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History

• 1946: Atomic Energy Act est. Atomic Energy Commission
• 1950: WASH 3: Defined Exclusion Zone 

R (miles) = 0.1 [P (kWt)]½
For a 3000 MWt plant, R = 17.3 m (27.8 km)

• 1957: Shippingport Atomic Power Station, 20 miles from Pittsburgh
• ‘Defense in Depth’ 

– Accident prevention
– Redundancy of safety systems
– Containment
– Accident management
– Remote siting/emergency planning (sheltering and evacuation)

• 1962: 10CFR100 (Maximum Credible, Design Basis Accident)
• 1972: WASH-1250 (Definition of severe accidents, PRA)
• 1975: WASH-1400 (Containment capacity)
• 1979: Three-Mile Island accident
• 1981: SNL Background Study on Containment Capacity
• 1990: NUREG-1150 (PRA for 5 representative plants)
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Containment

• The primary purposes of the containment system are:
– to contain any radioactive material that may be released from 

the primary system in case of an accident.
– to protect the nuclear system from weather and other external 

threats such as missiles produced by earthquakes, tornadoes, 
wind, and in some cases aircraft impact.

– to act as a supporting structure for operational equipment such 
as cranes. 
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Containment Design

• 1971: General Design Criteria, Appendix A of 10 CFR 50:
Criterion 1, Quality standards and records, requires, in part, that:

“Structures, systems, and components important to safety shall be designed, 
fabricated, erected, and tested to quality standards commensurate with the 
importance of the safety functions to be performed. Where generally recognized 
codes and standards are used, they shall be identified and evaluated to determine 
their applicability, adequacy, and sufficiency and shall be supplemented or 
modified as necessary to assure a quality product in keeping with the required 
safety function.”

Criterion 16, Containment Design states:
“Reactor containment and associated systems shall be provided to establish an 
essentially leak-tight barrier against the uncontrolled release of radioactivity to 
the environment and to assure that the containment design conditions important 
to safety are not exceeded for as long as postulated accident conditions require.”

Criteria 50 through 57 give specific requirements for reactor containment 
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Containment Building

• One of the multiple barriers between the radioactive 
fission products and the public.

• Designed to withstand high pressures (45-60 psig) and 
temperatures (>300 F)

• Includes basic structure (steel, reinforced or prestressed 
concrete) and operational components (equipment 
hatch, personnel airlocks, piping and electrical 
penetrations)
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NUREG-1150

• Detailed assessment of the risks of severe accidents at five plants.
• CCFP, conditional containment failure probability,

• CFF, containment failure frequency,

– CDF is the total core damage frequency,
– Si is the frequency of accident sequence i,
– Ci is the conditional probability of containment failure given accident 

sequence i, fragility
– n is the total number of accident sequences.

• Containment capacity estimates based on expert elicitation
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IPE Fragility Curves for Large, Dry PWRs 
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Containment Integrity Research @ Sandia

• Objective:
– Evaluate methods used to predict the performance of light water 

reactor containment systems when subjected to loads beyond those 
specified in the design codes.

– NOT to determine the pressure carrying capacity of actual 
containments by testing scale models.

• Two types of loadings are being considered:
– Severe Accident Loadings (static pressurization and elevated 

temperature)
– Earthquakes greater than the Safe Shutdown Earthquake (SSE) -

analysis only
• An integrated program of testing models of containment structures 

and components (both scaled and full-size specimens) coupled with 
detailed pre- and posttest analyses
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Containment Integrity Research @ Sandia

• Pneumatic pressure tests of large-scale models of representative 
containment structures and full scale tests of components 
(penetrations, etc.).

• Models of three types of containments used in current nuclear 
construction: 

– free-standing steel containments, 
– steel lined reinforced concrete containments and steel lined, 
– prestressed concrete containments.  

• Guiding principles
– models would incorporate representative features of the prototypes, 
– would not knowingly preclude a potential failure mode
– and would not incorporate details which were unique to the model and 

not representative of the prototype. 
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Containment Integrity Research @ Sandia

• Scope:
– Scale-model Containment Overpressurization Tests

• Steel: four 1:32-scale, one 1:8-scale, one 1:10-scale
• Reinforced Concrete: one 1:6-scale
• Prestressed Concrete: one 1:4-scale

– Penetration Tests (hatches, electrical & piping penetrations, 
seals & gaskets)

– Degraded Containment Analyses
– Seismic Analyses of scale model tests

• Related Efforts:
– Impact Tests (aircraft, turbine missiles)
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1:32-Scale SCV Models
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1:32-Scale SCV Models
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1:8-Scale SCV Model

