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Neural Network Surrogates

Models, often in the form of partial differential equations, are used to describe
the behavior of a physical system.

Input, x ⇒
Model
M(x)

⇒ QoI, y

The recent advances in computing power have enabled the training of large
neural networks to learn this relationship.
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Neural Network Surrogates

Opportunities
High degree of expressiveness of
neural networks.

Abundance of software tools.

Training via low-order optimization
schemes.

Challenges
Often require a large amount of
training data.

Lots of parameters to tune.

Transfer Learning for Uncertainty Propagation 5

where H is the number of hidden layers; {Wi}H
i=1 and {�i}H

i=1 are, respectively, the unknown weight matrices and
bias vectors for the ith hidden layer; W0 and �0 are – with a slight abuse of notation – the unknown weight vector
and scalar bias for the output layer, respectively; and �i(·) are (vector-valued) activation functions for the ith hidden
layer. The goal of training the FNN model cM, or neural networks in general, is to determine the weights and biases
{Wi}H

i=0 ,{�i}H
i=0, so that cM is close to M in some sense.
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FIG. 2: Feed-forward neural network (FNN) architecture with two hidden layers.

In another popular neural network architecture, dubbed residual network (ResNet), the output of a layer is directly
added to the output of a subsequent layer, e.g.,

yi = �i(Wiyi�1 + �i) + yi�1, (3)

where here yi�1 and yi are the outputs of the (i� 1)th and ith layers, respectively. Stated differently, the ith layer
models the residual between the (i� 1)th and ith hidden layers [60], hence the name ResNet. Note that if yi and yi�1
have different dimensions, a short-cut mapping as described in [60] is needed. An illustration of the ResNet is shown
in Fig. 3.

2.2.1 Activation Functions

There are many choices available for the activation function �i(·) in (2). A common choice is the rectified linear unit
(ReLU), where the output is given by

�
ReLU

(z) = max(0, z), (4)

for an input z. Figure 4 shows the plot of a ReLU function and its derivative. Note that the derivative of the output
vanishes for z < 0. This creates difficulty during the training using gradient descent (see Section 2.2.2) for negative
inputs and is known as the dying ReLU problem. To avoid this, we also investigate the use of another activation
function, namely, exponential linear unit or ELU [61]. In this case, the output is given by

�ELU(z) =

(
z for z > 0,

↵(ez � 1) for z  0,
(5)

where ↵ is a positive parameter. Figure 5 shows the difference between ELU and ReLU and their derivatives z  0.
Note that there are other alternatives for activation functions, e.g., leaky ReLU, logistic sigmoid, hyperbolic tangent,
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Feed-forward Neural Network
(FNN)
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Neural Network Surrogates

Opportunities
High degree of expressiveness of
neural networks.

Abundance of software tools.

Training via low-order optimization
schemes.

Challenges
Often require a large amount of
training data.

Lots of parameters to tune.
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FIG. 3: Residual neural network (ResNet) architecture with two hidden layers. The curved arrows illustrate skip connections for
adding the output of a layer directly to that of another layer.

etc. Both leaky ReLU and ELU avoid the dying ReLU problem. ELU further enhances the noise robustness for large
negative values as the output gets saturated quickly. These other choices for activation function are not discussed in
this paper as we found the ELU function to produce the best results for the numerical examples of Section 4.
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FIG. 4: Rectified linear unit (ReLU) and its derivative.

2.2.2 Training a neural network

The goal of training a neural network is to estimate the vector of parameters p := {Wi,�i}H
i=0 of the network

by minimizing a cost (or loss) function. Among different training procedures, e.g., supervised, unsupervised, or
reinforcement learning [2], here we use the supervised learning with labeled training samples D := {(xi, yi)}N

i=1 of
the inputs of the QoI, where yi := M(xi). In this paper, we choose the mean square error (MSE) as the cost function

International Journal for Uncertainty Quantification
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Bi-fidelity Models

Multiple models are often available to describe a physical system.

High-fidelity models require more computational resources but provide higher
levels of accuracy. These models can be used to generate accurate data for
training neural networks, but it is computationally expensive.

Similarly, generating large experimental dataset can also be difficult.

Low-fidelity models require small computational budget but generally provide
lower levels of accuracy. They can be used to generate a large training dataset.
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Question

Can we efficiently train neural networks using a small dataset from the
high-fidelity model but utilizing a large dataset from the low-fidelity model?

