike coefficient value −5 for Z6
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PSF intensity images of a point object with Z12

(a) (b)

Figure: The PSF intensity images of a point object with: (a) Zernike coefficient value +5 for
Z12 (b) Zernike coefficient value −5 for Z12
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Identify Ambiguity

Express h(x, y) in terms of the Fourier transform as

h(x, y) ∝ F
{

p(x, y)e jϕ(x,y)
}

F∗
{

p(x, y)e jϕ(x,y)
}

,

Express p(x, y) and ϕ(x, y) in terms of real/imaginary and even/odd parts as

p(x, y) = pre(x, y) +����pro(x, y) +����jpie(x, y) +����jpio(x, y)

and
ϕ(x, y) = ϕre(x, y) + ϕro(x, y) +�����jϕie(x, y) +�����jϕio(x, y)
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Identify Ambiguity
An angularly even Zernike polynomial Zae(x, y) produces a real even symmetric ϕ(x, y).

F
{

p(x, y)e jϕ(x,y)
}

= F
{

pre(x, y)e jϕre(x,y)
}

= F
{

pre(x, y) cosϕre(x, y) + jpre(x, y) sinϕre(x, y)
}

For Zernike coefficient ±a, we have ϕre(x, y) = ±aZae(x, y) and

F
{

p(x, y)e ±jaZae(x,y)
}

= F
{

pre(x, y) cos[±aZae(x, y)] + jpre(x, y) sin[±aZae(x, y)]
}

= F
{

pre(x, y) cos[aZae(x, y)] ± jpre(x, y) sin[aZae(x, y)]
}

= A(x, y) ± jB(x, y)

A(x, y) F↔ pre(x, y) cos[aZae(x, y)] is real even and jB(x, y) F↔ jpre(x, y) sin[aZae(x, y)]
is imaginary even. This leads to

h(x, y) ∝
∣∣∣F {

pre(x, y)e jϕre(x,y)
}∣∣∣2 = A2(x, y) + B2(x, y).
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Identify Ambiguity
An angularly odd Zernike polynomial Zao(x, y) produces a real odd symmetric ϕ(x, y).

F
{

p(x, y)e jϕ(x,y)
}

= F
{

pre(x, y)e jϕro(x,y)
}

= F
{

pre(x, y) cosϕro(x, y) + jpre(x, y) sinϕro(x, y)
}

For Zernike coefficient ±a, we have ϕro(x, y) = ±aZao(x, y) and

F
{

p(x, y)e ±jaZao(x,y)
}

= F
{

pre(x, y) cos[±aZao(x, y)] + jpre(x, y) sin[±aZao(x, y)]
}

= F
{

pre(x, y) cos[aZao(x, y)] ± jpre(x, y) sin[aZao(x, y)]
}

= C(x, y) ± D(x, y)

C(x, y) F↔ pre(x, y) cos[aZao(x, y)] is a real even and D(x, y) F↔ jpre(x, y) sin[aZao(x, y)]
is real odd. This leads to

h(x, y) ∝
∣∣∣F {

pre(x, y)ejϕro(x,y)
}∣∣∣2 =

[
C(x, y) ± D(x, y)

]2
.
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Ambiguity

Consider the prediction of the absolute value of the associated Zernike coefficients for
angularly even polynomials
Refer signless coefficients for angularly even polynomials and signed coefficients for
angularly odd polynomials as the modified Zernike coefficients
Use a deep neural network to predict the modified coefficients directly from PSF
intensity images
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Data Generation
Underwood and Voelz (2013); Zhan et al. (2019); Schmidt (2010); Wilcox (2023); Jin et al. (2018); Paine and Fienup (2018); Delabie et al. (2014); Noll (1976)

Figure: Block diagram of the proposed training methodology.
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Data Generation Cohen et al. (2017)

(a) (b)

Figure: PSF intensity image of an extended source object: (a) source object (b) intensity image
for D

r0
= 10
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Dataset Generation Paine and Fienup (2018)

We consider four different scenarios at nine atmospheric turbulence strengths
D/r0 = 2, 3, . . . , 10

Point source object with zero noise
Extended source objects with zero noise
Extended source objects with low noise: Poisson noise with peak photon levels of
4000 and read out noise with zero mean, standard deviation 10
Extended source objects with high noise: Poisson noise with peak photon levels of
15000 and read out noise with zero mean, standard deviation 100

We use one point source object and 6000 different extended source objects
(5000/500/500 for training/validation/testing purposes)
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Model Architecture Hu et al. (2020); Krizhevsky et al. (2012); Bezanson et al. (2012); Innes (2018); Hu et al. (2020); Kingma and Ba (2014)
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Figure: The neural network architecture used in the proposed estimation.
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Results & Discussion

(a)
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(b)

Figure: Demonstration of the proposed estimation for a point source object with zero noise.
(a) intensity image for D/r0 = 5 (b) the actual ( ) and predicted ( ) Zernike coefficients
corresponding to the intensity image in (a).
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Results & Discussion
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Figure: Demonstration of the proposed estimation for an extended source object with high
noise. (a) intensity image for D/r0 = 5 (b) the actual ( ) and predicted ( ) Zernike
coefficients corresponding to the intensity image in (a).
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Results & Discussion

Table: Average MSE for the four scenarios.

