Discovering governing equations using noisy measurements through projection-based denoising and second order cone programming

Jacqueline Wentz, Alireza Doostan
University of Colorado at Boulder
Machine Learning/Deep Learning Conference, July 2022
Funding: DOE Predictive Science Academic Alliance Program (PSAAP)

Discover governing equations by assuming basis expansion

- Goal is to find governing equations of an ODE system

Discover governing equations by assuming basis expansion

- Goal is to find governing equations of an ODE system
- In system with two states u_{1} and u_{2}, for example, we first assume:

$$
\begin{align*}
& \dot{u}_{1}=c_{1,1}+c_{1,2} u_{1}+c_{1,3} u_{2}+c_{1,4} u_{1}^{2}+c_{1,5} u_{1} u_{2}+\ldots \\
& \dot{u}_{2}=c_{2,1}+c_{2,2} u_{1}+c_{2,3} u_{2}+c_{2,4} u_{1}^{2}+c_{2,5} u_{1} u_{2}+\ldots \tag{1}
\end{align*}
$$

Discover governing equations by assuming basis expansion

- Goal is to find governing equations of an ODE system
- In system with two states u_{1} and u_{2}, for example, we first assume:

$$
\begin{align*}
& \dot{u}_{1}=c_{1,1}+c_{1,2} u_{1}+c_{1,3} u_{2}+c_{1,4} u_{1}^{2}+c_{1,5} u_{1} u_{2}+\ldots \\
& \dot{u}_{2}=c_{2,1}+c_{2,2} u_{1}+c_{2,3} u_{2}+c_{2,4} u_{1}^{2}+c_{2,5} u_{1} u_{2}+\ldots \tag{1}
\end{align*}
$$

- Suppose we have N state measurements $\rightarrow u_{1}\left(t_{i}\right)$ and $u_{2}\left(t_{i}\right)$ for $i=1,2, \ldots, N$

Discover governing equations by assuming basis expansion

- Goal is to find governing equations of an ODE system
- In system with two states u_{1} and u_{2}, for example, we first assume:

$$
\begin{align*}
& \dot{u}_{1}=c_{1,1}+c_{1,2} u_{1}+c_{1,3} u_{2}+c_{1,4} u_{1}^{2}+c_{1,5} u_{1} u_{2}+\ldots \\
& \dot{u}_{2}=c_{2,1}+c_{2,2} u_{1}+c_{2,3} u_{2}+c_{2,4} u_{1}^{2}+c_{2,5} u_{1} u_{2}+\ldots \tag{1}
\end{align*}
$$

- Suppose we have N state measurements $\rightarrow u_{1}\left(t_{i}\right)$ and $u_{2}\left(t_{i}\right)$ for $i=1,2, \ldots, N$
- Find \boldsymbol{c}_{i} for $i=1,2$ such that

$$
\begin{equation*}
\Theta \boldsymbol{c}_{i}=\dot{\boldsymbol{u}}_{i}, \quad \text { for } i=1,2 \tag{2}
\end{equation*}
$$

where

$$
\Theta=\left[\begin{array}{ccccc}
1 & u_{1}\left(t_{1}\right) & u_{2}\left(t_{1}\right) & u_{1}^{2}\left(t_{1}\right) & \ldots \tag{3}\\
1 & u_{1}\left(t_{2}\right) & u_{2}\left(t_{2}\right) & u_{1}^{2}\left(t_{2}\right) & \ldots \\
\vdots & \vdots & \vdots & \vdots & \\
1 & u_{1}\left(t_{N}\right) & u_{2}\left(t_{N}\right) & u_{1}^{2}\left(t_{N}\right) & \ldots
\end{array}\right], \quad \dot{\boldsymbol{u}}_{i}=\left[\begin{array}{c}
\dot{u}_{i}\left(t_{1}\right) \\
\dot{u}_{i}\left(t_{2}\right) \\
\vdots \\
\dot{u}_{i}\left(t_{N}\right)
\end{array}\right]
$$