To answer this question, we will look into

the use of transfer learning and
the use of ℓ1-regularization.
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Outline

1 Bi-fidelity Transfer Learning

2 Bi-fidelity ℓ1-regularization
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Transfer Learning of Neural Networks

Transfer learning (TL) uses the knowledge gained from solving one problem to
solve another related problem, where accurate or labeled data may be missing
or limited.

Transfer learning can be used using a combination of low- and high-fidelity
datasets.

Advantages:

smaller initial training error,

faster convergence of the
optimization scheme, and

similar (or smaller) validation
error using smaller datasets.

Pan and Yang (2009).
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Bi-fidelity Weighted Learning (BFWL)
A two-stage training procedure.
The neural network is retrained using a modified step size that incorporates
uncertainty information from the teacher GP.

LF Data
{xi, yl(xi)}Nl

i=1

HF Data

{xi, yh(xi)}Nh
i=1

Student

Transfer Learning for Uncertainty Propagation 5

where H is the number of hidden layers; {Wi}H
i=1 and {�i}H

i=1 are, respectively, the unknown weight matrices and
bias vectors for the ith hidden layer; W0 and �0 are – with a slight abuse of notation – the unknown weight vector
and scalar bias for the output layer, respectively; and �i(·) are (vector-valued) activation functions for the ith hidden
layer. The goal of training the FNN model cM, or neural networks in general, is to determine the weights and biases
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In another popular neural network architecture, dubbed residual network (ResNet), the output of a layer is directly
added to the output of a subsequent layer, e.g.,

yi = �i(Wiyi�1 + �i) + yi�1, (3)

where here yi�1 and yi are the outputs of the (i� 1)th and ith layers, respectively. Stated differently, the ith layer
models the residual between the (i� 1)th and ith hidden layers [60], hence the name ResNet. Note that if yi and yi�1
have different dimensions, a short-cut mapping as described in [60] is needed. An illustration of the ResNet is shown
in Fig. 3.

2.2.1 Activation Functions

There are many choices available for the activation function �i(·) in (2). A common choice is the rectified linear unit
(ReLU), where the output is given by
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ReLU

(z) = max(0, z), (4)

for an input z. Figure 4 shows the plot of a ReLU function and its derivative. Note that the derivative of the output
vanishes for z < 0. This creates difficulty during the training using gradient descent (see Section 2.2.2) for negative
inputs and is known as the dying ReLU problem. To avoid this, we also investigate the use of another activation
function, namely, exponential linear unit or ELU [61]. In this case, the output is given by

�ELU(z) =

(
z for z > 0,

↵(ez � 1) for z  0,
(5)

where ↵ is a positive parameter. Figure 5 shows the difference between ELU and ReLU and their derivatives z  0.
Note that there are other alternatives for activation functions, e.g., leaky ReLU, logistic sigmoid, hyperbolic tangent,
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Teacher GP

Network
parameters

θ

Soft Data

{(xb,i, µ(xb,i))}Nl+Nh
i=1

Update θ using soft data

θk+1 = θk − η̂k
m̂k√
vk+ϵ

η̂k = ηk exp
[
−βΣ(xb,ik )

]

De, Subhayan, et al. "On transfer learning of neural networks using bi-fidelity data for uncertainty propagation." International
Journal for Uncertainty Quantification 10.6 (2020).
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Example: Flow around a NACA Airfoil

Flow around NACA 4412 airfoil at Re = 1.52 × 106 and low angle-of-attack (AoA).

QoI: the coefficient of pressure Cp at the surface of the airfoil.

Four parameters of the airfoil are uncertain – maximum camber, location of
maximum camber, maximum thickness, and AoA.

100 high-fidelity data from:
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Figure 2. Deforming a NACA 0012 airfoil (red) to an arbitrary NACA 4-digit airfoil (blue). Point dis-
placements indicated in black.

and wake refinement features, as they are both viscous phenomena. Instead of varying mesh size from tip
to tail, we use a uniform mesh size of 0.005c on the airfoil surface. The Euler mesh has ⇠59k elements (and
will not be used to solve a turbulence model), so uses fewer computational resources than the Fine RANS
mesh. However, its physical accuracy is lacking, especially for high angles of attack.

II.B.1. Mesh Deformation

A NACA 4-digit airfoil is defined by its maximum camber m, location of maximum camber p, and maximum
thickness t. These parameters are non-dimensionalized by the airfoil chord c, which we take to be unity. For
the purposes of mesh generation, angle of attack ↵ is also treated as a geometric parameter.

