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Discover governing equations by assuming basis expansion
▶ Goal is to find governing equations of an ODE system

▶ In system with two states u1 and u2, for example, we first assume:

u̇1 = c1,1 + c1,2u1 + c1,3u2 + c1,4u2
1 + c1,5u1u2 + ...

u̇2 = c2,1 + c2,2u1 + c2,3u2 + c2,4u2
1 + c2,5u1u2 + ...

(1)

▶ Suppose we have N state measurements → u1(ti) and u2(ti) for i = 1, 2, ..., N
▶ Find ci for i = 1, 2 such that

Θci = u̇i , for i = 1, 2 (2)

where

Θ =


1 u1(t1) u2(t1) u2

1(t1) ...
1 u1(t2) u2(t2) u2

1(t2) ...
...

...
...

...
1 u1(tN) u2(tN) u2

1(tN) ...

 , u̇i =


u̇i(t1)
u̇i(t2)

...
u̇i(tN)

 (3)
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Existing approaches for coefficient recovery fail at large noise levels

▶ Sparse identification of nonlinear dynamics (SINDy): Brunton et al. 2016
1. Estimate the derivative, u̇, using measurements
2. Assume coefficient vector is sparse
3. Solve the following, using sequential thresholding least squares:

c = arg min
c′

∥Θc ′ − u̇∥2
2 + λ∥c ′∥1 (4)

▶ Challenges:
1. Derivative estimation in the presence of noise
2. Determining optimal λ

▶ Research Question: Can we improve coefficient recovery in the presence of noise?
1. Novel denoising strategy
2. Approach for finding the coefficients/derivative simultaneously.
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Example dynamic system: Van der Pol oscillator

▶ Non-conservative oscillator with non-linear
damping:

d2x
dt2 − µ(1 − x2)dx

dt + x = 0. (5)

▶ Equivalent ODE: x → u1 and ẋ → u2

u̇1 = u2

u̇2 = −u1 + µu2 − µu2
1u2

(6)

▶ Example dynamics: µ = 2, u(0) = [0, 1]
▶ Noise ϵ ∼ N (0, σ2), e.g., σ2 = 0.1.
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u̇1 = u2

u̇2 = −u1 + µu2 − µu2
1u2

(6)

▶ Example dynamics: µ = 2, u(0) = [0, 1]
▶ Noise ϵ ∼ N (0, σ2), e.g., σ2 = 0.1.

-2.5

0.0

2.5

u
1

0.0 2.5 5.0 7.5 10.0

Time

-5.0

0.0

5.0

u
2



Projection-based state denoising: Method

▶ Use the assumed basis given by the columns of Θ.

▶ We apply quadrature techniques to

Θc = u̇, (7)

to obtain,
Φd = u where Φ =

[
1 TΘ

]
. (8)

▶ This implies we expect u to be in the column space of Φ.
▶ Project data onto this expected subspace:

ũ = PΦu (9)

where PΦ is projection operator calculated using u.
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Projection-based denoising: Results for Van der Pol oscillator
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Learn coefficients and derivative simultaneously

▶ Write coefficients in terms of derivative:

Θc = u̇ → c = (Θ̃T Θ)−1Θ̃T u̇. (10)

▶ Set B as estimator of (Θ̃T Θ)−1Θ̃T .
▶ Second order cone program (SOCP) to find initial condition, u0, and derivative, u̇:

minimizeu0,u̇ ∥Bu̇∥1 (sparsity of coefficients)
subject to ∥Du̇∥2 ≤ C (smooth derivative)∥∥∥∥∥[

1 T
] [

u0
u̇

]
− ũ

∥∥∥∥∥
2

≤ γ (match a priori smoothed data).
(11)

▶ Estimate C using projection-based denoising result.
▶ Find γ using the corner point of Pareto curve.
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SOCP improves derivative estimation compared with Tikhonov
regularization
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SOCP improves coefficient estimation compared with Lasso approach
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Example prediction results: Van der Pol oscillator u1



Example prediction results: Van der Pol oscillator u2



Conclusions

▶ Existing equation discovery methods fail at high noise levels.
▶ Presented two improvements:

1. Projection-based denoising strategy.
2. SOCP to learn derivative/coefficients simultaneously.

▶ Led to improved derivative and coefficient estimation.
▶ Future Work:

1. Compare approach to other versions of SINDy (i.e, Weak-Sindy).
2. Consider these methods in the context of PDEs.



Conclusions

▶ Existing equation discovery methods fail at high noise levels.
▶ Presented two improvements:

1. Projection-based denoising strategy.
2. SOCP to learn derivative/coefficients simultaneously.

▶ Led to improved derivative and coefficient estimation.
▶ Future Work:

1. Compare approach to other versions of SINDy (i.e, Weak-Sindy).
2. Consider these methods in the context of PDEs.

Thank You!
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