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Abstract
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Modeling real-world phenomena to any degree of accuracy is a
challenge that the scientific research community has navigated since its
foundation. Insufficient knowledge, such as inability to observe or
represent all the relevant phenomena, induces uncertainty in the
appropriate model form. Characterizing this model-form uncertainty (MFU)
is essential to understanding the reliability of predictions made with these
models, especially when such predictions inform high-consequence
decisions. Here we present a novel model-form uncertainty representation
which combines Bayesian statistics with Universal Differential Equations [1],
a powerful new approach to data-driven modeling wherein a universal
function approximator (a neural network in this work) is embedded within
a known differential-equation model at the source of MFU. The neural
network is endowed with a probabilistic representation and is updated
using available observational data in a Bayesian framework. By
representing the MFU explicitly and deploying an embedded, data-driven
model, this approach enables an agile, expressive, and interpretable
method for representing MFU.



Motivation
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Algorithmic Approach
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Combine 
universal 
differential 
equations 
(UDEs) with 
Bayesian 
statistics to 
represent MFU

• UDEs embed ML models within existing scientific models:

• 𝒖! = 𝐹 𝒖, 𝑡, 𝑁𝑁" 𝒖
min
"

𝒅 − 𝒖(𝜃)

• Data driven, BUT
• Time-independent parameterization
• Can respect physical principles by construction
• Can be more predictive than Neural ODEs:

𝒖! = 𝑁𝑁" 𝒖

Neural ODEUDE

Days since 500 infections Days since 500 infections

0.5

0.0
0 80 800

1.0

0.0

Data: infected

Data: recovered

Training: infected

Training: recovered

Prediction
Prediction



Algorithmic Approach
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Combine 
universal 
differential 
equations 
(UDEs) with 
Bayesian 
statistics to 
represent MFU

Data: recovered

UDEs successfully used in a deterministic setting to find 
“model corrections” or “missing dynamics.”

By endowing UDEs with a Bayesian 
parameterization, can we use them to represent 

model-form uncertainty?

Data not always informative enough to identify a single 
”model correction.”



Bayesian UDEs
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Challenges:
• NNs notoriously challenging to train even in deterministic 

setting.
• Traditional Bayesian methods computationally challenging 

& suffer from curse of dimensionality.

Are Bayesian UDEs a feasible approach to representing 
MFU?

• Explored this in context of Bayesian NN embedded in a 
compartment-based disease model.



Exemplar: Compartmental Disease Models
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= 𝛾𝐼

𝑁!"! = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡

• SIR a common, simple model of disease spread.

• Doesn’t account for infected population quarantine as we saw for COVID-19.

• Quarantine dynamics could depend nonlinearly on state variables.
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Exemplar: Compartmental Disease Models
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𝑁!"! = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄 𝑡
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𝑑𝑡 = 𝑞 𝑆, 𝐼, 𝑅 𝐼 − 𝛿𝑄
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Infectious, 
Quarantined

𝑄(𝑡)

𝛿

𝑞(𝑆, 𝐼, 𝑅)

• Represent nonlinear transition into quarantine with a small neural network. 

• Constrained to conserve population by construction.



Bayesian UDE Study
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Inferring disease parameters [𝛽, 𝛾, 𝛿] along with NN parameters

Prior
• Disease parameters ~ 𝑈(0,2)
• 51 NN parameters ~ 𝑁 0, 50 #

Likelihood
• Synthetic data generated from SIRQ model
• Calibration data = observations of 𝐼, 𝑅, 𝑄 first 50 days after 500 infections.
• No noise added; likelihood assumes 95% confidence bound of ±10%

error, i.e.

𝑑 = 𝑠 + 𝜖, 𝜖 ∼ 𝑁 0, 𝜎# , 2𝜎 = ±0.1𝑠



MAP Estimates Differ by Initial Guess
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Multiple parameter combinations reproduce calibration data.

*𝑞 𝑡 ≡ 𝑞(𝑆 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 )

*



Posterior Approximation
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Seeded posterior approximations at MAP point.
Method: NUTS 
• HMC variant, derivative based

NUTS posterior chains Correlations indicate complex 
posterior structure

2000 steps / Average acceptance rate: 0.86 / Adaptive step size



Ensemble of MAP Estimates
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Conclusions
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Despite lower-d NN, Bayesian inference challenging.

Posterior likely multimodal, non-Gaussian.

Next steps
• Sparsity-inducing priors
• Estimate posterior with Gaussian mixture model
• Goal-oriented Bayesian inference
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