For each geometric realization, PHASTA applies a displacement to each node on the surface of the
NACA 0012 airfoil, represented by the black lines in Figure 2. A linear elastic structural solver satisfies the
displacement constraints and deforms the entire mesh in accordance with the specified geometric parameters.
Positive volumes on BL elements are preserved by enforcing an inverse relationship between element volume
and sti↵ness, through the Jacobian-based sti↵ening approach.26

II.C. Solution Procedure and E�ciency

Numerical solution of the flow equations proceeds until statistically-steady results are obtained. To seek a
steady solution in PHASTA, simulations are run at a fairly large time step with first-order time integration
and a single flow (and if applicable, turbulence scalar) solve per time step. For Fine RANS, �t = 0.05 s;
for Coarse RANS, �t = 0.1 s followed by �t = 0.01 s. Runs continue until negligible solution change is
observed between iterations according to aerodynamic force data, visualization of flow fields, and observing
flow (and turbulence scalar) absolute errors. Meeting this criterion typically requires between 30 and 120
time steps, depending on the mesh and physical model.

The converged NACA 0012 flow solution acts as the starting point in PHASTA for each new combination
of geometric parameters we want to test. This means the simulations’ start-up transient can be skipped

Figure 3. Meshes used for RANS, Coarse RANS, and Euler, from left to right.
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Figure 2. Deforming a NACA 0012 airfoil (red) to an arbitrary NACA 4-digit airfoil (blue). Point dis-
placements indicated in black.

and wake refinement features, as they are both viscous phenomena. Instead of varying mesh size from tip
to tail, we use a uniform mesh size of 0.005c on the airfoil surface. The Euler mesh has ⇠59k elements (and
will not be used to solve a turbulence model), so uses fewer computational resources than the Fine RANS
mesh. However, its physical accuracy is lacking, especially for high angles of attack.

II.B.1. Mesh Deformation

A NACA 4-digit airfoil is defined by its maximum camber m, location of maximum camber p, and maximum
thickness t. These parameters are non-dimensionalized by the airfoil chord c, which we take to be unity. For
the purposes of mesh generation, angle of attack ↵ is also treated as a geometric parameter.

For each geometric realization, PHASTA applies a displacement to each node on the surface of the
NACA 0012 airfoil, represented by the black lines in Figure 2. A linear elastic structural solver satisfies the
displacement constraints and deforms the entire mesh in accordance with the specified geometric parameters.
Positive volumes on BL elements are preserved by enforcing an inverse relationship between element volume
and sti↵ness, through the Jacobian-based sti↵ening approach.26

II.C. Solution Procedure and E�ciency

Numerical solution of the flow equations proceeds until statistically-steady results are obtained. To seek a
steady solution in PHASTA, simulations are run at a fairly large time step with first-order time integration
and a single flow (and if applicable, turbulence scalar) solve per time step. For Fine RANS, �t = 0.05 s;
for Coarse RANS, �t = 0.1 s followed by �t = 0.01 s. Runs continue until negligible solution change is
observed between iterations according to aerodynamic force data, visualization of flow fields, and observing
flow (and turbulence scalar) absolute errors. Meeting this criterion typically requires between 30 and 120
time steps, depending on the mesh and physical model.

The converged NACA 0012 flow solution acts as the starting point in PHASTA for each new combination
of geometric parameters we want to test. This means the simulations’ start-up transient can be skipped

Figure 3. Meshes used for RANS, Coarse RANS, and Euler, from left to right.
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The computational cost of the low-fidelity model is 498 times smaller than that of
the high-fidelity one.

Neural Network: 4 hidden layers @50 neurons each.
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Example: Flow around a NACA Airfoil

Histograms for 153 grid points along the surface of the airfoil.
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Strategy Mean validation
error

FNN 3.01 × 10−1

ResNet 2.92 × 10−1

BFWL (FNN) 3.24 × 10−2

Bi-fidelity weighted learning can reduce the error by an order of magnitude.

8 / 20



Aerospace Mechanics Research Center (AMReC)
UNIVERSITY OF COLORADO BOULDER

Outline

1 Bi-fidelity Transfer Learning

2 Bi-fidelity ℓ1-regularization



Aerospace Mechanics Research Center (AMReC)
UNIVERSITY OF COLORADO BOULDER

Regularization Techniques

A regularization term is often added to the objective of the optimization to
prevent overfitting.

