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Dynamic compression experiment analysis using XRD: understanding 
the behavior of materials in extreme environments.2

X-ray diffraction is key to deciphering the 
dynamic mechanisms and kinetics of phase 
transformation, because it gives 
atomistic detail, structure & 
orientation.

Thor and Z are pulsed-power accelerators which can drive shockless 
ramp waves to pressures of 10s and 100s of GPa, respectively.

Thor pulsed-power driver Z-machine at Sandia National Labs

22 MJ stored energy
25 MA peak current
100-600 ns rise time

33 m in diameter, 3 stories tall

X-ray diffraction geometry
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Dynamic compression experiment analysis using XRD: challenges 
associated with in-situ XRD
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18-4-063 – DCS c-axis 1.683 km/s impact 

Analyzing XRD data is not trivial for many reasons:

• X-ray source can present collimation and has relatively 
broad spectra. 

• The data obtained is sparse (one shot from Thor/Z 
generates one pattern).

• Noise is present in the obtained patterns from various 
sources (e.g., window, tamper, machine produced, etc.) .
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Data-driven paradigm shift: optimizing interpretation of experimental 
XRD data .
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1) Orientation and lattice 
identification.

2) Denoising of 
Experimental Data.
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Simulated XRD: using LAMMPS to obtain realistic XRD patterns.5

Constructing the Reciprocal space lattice in LAMMPS

Coleman et al., 2013 Modelling Simul. Mater. Sci. Eng. 21 055020 

Lp(q) is the Lorentz-polarization factor
And fj are the atomic scattering factors
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Data-Driven Analysis I: Determining the Crystal Lattice and Orientation 
Angle using Deep Learning (DL).
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Data-Driven Analysis I: Incorporating Physics into the DL-based model. 7

Input:
20k+ images – four angle

Input:
• 720 images –

one angle
• Manually 

incorporate 
symmetry

• Constrain 
model to 
predict value 
between 0 
and 180
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Data-Driven Analysis I: Results and next steps.8

Test Set consists of 
300 XRD patterns 
generated from angles 
between 0 and 360 on 
which the model has 
not been trained.

• Successful training of a single-angle ML tool is proof of concept, moving to 
two and four angle models present scaling challenges.

• Automate symmetry identification to reduce the data necessary.

• Using uncertainty as a our objective we can train an adaptive model that in 
an automatic way samples the regions of the input domain needed to 
establish a robust model with an optimal resolution. 
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Data-Driven Analysis II: Removing experimental noise using Deep 
Learning. 
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Data-Driven Analysis II: DL-based de-noising protocol. 10

• DL segmentation predictions 
provide per-pixel uncertainty 
estimates. We remove noise from 
the prediction by removing pixels 
whose predictions were uncertain 
(bottom, center).

• Gaps in the prediction are filled 
with standard image processing 
methods (bottom, right).

Deep learning algorithm learns to separate diffraction signal from noise given ~20 
training examples with rough labels.

• U-Net architecture that predicts 
class of each pixel in input image.

Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-Net: Convolutional 
Networks for Biomedical Image Segmentation”, in Medical Image Computing 
and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 
234--241, 2015.

Martinez, C., et al. (2019). Segmentation certainty through 
uncertainty: Uncertainty-refined binary volumetric segmentation under 
multifactor domain shift. In Proceedings of the IEEE/CVF CVPRW.
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Conclusions: ML-enhanced interpretation of XRD patterns from 
dynamic compression experiments. 
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ML and computational data-driven techniques enable the 
development of robust tools to enhance and better interpret 
dynamic X-ray diffraction data produced from Sandia’s Pulsed Power 
Platforms (Thor and Z).

The developed tools will dramatically improve our atomic-scale 
understanding and predictive capability of phase transition behavior.

Opens new research avenues by enabling new state-of-the-art 
experiments to probe phase transitions, microstructural evolution, 
and transformation mechanisms.



Questions?