• Designed and built to ASME 
Code

• Design Pressure, Pd = 40 psig 
(.27 MPa)

• 800 channels of 
Instrumentation

• Failed catastrophically at 195 
psig (1.34 MPa), - 5Pd

• ‘Free-field’ strain was 2.5 to 
3% at failure
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1:8-Scale SCV Model - Pretest
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1:8-Scale SCV Model

• Stiffener Detail
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1:8-Scale SCV Model - Summary
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1:8-Scale SCV Global Response



Vg# 18

Steel Containment Vessel Model

SGV 480

SPV 490

• Japanese Improved BWR Mark II supplied by NUPEC
• Scale: 1:10 on geometry; 1:4 on thickness
• Diameter: 2900 mm (9.5’); Overall Height: 5900 mm (19.5’); Internal 

Volume: 21 m3 (740 ft3)
• Weight: 13,000 kg (28,634 lb)
• Design Pressure Pda=0.31 MPa (45 psig)-actual

Pds=0.78 MPa (112.5 psig)-scaled
• Materials: SGV480 (Fy= 265 MPa, 38 ksi) ~ SA-516 Grade 70;

SPV490 (Fy= 490 MPa,71ksi) ~ SA-537 Class 2
• Contact Structure

– Weight - 9 metric tons (20,000 lbs)
– Material: SA-516-70 (Fy =38 ksi)
– Nominal thickness = 38.1 mm (1.5 in.)

• Low Pressure Test: 1.50 Pds =1.17 MPa (169 psig)
• High Pressure Test Date: Dec. 9 - 13, 1996
• Instrumentation:

– SCV External: 113 Strain Gages, 6 Displacement Transducers
– SCV Internal: 151 Strain Gages, 57 Displacement Transducers
– CS: 15 Strain Gages, 10 Gap LVDT’s, 59 Contact Probes

• Failure Pressure~Mode:
– 6 Pds: 4.7 MPa (676 psig)~tearing and leakage in HAZ of SPV 490 adjacent to 

E/H insert plate.
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SCV Model Pre- and Posttest

• 1/10th Scale

• Failure Pressure: 676 psig (6xDesign)

• Tested: Dec. 9-13, 1996
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SCV Middle Stiffener - Posttest
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SCV Round Robin Analysis

• Agenzia Nazionale per la Protezione del Ambienti 
(ANPA) (Italy)

• Argonne National Laboratory
• Bhabha Atomic Research Centre (India)
• General Dynamics, Electric Boat Division
• Japan Atomic Energy Research Institute (JAERI)
• Staatliche Material Prüfungsanstalt (MPA), Universitat 

Stuttgart (Germany)
• Nuclear Power Engineering Corporation (NUPEC)
• Sandia National Laboratory
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Summary of SCV RR Pretest Results

Organization Failure Pressure Failure Location Failure Mode 

Test (4.5?)-4.7 MPa (‘Rat-hole”) 
E/H Insert Plate 

Material Failure 

ANL 4.9 - 5.5 MPa Knuckle Material failure 

ANPA 10.9 MPa Drywell Head Buckling 

BARC 11.5 - 12.0 MPa Drywell Head Material failure or buckling 

GD/EB 4.7 MPa Thinned Liner @ Equipment 
Hatch 

Material failure 

JAERI >4 MPa Drywell Head Buckling 

MPA    

NUPEC 4 - 7.3 MPa 

7.3 - 11.8 MPa 

Thinned Liner @ E/H 

Knuckle 

Material failure 

SNL 4.5 MPa Thinned Liner @ Equipment 
Hatch 

Material failure 
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SCV Posttest Analysis

• Generally the other participants in the Round Robin analyses predicted 
lower strains than the model experienced.

Note: The data from gage 
HCP-I-UCS-36 was 
converted from a radial 
displacement to a hoop 
strain by dividing the 
displacement by the radius 
at the gage elevation.
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SCV Posttest Analysis

• Generally the participants in the Round Robin analyses (8 
participants) for the 1/10th scale SCV predicted lower strains than 
the model experienced. 

• Global behavior of complex structures such as the SCV is 
dominated by the response of the material at low strains  
(below 2%).

• Residual strains and coupon testing techniques can influence the 
stress-strain relationships used in pretest analyses.

• Local behavior predictions need to include the effects of material 
property changes due to welding in areas where high strains can 
occur, such as around the equipment hatch.