The most common is to use a Tikhonov regularization or standard
ℓ2-regularization.

argmin
θ

R(θ) := J(θ) + λ∥θ∥2

Strength of the regularization

A PREPRINT - MAY 26, 2021
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Figure 2: Comparison of `2, standard `1, and weighted `1-regularization. The sparse solution is denoted as ✓⇤
0 , whereas

✓⇤ denotes a solution of the regularized problem. The contours of the loss function J(✓) are drawn on a plane
perpendicular to the regularization surface.

Theorem 1 (Schor [53, Theorem 46] and Boyd and Mutapcic [54, Section 3]) Let us assume the initial and optimal
parameters are given by ✓0 and ✓⇤ with E

⇥
k✓0 � ✓⇤k2

⇤
 ⇢2; the subgradients are bounded by E

⇥
kg(✓k)k22

⇤
 �2 8k;

and the learning rates satisfy ⌘k > 0,
P

k ⌘k !1, and
P

k ⌘
2
k <1. Then, the stochastic subgradient update (13) for

a convex objective function R(✓) satisfies

min
i=0,...,k

E [R(✓i)�R(✓⇤)]  ⇢2 + �2
Pk

i=0 ⌘
2
i

2
Pk

i=0 ⌘i

. (14)

3 Iteratively Reweighted and Bi-fidelity `1-regularization Strategies

In this paper, we consider three novel `1-regularization strategies to train neural network surrogates using only high-
fidelity and both low- and high-fidelity data. The performance of these methods will be compared against that of the
standard `1-regularization (Strategy I) using high-fidelity data denoted as Dh. One of these strategies (Strategy II) uses
only high-fidelity data, and the other two strategies (Strategy III and Strategy IV) use low-fidelity data, referred to as
Dl, to inform the training using Dh. Further, two of these strategies implement weighted `1-regularization to promote
sparsity in the network parameters as standard `1-norm is often inadequate due to its fast shrinkage property and lack of
scale invariance [38, 18]. Herein, we make the practical assumptions that (i) the size of Dl is large enough to accurately
train the low-fidelity neural network at hand and (ii) in contrast, since generating high-fidelity data is expensive, the
size of Dh is small so that training only using Dh leads to poor generalization errors. In all strategies, we estimate the
regularization strength � using a grid-based approach as explained in Section 4.

3.1 Strategy I: Standard `1-Regularization Using High-fidelity Data

The first strategy that we employ for the training of neural networks is the solution of P1,� in (9) in the presence of
a high-fidelity training dataset Dh. This approach is considered as the baseline to compare against the other three
approaches.

3.2 Strategy II: Iteratively Reweighted `1-Regularization Using High-fidelity Data

In our second strategy, we use the weighted `1-regularization problem P(W)
1,� . A heuristic approach to set the weights is

to assign small values to those associated with parameters that are expected to be large and vice versa. For example, the

6

Standard ℓ2-regularization

The ℓ2-regularization term defines the surface of a hypersphere.
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Regularization Techniques

To induce sparsity in the parameters θ, the following optimization is used

argmin
θ

R(θ) := J(θ) + λ∥θ∥1

Bayesian interpretation: a maximum a posteriori (MAP) estimate of the
parameters assuming independent zero-mean Laplace distributions for the
priors.

In standard ℓ1-regularization, a different non-sparse solution θ∗ may exist.

To avoid the solution θ∗ instead of the sparse solution θ∗
0 , a weighted

ℓ1-regularization can be used.

argmin
θ

R(θ) := J(θ) + λ∥Wθ∥1
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size of Dh is small so that training only using Dh leads to poor generalization errors. In all strategies, we estimate the
regularization strength � using a grid-based approach as explained in Section 4.

3.1 Strategy I: Standard `1-Regularization Using High-fidelity Data

The first strategy that we employ for the training of neural networks is the solution of P1,� in (9) in the presence of
a high-fidelity training dataset Dh. This approach is considered as the baseline to compare against the other three
approaches.

3.2 Strategy II: Iteratively Reweighted `1-Regularization Using High-fidelity Data

In our second strategy, we use the weighted `1-regularization problem P(W)
1,� . A heuristic approach to set the weights is

to assign small values to those associated with parameters that are expected to be large and vice versa. For example, the

6

Weighted ℓ1-regularization
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Training of Neural Networks using ℓ1-Regularization
Strategies

High-fidelity only strategies:

Standard ℓ1-regularization

argmin
θ

R(θ) := J(θ) + λ∥θ∥1

Weighted ℓ1-regularization

argmin
θ

R(θ) := J(θ) + λ∥Wθ∥1

wii = (|θk−1,i|+ ϵw)
−1

W is a diagonal matrix with entries {wii}nθ
i=1.