Scenario Average MSE Description
1 0.0218 Point Source Object
2 0.0599 Extended Source Objects
3 0.0792 Extended Source Objects with Low Noise
4 0.0974 Extended Source Objects with High Noise

MSE of 0.5673 for scenario 1 with the signed Zernike coefficients for all polynomials
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Results & Discussion

2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

M
S

E

The MSE as a function of D/r0
for ( ) a point source object
with no noise, ( ) extended
source objects with no noise,
( ) extended source objects
with low noise, and ( ) ex-
tended source objects with high
noise
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Results & Discussion

Data for the learning model was created with an image simulation of a point object and
simple extended objects for a range of turbulence and detection noise levels.
The modified set of Zernike Coefficients was shown to be sufficient for specifying the
intensity PSF.
As expected, the results show that the point source object with no noise produces the
lowest average MSE whereas the extended source objects with high noise give the
largest MSE.
The prediction MSE for the learning model shows that it is possible to recover a useful
set of modified Zernike coefficients from an extended object intensity image subject to
noise and turbulence.
In all cases, the MSE increases in a predictable way with turbulence strength (D/r0).
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Abstract: Recovering the turbulence-degraded point spread function from a single intensity
image is important for a variety of imaging applications. Here, a deep learning model based on a
convolutional neural network is applied to intensity images to predict a modified set of Zernike
polynomial coefficients corresponding to wavefront aberrations in the pupil due to turbulence.
The modified set assigns an absolute value to coefficients of even radial orders due to a sign
ambiguity associated with this problem and is shown to be sufficient for specifying the intensity
point spread function. Simulated image data of a point object and simple extended objects over
a range of turbulence and detection noise levels are created for the learning model. The MSE
results for the learning model show that the best prediction is found when observing a point
object, but it is possible to recover a useful set of modified Zernike coefficients from an extended
object image that is subject to detection noise and turbulence.
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1. Introduction

The point spread function (PSF) refers to the impulse response of an imaging system [1]. When
the PSF is known, it can be used for the correction of blur and other artifacts in images that
are due to the system’s response. For example, in a space-invariant imaging situation, a PSF
correction might be applied in a deconvolution step. Additionally, the propagation of light
through a medium such as the atmosphere introduces wavefront aberrations at the aperture plane
that further degrade the images. Therefore, the estimation of the combined system and medium
PSF can potentially quantify the aberrations so that image correction can be performed.

1.1. Imaging model

Incoherent imaging of an object can be modeled using a linear space-invariant forward model

I(x, y) = h(x, y) ∗ I0(x, y), (1)

where I(x, y) is the intensity image of a source object I0(x, y), ∗ is the convolution operator, and
h(x, y) is the intensity PSF given by

h(x, y) ∝
|︁|︁F {︁

p(x, y)e jϕ(x,y)}︁|︁|︁2, (2)

where F is the Fourier transform, | · | is the modulus operator, p(x, y) is the pupil function, and
ϕ(x, y) is the wavefront phase distortion applied at the pupil plane [2].

1.2. Representing wavefront distortions

Although the PSF can be parameterized in various ways, to leverage results from disciplines such
as adaptive optics, we consider the wavefront distortion ϕ(x, y) related to the PSF through Eq. (2).

#493229 https://doi.org/10.1364/OE.493229
Journal © 2023 Received 20 Apr 2023; revised 1 Jun 2023; accepted 2 Jun 2023; published 23 Jun 2023A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 41 / 45



Introduction Background Methods Results & Discussion Acknowledgements References

Outline

1 Introduction
Atmospheric Turbulence
Motivation and Purpose of Work

2 Background
Imaging Model
Turbulence Model
Wavefront Distortion Model

3 Methods
Identify Ambiguity
Data Generation
Model Architecture

4 Results & Discussion

5 Acknowledgements

A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 42 / 45



Introduction Background Methods Results & Discussion Acknowledgements References

Acknowledgements

This work was funded by the Office of Naval Research (N00014-21-1-2430).

A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 43 / 45



Introduction Background Methods Results & Discussion Acknowledgements References

References I

J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

R. N. Bracewell and R. N. Bracewell. The Fourier transform and its applications, volume 31999. McGraw-Hill New York, 1986.

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017 international joint conference on neural networks
(IJCNN), pages 2921–2926. IEEE, 2017.

