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Overview

I Primarily interested in basic plasma physics but with significant technological applications.

I Can’t tolerate “black box” solutions. Need interpretability (mostly).

I Applications are all parameter estimation. Classification seems to have no use case in our
work.

I Our training data is produced by simulations.

I Use ML to produce an approximation that can then be refined or validated by direct
computations.

I Only makes sense if ML is computationally more efficient than the direct calculations.

I Big return from using ML to find reduced models.
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Laser-Driven X-Ray Sources: Betatron Radiation

I Generate x-rays by causing energetic
electrons to oscillate (violently) in a
spatially varying electromagnetic field.

I Same mechanism as in a free-electron laser
but incoherent, i.e., without feedback.

I The electrons and fields are produced by a
laser pulse ionizing a gas and subsequently
driving large amplitude waves in the
plasma.

I “Table top” version of a multi-kilometer
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Multitude of imaging applications ranging from medicine, biological and agricultural research to
materials physics and national security.
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Betatron Radiation
Calculating the Emitted Spectrum

I Comparing the radiation spectrum to theoretical predictions is a key element in validating
our understanding of this system.

I Given an electron trajectory, compute the fields from the Liénard–Wiechert potentials:

trajectories =⇒ A(r , t) =⇒ Ã(r , ω) =⇒ d2I

dωdΩ
.

Straightforward but expensive.

I Spectra from each particle are added incoherently.

I Neither electron trajectories nor the fields can be obtained from experiments.
I Obtaining the spectrum directly from the plasma physics simulations is not practical:

I The radiation fields are much shorter wavelength than the mean plasma fields.
I Using a grid to obtain the radiation from Maxwell’s equations is not computational reasonable.
I To sample the particle trajectory with enough temporal resolution results in unmanageable

amounts of data.
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Betatron Radiation
Calculating the Emitted Spectrum

I Since we don’t have a good representation of the electron trajectories, we can live with
some error in the spectrum.

I Sample the fields and particle phase space from the plasma physics simulations and use this
as inputs to a MLP to estimate the single particle spectrum.

I We have a proof-of-concept implementation.
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Calculating the Emitted Spectrum
Single Particle Spectrum

I Magnetic field
I B = B0 ŷ .
I B0 = 400 T.
I Period: 100 microns.
I Extent: 1 mm.

I Electron
I Moving in the z direction.
I Energy: 307 MeV (γ = 600).

I Spectrum is a series of spikes with little
other structure.

I Spikes depend on γ and B0.

I For an electron beam with a range of
energies, the spikes are blurred out in the
complete spectrum.

Spectrum looking in the −z direction
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Calculating the Emitted Spectrum
ML Approach

I Extract ωk and ak for the first 25 spikes.

I Training data generated for 100 ≤ γ ≤ 1000.

I Separate MLPs for estimating {ωk} and {ak}.
I Construct the spectrum from an electron beam by a

weighted average of the single-particle spectra.

I Need to generalize field structure and initial electron
direction.

Spectrum looking in the −z direction
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Calculating the Emitted Spectrum
ML Results

γ = 600, ∆γ/γ = 0.01, 5000 particles
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I Drop-off at large ω due to only keeping 25 harmonics.
I Several orders of magnitude faster than direct calculation from trajectories.
I More validation work needed.
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Inverse Problem: Electron Beam Phase Space from the Energy Spectrum

I Knowledge of the electron beam phase
space is critical to interpreting many
experiments.

I Direct measurement of the beam phase
space is not practical.

I Measure total charge.

I Measure energy with a magnetic
spectrometer.

I Imaging of the beam in one spatial
direction.
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I All measurements are integrated over the beam head-to-tail.

I Determine macroscopic beam parameters (6-D correlation matrix, i.e., beam emittance).

I Ill-posed inverse problem. Regularize using physics insight.

I Use ML parameter estimation to produce a starting point for a nonlinear optimization.
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Vlasov–Maxwell System

The Vlasov–Maxwell equation is a phase space transport equation that well-describes many low
collisionality plasmas.

I 1-particle phase-space distribution function f (r ,p, t).

I The evolution of f is given by

∂f

∂t
+ v · ∂f

∂r
+ q

(
E +

v
c
× B

)
· ∂f
∂p

= 0 ,

where
v = p/γm and γ =

√
1 + p2/m2c2 .

I E and B are determined from the charge and current densities

ρ(r , t) = q

∫
d3p f (r ,p, t) and j (r , t) = q

∫
d3p v f (r ,p, t).

I Computationally demanding in two or more spatial dimensions.

I Not all of phase space contributions equally to the fields; some regions are more important
than others.
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Vlasov–Poisson System
Improving Computational Performance with a Non-Uniform Momentum Grid.

I Specialize to one spatial dimension,
non-relativistic motion, and consider only
electrostatic fields.

I Non-uniform grid in momentum space
leads to significant computational savings.

I Use ML to predict grid parameters for a
class of problems.

I How much training data is needed?

I How close can the predictions get to the
optimal grid?

I This work is just beginning.

Error in the Two Stream Growth Rate
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Reduced Models: Wakefield Excitation and Laser Pulse Evolution

I The laser pulse deposits energy into the
plasma by exciting waves.

I The energy lost by the laser pulse
manifests as a redshifting of the pulse.

I Not obvious; seems that the pulse
amplitude should just decrease.

I An adiabatic invariant, wave action,
forces the laser wave number to decrease
as energy is lost:

〈k〉
k0
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|ã⊥|2

 50%

 60%

 70%

 80%

 90%

100%

0 1000 2000 3000 4000
-0.6%

-0.4%

-0.2%

 0.0%

ωpt

E(t)
E(0)
〈k〉
k0

W(t)

W(0)
− 1

(a)

(b)

(c)

(d)

0

500

1000

1500

2000

-5 0 5 10 15
-6

-4

-2

0

2

4

6BAS-ML-0527  Copyright © 2005, B. A. Shadwick. All rights reserved.

kpξ

ωpt a⊥

0

500

1000

1500

2000

-10 0 10 20 30
-2

-1

0

1

2BAS-ML-0527  Copyright © 2005, B. A. Shadwick. All rights reserved.

kpξ

ωpt
Ez

E0

5

10

15

20

25

0 500 1000 1500 2000
0

1

2

3

4BAS-ML-0527  Copyright © 2005, B. A. Shadwick. All rights reserved.

ωpt

k

kp
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Reduced Models

I There is an set of universal scaling laws.

I Except for small k0/kp, the depletion is
independent of k0.

I The spatial scale length for energy
depletion is

k3p z

k20
.

Laser Pulse Energy
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Reduced Models

I The rate of energy loss of the laser pulse
is given by

dE
dωp t

= −
(
kp
k0

Emax

E0

)2

.

I We have evidence for additional “hidden”
scaling laws but these have not yet been
fully explored or understood.

I Could this have been found by ML using
latent-space methods?

Rate of Laser Pulse Energy Loss
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Conclusions

I Numerous interesting applications of ML in basic plasma physics.

I Proof-of-concept implementation for computing x-ray spectra in laser-driven light sources.

I Finding scaling laws and reduced models is a high-payoff application. How?

I Possible applications in real-time guiding of experiments?
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