Existing approaches for coefficient recovery fail at large noise levels

- Sparse identification of nonlinear dynamics (SINDy): Brunton et al. 2016

1. Estimate the derivative, $\dot{\boldsymbol{u}}$, using measurements
2. Assume coefficient vector is sparse
3. Solve the following, using sequential thresholding least squares:

$$
\begin{equation*}
\boldsymbol{c}=\underset{\boldsymbol{c}^{\prime}}{\arg \min }\left\|\Theta \boldsymbol{c}^{\prime}-\dot{\boldsymbol{u}}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{c}^{\prime}\right\|_{1} \tag{4}
\end{equation*}
$$

Existing approaches for coefficient recovery fail at large noise levels

- Sparse identification of nonlinear dynamics (SINDy): Brunton et al. 2016

1. Estimate the derivative, $\dot{\boldsymbol{u}}$, using measurements
2. Assume coefficient vector is sparse
3. Solve the following, using sequential thresholding least squares:

$$
\begin{equation*}
\boldsymbol{c}=\underset{\boldsymbol{c}^{\prime}}{\arg \min }\left\|\Theta \boldsymbol{c}^{\prime}-\boldsymbol{u}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{c}^{\prime}\right\|_{1} \tag{4}
\end{equation*}
$$

- Challenges:

1. Derivative estimation in the presence of noise
2. Determining optimal λ

Existing approaches for coefficient recovery fail at large noise levels

- Sparse identification of nonlinear dynamics (SINDy): Brunton et al. 2016

1. Estimate the derivative, $\dot{\boldsymbol{u}}$, using measurements
2. Assume coefficient vector is sparse
3. Solve the following, using sequential thresholding least squares:

$$
\begin{equation*}
\boldsymbol{c}=\underset{\boldsymbol{c}^{\prime}}{\arg \min }\left\|\Theta \boldsymbol{c}^{\prime}-\boldsymbol{u}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{c}^{\prime}\right\|_{1} \tag{4}
\end{equation*}
$$

- Challenges:

1. Derivative estimation in the presence of noise
2. Determining optimal λ

- Research Question: Can we improve coefficient recovery in the presence of noise?

1. Novel denoising strategy
2. Approach for finding the coefficients/derivative simultaneously.

Example dynamic system: Van der Pol oscillator

- Non-conservative oscillator with non-linear damping:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-\mu\left(1-x^{2}\right) \frac{d x}{d t}+x=0 \tag{5}
\end{equation*}
$$

Example dynamic system: Van der Pol oscillator

- Non-conservative oscillator with non-linear damping:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-\mu\left(1-x^{2}\right) \frac{d x}{d t}+x=0 \tag{5}
\end{equation*}
$$

- Equivalent ODE: $x \rightarrow u_{1}$ and $\dot{x} \rightarrow u_{2}$

$$
\begin{align*}
& \dot{u}_{1}=u_{2} \\
& \dot{u}_{2}=-u_{1}+\mu u_{2}-\mu u_{1}^{2} u_{2} \tag{6}
\end{align*}
$$

Example dynamic system: Van der Pol oscillator

- Non-conservative oscillator with non-linear damping:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-\mu\left(1-x^{2}\right) \frac{d x}{d t}+x=0 \tag{5}
\end{equation*}
$$

- Equivalent ODE: $x \rightarrow u_{1}$ and $\dot{x} \rightarrow u_{2}$

$$
\begin{align*}
& \dot{u}_{1}=u_{2} \\
& \dot{u}_{2}=-u_{1}+\mu u_{2}-\mu u_{1}^{2} u_{2} \tag{6}
\end{align*}
$$

- Example dynamics: $\mu=2, \boldsymbol{u}^{(0)}=[0,1]$

Example dynamic system: Van der Pol oscillator

- Non-conservative oscillator with non-linear damping:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-\mu\left(1-x^{2}\right) \frac{d x}{d t}+x=0 \tag{5}
\end{equation*}
$$

