

Civil engineering R&D on pressure containment vessels

Shahrokh GHAVAMIAN Sylvie MICHEL-PONNELLE

19 Sites – 58 Reactors

900 MWe family : single wall + steel liner

4

EDF pressure containment designs

1300 MWe family : double wall (w/n liner)

5

2

Special features about EDF's needs in simulation techniques

6

1. Special features about EDF's needs in simulation techniques

Domains:

- Structural design
- Structural assessment
- Consequences of exceptional loadings
- Forensic engineering

Special features:

- Some analysis more or less similar to common engineering tasks
- Most analyses specific to nuclear plants
 - Leak tightness
 - Initial state
 - Complex loading (TM, THM)
 - Three dimensional configurations (local effects)
 - Ageing effect

Leakage tightness

Leakage through concrete

Leakage tightness	

Leakage tightness

Concrete cracking and diffusion

- Concrete cracking
- Thermal analysis
- Concrete drying
- Moisture pressure

Leakage tightness Crack initiation Damage index mapping

Leakage tightness

Damage index mapping

Crack initiation

Activities

Step by step qualification

Long term behaviour

Biaxial loading experiments

Uniaxial loading experiments

Shrinkage w/o drying Creep with drying Creep with drying

Long term behaviour

Prediction and identification

Constitutive model to describe concrete cracking

Efficiency of models (reliability and robustness)

Cracking of a 1300 MWe PCCV (without liner) **PACE 1450 EXP**

Int

Cracking of a 1300 MWe PCCV (without liner) PACE 1450 EXP

Behaviour of a PCCV model under internal overpressure (MAEVA)

Leakage through reinforced prestressed concrete wall

- Prestressing
- Concrete cracking
- Thermal analysis

edf

Diffusion

Response of an RC slab under seismic loading

Level of cracking during an earthquake

- Concrete cracking
- Seismic analysis

GA

Behaviour of a PCCV model under internal overpressure (SANDIA II)

benchmarking

Sandia Labs. USA NUPEC Japan NRC USA OECD

Loss of leakage tightness and collapse

- Prestressing
- Concrete cracking
- Yielding (tendons, rebars, liner)

Behaviour of a PCCV model under internal overpressure (SANDIA II)

Behaviour of a PCCV model under internal overpressure (SANDIA II)

benchmarking

Conclusion

Features of Code_Aster[®] in civil engineering :

Numerical aspects

Finite element Generally 3D modelling Implicit algorithm

Physical models

- Concrete cracking Damage mechanics, plasticity, 1D, 2D, 3D, local and global formulation)
- Drying and Autogenous creep Isotropic and anisotrpic models
- Drying and Autogenous shrinkage
- Concrete hydration Heat generation and hardening
- Steel rebar Truss and grid representation
- Steel rebar corrosion
- Steel rebar yielding
- Tendon prestressing Truss elements (non conincident nodes), with and w/o bonding
- Soil mechanics Soil-structure insteraction, nonlinear behaviour

Conclusion (2/3)

« Reliable » and « Robust » tools

+ Know how in analysis and expertise

Need for a balanced effort on **« Material – Numerical – Expertise »**

Robust • Numerical algorithms

.

• Cost (man power & computation)

Reliable • Representative of physical phenomena • Domain of validity

Steel concrete interaction

(P9TMELS1)/APRP: Contrainte Szz a t = 1

Prestressing technology

