Relaxation Loss – AERB/SS/CSE-1

 $p(t) = k_1 k_2 \rho_{1000} k_t$

 K_1 = Factor based on fraction of Initial Prestress k_2 = T/20, T=avg. temp. of structure (°C)

 $k_t = (t/1000)^{\alpha}$,

 α = 0.12 (normal relaxation steel),

= 0.19 (low relaxation steel)

Relaxation Loss – CEB FIP

As per Clause 2.3.4.5 and Fig. 2.3.3:

 $(\rho_{1000})_{\text{ corr. to }\sigma\text{po/fptk}} = 2 \%$

(for class 2 improved relaxation characteristics for wires and strands)

Relaxation up to 30 years, $\rho_t = \rho_{1000}(t/1000)^k$, t is in hours where k $\approx log(\rho_{1000}/\rho_{100})$

- = 0.12 for relaxation class 1
- = 0.19 for relaxation class 2

Relaxation Loss – Euro Code E2

As per Clause 4.2.3.4 and Fig. 4.8:

 $(\rho_{1000})_{\text{corr. to }\sigma\text{po/fptk}} = 2.5\% \text{ (for class 2, strands)}$

As per Cl. No. 4.2.3.4 (2)

The long term values of the relaxation losses may be assumed to be three times the relaxation losses after 1000 h.

Relaxation Loss – IS: 1343 - 1980

TABLE 4: RELAXATION LOSSES FOR PRESTRESSING STEEL AT 1000 H AT 27°C

nitial Stress Relaxation Lo		
(1)	(2)	
	N / mm²	
0.5f _p	0	
0.6f _p	35	
0.7f _p	70	
0.8f _p	90	

Note - f_p is the characteristic strength of prestressing steel

Relaxation Loss – IRC – 18 : 2000

TABLE 4A: (IRC:18-2000) Relaxation loss at 1000 hours at 20°C ± 2°C(as % of initial stress)

Initial stress	Relaxation Loss for Normal relaxation steel (%)	Relaxation Loss for low relaxation steel (%)
0.5 fp	0	0
0.6 fp	2.5	1.25
0.7 fp	5.0	2.5
0.8 fp	9.0	4.5

Note: (i) For intermediate values linear interpolation may be done.(ii) fp = U.T.S. of steel.

Relaxation Loss – BPEL-91

The final loss of tension due to the relaxation of the steel is given by:

$$\Delta \sigma_{\rho} = \frac{6}{100} \rho_{1000} \left(\frac{\sigma_{pi}(x)}{f_{prg}} - \mu_0 \right) \sigma_{pi}(x)$$

 μ_0 being a coefficient equal to:

- 0.43 for tendons with a very small relaxation (VSR)
- 0.3 for tendons with normal relaxation (NR)
- 0.35 for other tendons

Relaxation Loss – Canadian

In lieu of detailed information from the steel manufacturer the intrinsic relaxation of prestressing tendons may be predicted as:

$$f_{re}(t) = \frac{\log t}{k_1} \left(\frac{f_{psi}}{f_{py}} - 0.55 \right) f_{psi}$$

- f_{re} (t) = intrinsic relaxation at time *t* (under constant strain)
 - f_{psi} = initial stress in tendon after stressing
 - $f_{py} = 0.85 f_{pu}$ for stress relieved wires and strands 0.90 f_{pu} for low realxation strands
 - toncilo atranath of tandon
 - f_{pu} = tensile strength of tendon
 - t = time since prestressing (hours)

Relaxation Loss – ACI 209R

Table 4.4.1.3 Values of $(f_{sr})_t$ and $(f_{sr})_u$ for Wires and Strands

Wire	e or Strand	(f _{sr}) _t for f _{si} / f _{py} from 0.65 to 0.80	(f _{sr}) _u at t = 10 ⁵ hours
	Stress Relieved	0.015 f _{si} (log ₁₀ t)	0.075 f _{si}
Steel	Stabilized (Low Relaxation)	0.005 f _{si} (log ₁₀ t)	0.025 f _{si}