T. Delabie, J. D. Schutter, and B. Vandenbussche. An accurate and efficient gaussian fit centroiding algorithm for star trackers. The Journal of the Astronautical
Sciences, 61(1):60–84, 2014.

H. Fazlali, S. Shirani, M. BradforSd, and T. Kirubarajan. Atmospheric turbulence removal in long-range imaging using a data-driven-based approach.
International Journal of Computer Vision, 130(4):1031–1049, 2022.

S. Hu, L. Hu, B. Zhang, W. Gong, and K. Si. Simplifying the detection of optical distortions by machine learning. Journal of Innovative Optical Health Sciences,
13(03):2040001, 2020.

M. Innes. Flux: Elegant machine learning with julia. Journal of Open Source Software, 3(25):602, 2018.

Y. Jin, Y. Zhang, L. Hu, H. Huang, Q. Xu, X. Zhu, L. Huang, Y. Zheng, H.-L. Shen, W. Gong, et al. Machine learning guided rapid focusing with sensor-less
aberration corrections. Optics express, 26(23):30162–30171, 2018.

Jousef Murad. The reynolds number. https://www.jousefmurad.com/fluid-mechanics/the-reynolds-number/, 2023. [Online; accessed
7-July-2023].

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

V. Lakshminarayanan and A. Fleck. Zernike polynomials: a guide. Journal of Modern Optics, 58(7):545–561, 2011.

J. Li, F. Xue, F. Qu, Y.-P. Ho, and T. Blu. On-the-fly estimation of a microscopy point spread function. Optics express, 26(20):26120–26133, 2018.

A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 44 / 45

https://www.jousefmurad.com/fluid-mechanics/the-reynolds-number/


Introduction Background Methods Results & Discussion Acknowledgements References

References II

C. Lu, Q. Tian, L. Zhu, R. Gao, H. Yao, F. Tian, Q. Zhang, and X. Xin. Mitigating the ambiguity problem in the cnn-based wavefront correction. Optics Letters,
47(13):3251–3254, 2022.

Y. Nishizaki, M. Valdivia, R. Horisaki, K. Kitaguchi, M. Saito, J. Tanida, and E. Vera. Deep learning wavefront sensing. Optics express, 27(1):240–251, 2019.

R. J. Noll. Zernike polynomials and atmospheric turbulence. JOsA, 66(3):207–211, 1976.

S. W. Paine and J. R. Fienup. Machine learning for improved image-based wavefront sensing. Optics letters, 43(6):1235–1238, 2018.

J. Schmidt. Numerical simulation of optical wave propagation with examples in matlab, vol. PM199 (SPIE, 2010), 2010.

Q. Tian, C. Lu, B. Liu, L. Zhu, X. Pan, Q. Zhang, L. Yang, F. Tian, and X. Xin. Dnn-based aberration correction in a wavefront sensorless adaptive optics system.
Optics express, 27(8):10765–10776, 2019.

T. A. Underwood and D. G. Voelz. Wave optics approach for incoherent imaging simulation through distributed turbulence. In Unconventional Imaging and
Wavefront Sensing 2013, volume 8877, pages 112–119. SPIE, 2013.

Wikipedia contributors. Point spread function — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Point_spread_function&oldid=1138243509, 2023. [Online; accessed
20-February-2023].

C. Wilcox. Zernike polynomial coefficients for a given wavefront using matrix inversion in matlab.
https://www.mathworks.com/matlabcentral/fileexchange/27072-zernike-polynomial-coefficients-for-a-given-wavefront-using-matrix-inversion-in-
matlab, 2023. MATLAB Central File Exchange [retrieved February 6, 2023].

H. Zhan, E. Wijerathna, and D. Voelz. Wave optics simulation studies of the fried parameter for weak to strong atmospheric turbulent fluctuations. In
Propagation Through and Characterization of Atmospheric and Oceanic Phenomena, pages PM1C–3. Optica Publishing Group, 2019.

Y. Zhang, C. Wu, Y. Song, K. Si, Y. Zheng, L. Hu, J. Chen, L. Tang, and W. Gong. Machine learning based adaptive optics for doughnut-shaped beam. Optics
Express, 27(12):16871–16881, 2019.

A. B. Siddik, S. Sandoval, D. Voelz, L. E Boucheron, and L. Varela ML to estimate modified Zernike coefficients for image PSFs 45 / 45

https://en.wikipedia.org/w/index.php?title=Point_spread_function&oldid=1138243509

	Introduction
	Atmospheric Turbulence
	Motivation and Purpose of Work

	Background
	Imaging Model
	Turbulence Model
	Wavefront Distortion Model

	Methods
	Identify Ambiguity
	Data Generation
	Model Architecture

	Results & Discussion
	Acknowledgements
	References

