Common Expression to Combine Long Term Losses (Canadian Code)

$$
\Delta f_{p s}=\frac{n f_{c} C_{t}+\varepsilon_{s h} n E_{c}+f_{r e}}{1+n\left(\rho_{p}+\rho_{s}\right)\left(1+e^{2} / r^{2}\right)\left(1+0.8 C_{t}\right)} \cdots \cdots \ldots .10 .4 .8
$$

Where, $\Delta f_{p s}=$ Loss of Prestress
$\mathrm{n}=$ Average Modular Ratio
$f_{c}=$ Concrete Stress at the Level of Tendon due to sustained load \& Initial Prestressing Force
$\mathrm{C}_{\mathrm{t}}=$ Creep Co-efficient
$\varepsilon_{\text {sh }}=$ Shrinkage Strain
$\mathrm{E}_{\mathrm{c}}=$ Modulus of Elasticity of Concrete
$f_{r e}=$ Intrinsic Relaxation of Prestressing Steel
$\rho_{p}=\mathrm{A}_{\mathrm{ps}} / \mathrm{A}_{\mathrm{c}}, \rho_{\mathrm{s}}=\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{c}}$
$\mathrm{e}=$ eccentricity of prestressing tendon from section centre
$r=$ Radius of Gyration $=\sqrt{ }\left(I_{c} / A_{c}\right)$