- Equivalent ODE: $x \rightarrow u_{1}$ and $\dot{x} \rightarrow u_{2}$

$$
\begin{align*}
& \dot{u}_{1}=u_{2} \\
& \dot{u}_{2}=-u_{1}+\mu u_{2}-\mu u_{1}^{2} u_{2} \tag{6}
\end{align*}
$$

- Example dynamics: $\mu=2, \boldsymbol{u}^{(0)}=[0,1]$
- Noise $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, e.g., $\sigma^{2}=0.1$.

Projection-based state denoising: Method

- Use the assumed basis given by the columns of Θ.

Projection-based state denoising: Method

- Use the assumed basis given by the columns of Θ.
- We apply quadrature techniques to

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \tag{7}
\end{equation*}
$$

to obtain,

$$
\Phi \boldsymbol{d}=\boldsymbol{u} \quad \text { where } \quad \Phi=\left[\begin{array}{ll}
\mathbf{1} & T \Theta \tag{8}
\end{array}\right] .
$$

Projection-based state denoising: Method

- Use the assumed basis given by the columns of Θ.
- We apply quadrature techniques to

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \tag{7}
\end{equation*}
$$

to obtain,

$$
\Phi \boldsymbol{d}=\boldsymbol{u} \quad \text { where } \quad \Phi=\left[\begin{array}{ll}
\mathbf{1} & T \Theta \tag{8}
\end{array}\right] .
$$

- This implies we expect \boldsymbol{u} to be in the column space of Φ.

Projection-based state denoising: Method

- Use the assumed basis given by the columns of Θ.
- We apply quadrature techniques to

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \tag{7}
\end{equation*}
$$

to obtain,

$$
\Phi \boldsymbol{d}=\boldsymbol{u} \quad \text { where } \quad \Phi=\left[\begin{array}{ll}
\mathbf{1} & T \Theta \tag{8}
\end{array}\right] .
$$

- This implies we expect \boldsymbol{u} to be in the column space of Φ.
- Project data onto this expected subspace:

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=P_{\phi} \boldsymbol{u} \tag{9}
\end{equation*}
$$

where P_{Φ} is projection operator calculated using \boldsymbol{u}.

Projection-based denoising: Results for Van der Pol oscillator

Learn coefficients and derivative simultaneously

- Write coefficients in terms of derivative:

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \quad \rightarrow \quad \boldsymbol{c}=\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T} \dot{\boldsymbol{u}} . \tag{10}
\end{equation*}
$$

Learn coefficients and derivative simultaneously

- Write coefficients in terms of derivative:

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \quad \rightarrow \quad \boldsymbol{c}=\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T} \dot{\boldsymbol{u}} . \tag{10}
\end{equation*}
$$

- Set B as estimator of $\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T}$.

Learn coefficients and derivative simultaneously

- Write coefficients in terms of derivative:

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \quad \rightarrow \quad \boldsymbol{c}=\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T} \dot{\boldsymbol{u}} \tag{10}
\end{equation*}
$$

- Set B as estimator of $\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T}$.
- Second order cone program (SOCP) to find initial condition, u_{0}, and derivative, \boldsymbol{u} :

$$
\begin{array}{rll}
\operatorname{minimize}_{u_{0}, \dot{u}} & \|B \dot{\boldsymbol{u}}\|_{1} & \text { (sparsity of coefficients) } \\
\text { subject to } & \|D \dot{\boldsymbol{u}}\|_{2} \leq C & \text { (smooth derivative) } \\
& \left\|\left[\begin{array}{ll}
\mathbf{1} & T
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
\dot{\boldsymbol{u}}
\end{array}\right]-\tilde{\boldsymbol{u}}\right\|_{2} \leq \gamma & \text { (match a priori smoothed data). } \tag{11}
\end{array}
$$