Vg# 25

Steel Model Experiments - Summary

• Three out of four of the 1:32-scale models failed catastrophically.
• Failure was initiated at strain concentrations caused by 

penetrations or stiffeners.
• The 1:8-scale model failed catastrophically at 195 psig (1.34 MPa), - 

5Pd.  Failure initiated at a eccentric junction of stiffeners 
surrounding the Equipment Hatch.

• ‘Free-field’ strain was 2.5 to 3% at failure
• Pretest analyses provided good agreement with the observed global 

behavior.
• However, posttest analyses were required to ‘predict’ the strain 

concentration at a stiffener that caused the failure.
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1:6-Scale RCCV Model

• Designed and built to ASME 
Code

• Design Pressure, Pd = 46 psig 
(.32 MPa)

• 1200 channels of 
instrumentation

• Failure Pressure was 145 psig 
(1.00 MPa) - 3Pd

• ‘Free-field’ strain was 1.5 to 
2.0% at failure



Vg# 27

1:6-Scale RCCV Model

• Construction
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1:6-Scale RCCV Model - Summary



Vg# 29

1:6-Scale RCCV Model
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1:6-Scale RCCV Model – Test Results

• Failure caused by excessive leakage through tears in the steel liner 
associated with studs and discontinuities.

• Failure Pressure was 145 psig (1.00 MPa) - 3Pd.
• ‘Free-field strain was 1.5 to 2.0% at failure
• As for steel models, pretest analyses provided good agreement with 

global test results, however, no one predicted the mechanism that 
caused the main liner tear.

• Posttest Analyses and additional 'Separate Effects' Tests were 
required to fully understand the primary liner tearing mechanism.  
At 145 psig (1.0 MPa), strain concentrations of 10-15 times the free 
field strain were calculated at the base of the studs adjacent to the 
insert plate.

• Test results are not necessarily representative of actual 
containments and each case should be examined independently.



Vg# 31

1:6-Scale RCCV Model - Pretest Analyses

• ‘Round-Robin’ Pretest Analyses - Organizations from the U.S., 
United Kingdom, France, Italy, Germany and Japan.

• Predicted ‘Best Estimate’ capacities for the model varied form 130 
to 190 psig (0.90 to 1.31 MPa).

• Range in failure predictions mainly due to differences in 
interpretation of failure rather than differences in the analysis 
results.

• Generally good agreement between predicted global strains and 
displacements and test results.
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Containment Technology Test Facility
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Prestressed Concrete Containment Vessel Model

• Model of OHI-3 in Japan, PWR, 2-buttress, supplied by NUPEC
• Scale: 1:4 overall (except free-field liner anchor spacing)
• Design Pressure, Pd: 0.39MPa (56.9 psig)
• Materials:

– Liner: SGV410, Fy = 225  MPa (33 ksi), Ft = 410  MPa (59 ksi)
– Anchor: SS400, Fy = 235  MPa (34 ksi), Ft = 392  MPa (57 ksi)
– Tendons: JIS G3536 (custom), Pt>630kN (142kips), Py >190kN (128kips)
– Rebar: JIS G3112: SD490, Fy=490MPa (71ksi); SD390, Fy=390MPa (56ksi); SD345, Fy=345MPa 

(50ksi)
• Basemat: Main Bars-SD490, Shear Bars-SD390
• Shell: Main Bars-SD390, Ties-SD345

– Concrete: Basemat 29.42MPa (Fc’ = 4.2ksi); Wall 44.13MPa (Fc’ = 6.4ksi)

• Prestressing Levels: (before/after anchoring)
– Meridional: 113.1/105.8 kips; Hoop: 101.9/78.7 kips

• ILRT: 0.9Pd=0.36MPa (51psig); SIT: 1.125Pd=0.45MPa (64psig)
• Limit State Test Date: September 26-29, 2000

– First Leak detected at 2.5 Pd = 0.98 MPa (142 psig)
– Terminated at 3.3 Pd = 1.29 MPa (187.9 psig)

• Structural Failure Mode Test: November 14, 2001
– Catastrophic Rupture @ 3.6 Pd = 1.42 MPa (206.4 psig)

• Instrumentation: Total 1560 channels
– Strain Gages: 559 Liner, 391 Rebar, 37/156 Tendons, 94 Concrete
– Load Cells: 68
– Displacements: 101
– Acoustic: 54
– Temperature & Pressure: 100

• Predicted Failure (based on Final pretest analysis):
– ~3.25 Pd (1.28 MPa [185 psi]) - liner tearing @ E/H
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PCCV Model Construction
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PCCV Pretest Round Robin Participants

