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Dynamic compression experiment analysis using XRD: understanding
the behavior of materials in extreme environments.

Thor and Z are pulsed-power accelerators which can drive shockless
ramp waves to pressures of 10s and 100s of GPa, respectively.

Thor pulsed- Z-machine at Sandia National Labs
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33 m in diameter, 3 stories tall

22 MJ stored energy
25 MA peak current

100-600 ns rise time

X-ray diffraction geometry
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X-ray diffraction 1s key to deciphering the
dynamic mechanisms and kinetics of phase
transformation, because it gives
atomistic detail, structure &
orientation.
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; 1 Dynamic compression experiment analysis using XRD: challenges

associated with in-situ XRD 18-4-063 — DCS c-axis 1.683 km/s impact
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Analyzing XRD data is not trivial for many reasons:
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* Noise is present in the obtained patterns from various
sources (e.g., window, tamper, machine produced, etc.) .
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Data-driven paradigm shift: optimizing interpretation of experimental

XRD data.

D20121702 - Thor-XRD shot 154,
Mo anode, Al(1mm) panel, c-axis CdS (0.5mm) sample, VC (0.4mm) window
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1) Ortentation and lattice
identification.

2) Denoising of
Experimental Data.
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5 1| Simulated XRD: using LAMMPS to obtain realistic XRD patterns.
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Constructing the Reciprocal space lattice in LAMMPS

#atoms
F(K) = Z fi (0)exp(2niK-rj)
F(K) F* (K
I, (K) = Lp (0) ( )N b

Lp(q) is the Lorentz-polarization factor
And jj‘ are the atomic scattering factors

Coleman et al., 2013 Modelling Simul. Mater.
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s 1 Data-Driven Analysis |: Determining the Crystal Lattice and Orientation @!
Angle using Deep Learning (DL).
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;1 Data-Driven Analysis |: Incorporating Physics into the DL-based model.
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s 1| Data-Driven Analysis |: Results and next steps. @!
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o 1| Data-Driven Analysis Il: Removing experimental noise using Deep
Learning.
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10 I Data-Driven Analysis ll: DL-based de-noising protocol.
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Deep learning algorithm learns to separate diffraction signal from noise given ~20

training examples with rough labels.

a

class of each pixel in input image.

Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-Net: Convolutional

U-Net architecture that predicts |

Networks for Biomedical Image Segmentation”, in Medical Image Computing
and Computer-Assisted Intervention (MICCALI), Springer, LNCS, Vol.9351:
234--241, 2015.

DL segmentation predictions
provide per-pixel uncertainty
estimates. We remove noise from
the prediction by removing pixels
whose predictions were uncertain
(bottom, center).

Martinez, C., et al. (2019). Segmentation certainty through
uncertainty: Uncertainty-refined binary volumetric segmentation under
multifactor domain shift. In Proceedings of the IEEE/CVF CVPRW.

Gaps in the prediction are filled I
with standard image processing I
methods (bottom, right).



11
dynamic compression experiments.

ML and computational data-driven techniques enable the
development of robust tools to enhance and better interpret
dynamic X-ray diffraction data produced from Sandia’s Pulsed Power
Platforms (Thor and 2).

I
Conclusions: ML-enhanced interpretation of XRD patterns from @!
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The developed tools will dramatically improve our atomic-scale
understanding and predictive capability of phase transition behavior.

experiments to probe phase transitions, microstructural evolution,

Opens new research avenues by enabling new state-of-the-art
and transformation mechanisms. ‘
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Questions?