Learn coefficients and derivative simultaneously

- Write coefficients in terms of derivative:

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \quad \rightarrow \quad \boldsymbol{c}=\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T} \dot{\boldsymbol{u}} . \tag{10}
\end{equation*}
$$

- Set B as estimator of $\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T}$.
- Second order cone program (SOCP) to find initial condition, u_{0}, and derivative, \boldsymbol{u} :

$$
\begin{array}{rll}
\operatorname{minimize}_{u_{0}, \dot{\boldsymbol{u}}} & \|B \dot{\boldsymbol{u}}\|_{1} & \text { (sparsity of coefficients) } \\
\text { subject to } & \|D \dot{\boldsymbol{u}}\|_{2} \leq C & \text { (smooth derivative) } \\
& \left\|\left[\begin{array}{ll}
\mathbf{1} & T
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
\dot{\boldsymbol{u}}
\end{array}\right]-\tilde{\boldsymbol{u}}\right\|_{2} \leq \gamma & \text { (match a priori smoothed data). } \tag{11}
\end{array}
$$

- Estimate C using projection-based denoising result.

Learn coefficients and derivative simultaneously

- Write coefficients in terms of derivative:

$$
\begin{equation*}
\Theta \boldsymbol{c}=\dot{\boldsymbol{u}} \quad \rightarrow \quad \boldsymbol{c}=\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T} \dot{\boldsymbol{u}} . \tag{10}
\end{equation*}
$$

- Set B as estimator of $\left(\tilde{\Theta}^{T} \Theta\right)^{-1} \tilde{\Theta}^{T}$.
- Second order cone program (SOCP) to find initial condition, u_{0}, and derivative, $\dot{\boldsymbol{u}}$:

$$
\begin{array}{rll}
\operatorname{minimize}_{u_{0}, \dot{\boldsymbol{u}}} & \|B \dot{\boldsymbol{u}}\|_{1} & \text { (sparsity of coefficients) } \\
\text { subject to } & \|D \dot{\boldsymbol{u}}\|_{2} \leq C & \text { (smooth derivative) } \\
& \left\|\left[\begin{array}{ll}
\mathbf{1} & T
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
\dot{\boldsymbol{u}}
\end{array}\right]-\tilde{\boldsymbol{u}}\right\|_{2} \leq \gamma & \text { (match a priori smoothed data). } \tag{11}
\end{array}
$$

- Estimate C using projection-based denoising result.
- Find γ using the corner point of Pareto curve.

SOCP improves derivative estimation compared with Tikhonov regularization

SOCP improves coefficient estimation compared with Lasso approach

Example prediction results: Van der Pol oscillator u_{1}

Example prediction results: Van der Pol oscillator u_{2}

Conclusions

- Existing equation discovery methods fail at high noise levels.
- Presented two improvements:

1. Projection-based denoising strategy.
2. SOCP to learn derivative/coefficients simultaneously.

- Led to improved derivative and coefficient estimation.
- Future Work:

1. Compare approach to other versions of SINDy (i.e, Weak-Sindy).
2. Consider these methods in the context of PDEs.

Conclusions

- Existing equation discovery methods fail at high noise levels.
- Presented two improvements:

1. Projection-based denoising strategy.
2. SOCP to learn derivative/coefficients simultaneously.

- Led to improved derivative and coefficient estimation.
- Future Work:

1. Compare approach to other versions of SINDy (i.e, Weak-Sindy).
2. Consider these methods in the context of PDEs.

Thank You!

References

國 Brunton, Steven L. et al. (2016). "Discovering governing equations from data by sparse identification of nonlinear dynamical systems". In: Proceedings of the National Academy of Sciences of the United States of America 113.15, pp. 3932-3937. ISSN: 10916490. DOI: 10.1073/PNAS.1517384113. arXiv: 1509.03580.