• Argonne National Laboratory (ANL) (U.S.)
• Atomic Energy of Canada Limited (AECL) (Canada)
• Commisariat A L’Energie Atomique/Saclay/DRN 

(France)
• Electricite de France (EDF) (France)
• Institute of Nuclear Energy Research (INER) (Repub. 

of China)*
• Institut de Protection et de Sûreté Nucléaire (IPSN) 

(France)
• Japan Atomic Energy Research Institute (JAERI) 

(Japan)*
• Japan Atomic Power Company / PWR Utility 

Research Group (Japan)
• Korea Institute of Nuclear Safety (KINS) (Repub. of 

Korea)
• Korea Power Engineering Company (KOPEC)
• Nuclear Installations Inspectorate (U.K.)
• Nuclear Power Engineering Corporation (NUPEC) 

(Japan)
• Nuclear Safety Institute (IBRAE) (Russia)*
• PRINCIPIA-EQE SA (Spain)
• Research and Development Institute of Power 

Engineering (Russia)
• Sandia National Laboratories (SNL)/ANATECH (U.S.)
• University of Glasgow (U.K.)
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Pressure (MPa) Failure Mode
• ANL 1.51-1.62 local liner tear/hoop tendon failure @ El. 6.4 m
• AECL 0.94-1.24 complete cracking/axisymmetric yield
• CEA 1.60-1.70 numerically unstable
• EDF 1.95
• INER 0.81
• JAERI buckling @ dome or local fracture by bending in cylinder 
• JAPC 1.45-1.55 hoop tendon/rebar/liner rupture @ El. 7 m
• KINS 1.25-1.44 tendon rupture
• KOPEC 1.30-1.51 tendon rupture (@3.55% strain)
• HSE/NNC 1.98 liner tear w/ extensive concrete cracking @ buttress
• NUPEC 1.49-1.57 tendon rupture
• IBRAE 1.26 tendon rupture
• Principia 1.30 tendon yielding
• RINSC 1.50 hoop failure of vessel
• ANATECH/SNL 1.25 liner tearing (16%) @ E/H

1.40 tendon rupture

 Test 0.98 1.5% mass/day leak through liner tear @ E/H
1.30 limit of pressurization capacity during LST
1.42 hoop tendon and rebar rupture during SFMT

Summary of PCCV RR Pretest Results
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Global Axi-Symmetric Model

Added tendon friction 
ties in “2000 pretest 
model”

Typical 
output 
locations

Detailed wall-
base model

Basemat

“No-tension” springs
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3DCM Model
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M/S Penetration Model

• Strain concentration at 
insert plate
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PCCV Limit State Test (LST)
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PCCV LST Leak Rates
PCCV LST - Calculated Leak Rate
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PCCV LST Liner Tears
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PCCV LST Acoustic Response

Limit State Test - Concrete Cracking/Crushing Events
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PCCV SFMT 

• Structural Failure Mechanism Test:
– Justification: LST did not completely satisfy pre-test objective 

of providing data to validate response predictions ‘well into the 
in-elastic regime’.

Video 
Camera

Top of
Water 

~1.5m

Air 
Pipe

Water 
Pipe

Diffuser

Venting Air and Pressurizing Line
Filing and Draining Water Line
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SFMT Pressure Time Histories
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PCCV Model Structural Failure Mode Test
November 14, 2002, 10:46:12 AM
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PCCV Model after SFMT
November 14, 2002
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Round Robin Predictions
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3D Shell Response @ 1.38 MPa (3.51Pd)

Tendon Rupture
(Strain ~4%)
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PCCV - Conclusions

• Round Robin included 15 participants with failure pressures ranging from 
0.81 to 1.98 MPa – Test 1.42 MPa. 

• Large amounts of data on elastic and in-elastic response of representative 
models of containment vessels were obtained for comparison with analyses.

• Significant plastic ‘free-field’ strains were developed before failure, with 
considerable margin between design and failure pressures.

– ‘Free-field’ strains at failure were considerably less than material ultimate 
strains

– In-situ material properties may vary significantly from sample or coupon tests
• Model capacities were limited by local strain concentrations.
• Existing non-linear analytical methods are generally adequate for 

predicting global response, however prediction of local failure modes is 
much more difficult.

• Combined severe accident temperature and pressure loading needs to be 
addressed (by analysis?)

• Posttest analyses have reproduced the local mechanisms that caused the 
failure.