θk−1,i is the i-th parameter from previous iteration.

ϵw is a small number to avoid division by zero.
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Training of Neural Networks using ℓ1-Regularization
Strategies

Bi-fidelity strategies:

Standard ℓ1-regularization

argmin
θ

R(θ) := J(θ) + λ∥θ − θLF∥1

θLF are parameters from a low-fidelity trained network.

Weighted ℓ1-regularization

argmin
θ

R(θ) := J(θ) + λ∥Wθ∥1

wii = (|θLF,i|+ ϵw)
−1

W is a diagonal matrix with entries {wii}nθ
i=1.

ϵw is a small number to avoid division by zero.
De, Subhayan, and Alireza Doostan. "Neural network training using ℓ1-regularization and bi-fidelity data." Journal of Computational
Physics (2022): 111010.
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Connection with Transfer Learning

Recall: Transfer learning uses the knowledge gained from solving one problem
to solve another related problem, where accurate or labeled data may be
missing or limited.

The bi-fidelity regularization strategies are generalizations of transfer learning of
neural networks.

However, instead of keeping the parameters of the first few layers fixed after
training using the low-fidelity data, herein we use regularization to induce small
variations in the high-fidelity trained network parameters.
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Training of an Autoencoder

A PREPRINT - MAY 26, 2021

2.3 Autoencoders

Autoencoders are neural networks that are trained to reproduce the input, i.e., y ⇡ x in (1). These neural networks have
an encoder part, where the input is mapped onto a latent space and a decoder part to reconstruct the input data from the
latent space information. Hence, if FNNs are used as encoder and decoder as shown in Figure 1, we can write

xc = cMe

⇣
x; { e,i}He

i=0, {�e,i}He
i=0

⌘
;

bx = cMd

⇣
xc; { d,i}Hd

i=0, {�d,i}Hd
i=0

⌘
,

(5)

where xc 2 Rdl is the encoded data vector in the latent space; cMe(·; ·, ·) and cMd(·; ·, ·) denote the encoding and
decoding networks, respectively; { e,i}He

i=0, {�e,i}He
i=0 are weights and biases of the encoding network with He hidden

layers, respectively; and { d,i}Hd
i=0, {�d,i}Hd

i=0 are weights and biases of the decoding network with Hd hidden layers,
respectively. For undercomplete autoencoders, the dimension of the latent space for encoded data is smaller than the
dimension of the input, i.e., dl < di, which helps in identifying the important characteristics of the input data and can
be used for dimensionality reduction [46]. In this paper, we use an example of autoencoder trained using strategies
discussed in Section 3 to illustrate their efficacy.

...
...

... ... ...

x1

x2

x3

xn

bx1

bx2

bx3

bxn

Input
data, x Encoder, cMe

Encoded
data, xc Decoder, cMd

Reconstructed
data, bx

. . . . . .

Figure 1: A schematic of an autoencoder, where an FNN encoder cMe is used to encode the data x in a latent space as
xc and an FNN decoder cMd is used to reconstruct the data as bx.

2.4 Training of a Neural Network

During supervised training of neural networks, we estimate the parameters ✓ := { i,�i}H
i=0 by minimizing a loss

function J(✓) using a dataset D := {(xi,yi)}N
i=1, where yi := M(xi;✓). For a loss function that consists of the mean

squared error (MSE), the minimization problem P2 can be defined as

P2 ⌘
(

arg min
✓

J(✓) :=
1

N

NX

i=1

Ji(✓) :=
1

N

NX

i=1

���yi � cM(xi;✓)
���

2

2

)
, (6)

where k·k2 denotes the `2-norm of its vector argument. Note that for the training of an autoencoder the loss function is
defined using the reconstructed data bx instead of y. A stochastic gradient descent (SGD) method can be used to solve
the optimization problem P2, which updates the parameters at kth iteration as follows

✓k+1  ✓k � ⌘k
@Jik

(✓)

@✓k
. (7)

4

Encoder network: y = M̂e

Decoder network: x̂ = M̂d

Useful for dimension reduction, denoising, etc.
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Example: Flow through a Dual Throat Nozzle
QoI: Shock position Uncertain initial condition

We use a simplified model based on Burger’s equation given by

∂u
∂t

+
∂

∂x

(
u2

2

)
=

∂

∂x

(
sin2 u

2

)
, 0 ≤ x ≤ π, t > 0,

u(x, δ, 0) = δ sin x, u(0, δ, t) = u(π, δ, t) = 0.

