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g =c11+ cipu1 + 13U+ crauy + CLsuin + ... 1)
. 2
Up = Co1 + Copl1 + Co3Ux + Co4u] + Co5ULUD + ...

» Suppose we have N state measurements — wq(t;) and w(t;) for i =1,2,.... N
» Find ¢; for i = 1,2 such that

@C,‘ = ﬁf, for i = 1,2 (2)
where
1 u1(t1) U2(t]_) u%(tl) Ui(tl)
o_ 1 LI]_(.tQ) U2(.t2) U%(-tg) ’ i — L'I,'(.tg) (3)

1 ow(ty) w(ty) 2(ty) .. ()
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» Research Question: Can we improve coefficient recovery in the presence of noise?

1. Novel denoising strategy
2. Approach for finding the coefficients/derivative simultaneously.



Example dynamic system: Van der Pol oscillator

» Non-conservative oscillator with non-linear

damping:
d’x oy dX



Example dynamic system: Van der Pol oscillator

» Non-conservative oscillator with non-linear

damping:
d’x oy dX

» Equivalent ODE: x — u; and X — w»

i (6)

. 2
Up = —uy + pup — pugu



Example dynamic system: Van der Pol oscillator

» Non-conservative oscillator with non-linear

damping:
d’x oy dX

» Equivalent ODE: x — u; and X — w»

o (6)

. 2
Up = —uy + pup — gl

» Example dynamics: p =2, u(® =10, 1]
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Example dynamic system: Van der Pol oscillator

» Non-conservative oscillator with non-linear
damping:

d?x

dx
—= —n( —xz)Eer:o. (5)

» Equivalent ODE: x — u; and X —

l:l]_:UQ

(6)

. 2
Up = —uy + pup — pugu

» Example dynamics: p =2, u(® =[0,1]
» Noise € ~ N(0,02), e.g., 02 = 0.1.
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Projection-based state denoising: Method

» Use the assumed basis given by the columns of ©.

> We apply quadrature techniques to
©c = i,

to obtain,

od =u where q>:[1 Te}.

» This implies we expect u to be in the column space of .

> Project data onto this expected subspace:
u= Pq;U

where Py is projection operator calculated using u.



Projection-based denoising: Results for Van der Pol oscillator
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» Write coefficients in terms of derivative:
Oc=ia — c=(6T0)16"a. (10)

> Set B as estimator of (670)187.

» Second order cone program (SOCP) to find initial condition, up, and derivative, i:
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R

» Estimate C using projection-based denoising result.

(11)
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» Find v using the corner point of Pareto curve.



SOCP improves derivative estimation compared with Tikhonov
regularization
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SOCP improves coefficient estimation compared with Lasso approach

Relative ¢; error
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Example prediction results: Van der Pol oscillator iy
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Example prediction results: Van der Pol oscillator u;

— SOCP Lasso —— Actual

5.0
2.5
$ 00

—2.5 A

_5.0 1 1 1 1 1 1 I

5.0

AN

_5.0 1 1 1 I
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time

U2 €error




Conclusions

> Existing equation discovery methods fail at high noise levels.
P> Presented two improvements:
1. Projection-based denoising strategy.
2. SOCP to learn derivative/coefficients simultaneously.
» Led to improved derivative and coefficient estimation.
» Future Work:

1. Compare approach to other versions of SINDy (i.e, Weak-Sindy).
2. Consider these methods in the context of PDEs.
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Thank You!
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