• Structural failure modes, representative of actual containment vessels were 
demonstrated.
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Containment Bellows Tests
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PCCV Scaled Model

• 1:10 scale geometry
• 1:8 scale concrete wall thickness
• 1:4 scale liner thickness & 

anchors
• Dome truncated & 420 metric 

tons lead weighs attached
• Input accelerations scaled

– Magnitudes multiplied by 0.75
– Frequency increased by 2.56 

(i.e., time scaled compressed by 
factor of 2.56)

Lead weights

Basemat
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RCCV Scaled Model

 1:8 scale geometry
 1:10 scale concrete wall 

thickness
 1:4 scale liner thickness & 

anchors
 Dome truncated & lead weighs 

attached at top
 Input accelerations scaled 

similar to PCCV model scaling

Lead weights

Basemat
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Aircraft Impact Test
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Turbine Missile Impact Tests
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Containment Vulnerability Studies
‘Water Slug’ Tests



Vg# 57

OECD/NEA/CSNI ISP 48 on Containment Capacity

• Proposed to CSNI by NRC in 2002
• Objective:

– Extend the understanding of capacities of actual containment 
structures based on results of the recent PCCV test and other previous 
research.  The PCCV results showed a leakage failure that began at 
about 2.5 times the design pressure. The subsequent structural failure 
mode test (SFMT) showed a global failure due to exceeding hoop 
tendon capacity at about 3.6 times design pressure. Two questions 
about actual structures are obvious:

• Would the onset of leakage be later and much closer to the burst 
pressure?

• How would including the effect(s) of accident temperatures change the 
outcome?
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ISP 48 on Containment Capacity

• Phase 3: Combined Mechanical + Thermal Loading
– Case 1 (Steady State)

• Monotonically increasing static pressure and temperature (saturated 
steam)

• Each participant performs heat transfer calculations or reads gradients 
provided by SNL.

– Case 2 (Modified Station Blackout Scenario)
• NRC/SNL/DEA proposal plus hydrogen detonation defined by IRSN
• SNL will perform heat transfer calculation using full-scale axisymmetric 

model w/ 12 nodes through the thickness.
• Apply resulting gradients to 1:4-scale model
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Case 1: Pressure-Temperature Relationship

• Saturated Steam
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Case 1: Pressure-Temperature Time Histories

• Saturated Steam
– Pseudo-time history based on SFMT pressurization rate (5 psi/min)
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Case 2: Pressure-Temperature Time Histories

• Large, Dry PWR SBO, no containment leakage
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Fragility Analysis of Degraded Containment

• Use Latin Hypercube Sampling and nonlinear finite element 
analysis to generate curves.

• Fragility curves provide interface between structural 
analysis and risk analysis.
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Fragility Analysis of Degraded Containment

• Use Latin Hypercube Sampling and nonlinear finite element 
analysis to generate fragility curves.

• Fragility curves provide interface between structural analysis and 
risk analysis (PRA) – Determine change in risk due to degradation 
during a severe accident.

• Currently exploring degraded containment effects in MELCOR 
and MACCS analyses – need Leak Rate or Area vs Pressure.
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Containment Performance Model

• Integration of Containment Integrity Research results into Risk-
Informed Regulatory Framework.

• Support regulatory action for existing fleet of NPP’s and next 
generation

– Maintenance/Inspection/License Extension 
• Provide a framework to tie together containment design 

requirements, capacity tests and analysis.
– Containment performance typically defined in terms of leak rate
– Containment response/capacity defined in terms of pressure

• Describe containment performance in a format useful for 
probabilistic risk assessments.

• Demonstrate effects of degradation on performance.



Vg# 65

Strain-Based Failures for RC Containment
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Containment Performance Model
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Containment Performance Model
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Containment Performance Model
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Containment Performance Model
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Containment Performance Model
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Containment Performance Model

• Are current analytical methods/results and test results 
adequate to develop a ‘continuous’ containment 
performance model?

• How can we illustrate the demand (e.g. ‘pressurization 
rate’)  for comparison with the performance model and 
can we determine an equilibrium condition?

• What research/analyses/experiments are required to fill 
the gaps in our knowledge?

– Can we relate strains or displacements to leak rates?
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Future Containment Research Issues

• Integration of Containment Integrity Research results 
into Risk-Informed Regulatory Framework.

– Containment Performance Model

• Support regulatory action for existing fleet of NPP’s and 
next generation (NP2010, NGNP, GENIV)

– Maintenance/Inspection/License Extension
– Performance (vs. Compliance)-based codes
– Evolving demand on ‘containment’ function

• Confinement vs. Containment
• Long-term thermal loading
• External threats
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