The steady-state solution

lim
t→∞

u(x, δ, t) =

{
u+ = sin x, 0 ≤ x ≤ Xs

u− = − sin x,Xs ≤ x ≤ π

The shock is at x = Xs

Xs =

{
sin−1 (√1 − δ2

)
< π

2 ,−1 < δ ≤ 0
π − sin−1 (√1 − δ2

)
> π

2 , 0 < δ < 1

For the low-fidelity model, we use coarser discretization of x.

Encoder: 3 hidden layers with 128, 64, and 16 neurons.

Decoder: 3 hidden layers with 16, 64, and 128 neurons.

Shock position
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Example: Flow through a Dual Throat Nozzle

Histograms for 50 replications of training and validation datasets.
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Example: Flow through a Dual Throat Nozzle

Strategy Mean validation
error

HF (no regularization) 1.57 × 10−2

HF Standard ℓ1 1.57 × 10−2

HF Weighted ℓ1 1.56 × 10−2

BF Standard ℓ1 3.76 × 10−3

BF Weighted ℓ1 3.76 × 10−3

One order of magnitude
improvement in validation error.

0 /4 /2 3 /4

-1

0

1

Figure 14: Comparison of the reconstructed solution from the autoencoder trained using the bi-fidelity Strategy IV with the
true solution in Example III for four different realizations of ⇠.

Appendix A. Adam Algorithm

Adam, [51], leverages past gradient information to retard the descent along large gradients. This
information is stored in the momentum vector m and squared gradient vector v at kth iteration as

mk = bmmk�1 + (1� bm)
@Rik

@✓k
; bmk =

mk

1� bk
m

;

vk = bvvk�1 + (1� bv)


@Rik

@✓k

��2
; bvk =

vk

1� bk
v

,

(A.1)

where [·]�p denotes a Hadamard power of p, i.e., the square in
h
@Rik

@✓k

i�2
is performed element-wise; and bm

and bv are parameters with default values 0.9 and 0.999, respectively. In (A.1), bmk and bvk are the unbiased
momentum and squared gradient vectors, respectively. The gradient descent step is applied next as follows

✓k+1 = ✓k � ⌘ bmk ↵
⇣
bv� 1

2

k + ✏a

⌘
(A.2)

where ⌘ is the learning rate; ↵ denotes a Hadamard division (i.e., element-wise division); and ✏a is a small445

number to avoid division by zero. We use this algorithm to train the neural networks in this study. An
illustration of the steps of this algorithm is shown in Algorithm 1.

Appendix B. Theoretical Analysis of Proposition 1

In this section, first we present two lemmas from statistical learning theory in the context of a neural
network from Shalev-Shwartz and Ben-David [69, Lemma 26.2], Koltchinskii [70, Theorem 2.3], and Rakhlin450

and Sridharan [71, Lemma 15.1]. Then, using these two lemmas we provide the proof of Proposition 1 for
the four `1-regularization strategies implemented in this work.

Lemma 1. (Shalev-Shwartz and Ben-David [69, Lemma 26.2] and Koltchinskii [70, Theorem 2.3]) The
generalization error LS(F , D) of a neural network defined in (20) for a dataset D = {Di}N

i=1 generated from
the probability measure S, the hypothesis space H, and F := J �H for the loss function J(cM; D) is bounded
by

ED⇠S [LS(F , D)]  2ED⇠S [RD(H)] , (B.1)

where RD(H) is the empirical Rademacher complexity of the hypothesis space H and dataset D.

26

Four reconstructed solutions.
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Conclusions

For large-scale engineering and scientific applications, one of the main obstacles
in training neural networks is generating large datasets either using high-fidelity
models or costly experimental setups.

We propose training strategies using low-fidelity data and adapt it using a
smaller high-fidelity dataset.

Bi-fidelity weighted learning leads to considerable improvements in prediction
error over standard training.

The networks trained using bi-fidelity ℓ1-regularization strategies have better
predictive accuracy compared to networks trained using high-fidelity only
strategies.
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