SPE-meeting Phase 1, Washington DC 2011-04-13 Scanscot Studies

STANDARD PROBLEM EXERCISE (SPE)

PERFORMANCE OF CONTAINMENT VESSEL UNDER SEVERE ACCIDENT CODITION

Project

- Scanscot organization
 - Patrick Anderson Co-ordination, etc.
 Björn Svärd Model 1, tendon study
 Oskar Elison Model 2 and 3, liner study
 Torulf Nilsson Failure criteria
 - Ola Jovall
 Initial planning, reviewing
 - Jan-Anders Larsson Advising

Financiers

 Swedish Radiation Safety Authority (SSM) and Swedish / Finnish nuclear power industry

Overview

- Scope
- Scanscot SPE studies
 - General
 - Prestressing tendon behavior
 - Global containment response
 - Liner behavior near equipment hatch
 - Influence of structural parameter variation
- Conclusions

Scope

- Four different studies
- <u>Study 1</u> Explain the interaction between horizontal tendons and the containment structure. FE-model describing a horizontal slice of containment wall. (*Model 1*)
- <u>Study 2</u> Global structural response with focus on the behavior near the equipment hatch (penetration E/H). FE-model describing the whole containment model, refined in E/H region. (*Model 2 and 3*)
- <u>Study 3</u> Detailed behavior of the steel liner near the equipment hatch. FE-model describing the steel liner and the interaction with the concrete structure. (*Model 2*)
- <u>Study 4</u> Variation in input data and influence on containment structural behavior. Focus is on the global expansion of the containment. (*SPE 1.5*)

SPE studies General

General

- FE-program
 - Global model: Abaqus Explicit
 - Liner model: Abaqus Standard
- Material models
 - Concrete: Brittle cracking (linear compression, non-linear tension)
 - Steel: Plastic with hardening
- FE-models
 - Concrete: Solid elements
 - Reinforcement: Shell elements, orthotropic, embedded
 - Liner: Shell elements
 - Tendons: Bar elements (one by one)
- Input
 - "best estimate"

Prestressing tendon behavior (Model 1)

Prestressing tendon behavior (Model 1)

- FE-program
 - Abaqus Explicit
- Material models
 - Concrete: Brittle cracking
 - Steel: Plastic with hardening
- FE-model
 - Concrete: Solid elements
 - Reinforcement: rebar layer, embedded
 - Liner: Shell elements
 - Tendons: Truss elements (one by one)
- Input
 - "best estimate" from material test

Prestressing tendon behavior (Model 1)

- FE-model, tensioning
 - Interaction: Contact definition (μ=0.22)
 - Prestressing: Connector force $(F_o = 427 \text{ kN})$
 - Seating: Connector motion $(u_1 = 3.95 \text{ mm})$
 - Long-term effects: Temperature load (tendon relaxation 85E-6, concrete creep -170E-6)

0.

Liner near equipment hatch (Model 2)

Liner near equipment hatch (Model 2)

- FE-model, general
 - Concrete structure described by global model, refined in E/H region (tie)
 - Steel liner described by submodel guided by displacement in global model
- FE-program
 - Global model: Abaqus Explicit
 - Liner model: Abaqus Standard

Global model (Model 3)

Liner near equipment hatch (Model 2)

- FE-model, interaction
 - Vertical anchors: Connector elements, inplane shear stiffness, normal-plan rigid
 - Horizontal stiffeners: Connector and shell elements, in-plane shear stiffness, normalplan "free"
 - Contact definition between liner and concrete

*connectors highlighted in yellow

SPE studier Liner near equipment hatch (Model 2)

FE-model, interaction

Liner near equipment hatch (Model 2)

Results, concrete strain and contact

- Elevated liner hoop strain
 - Vertical bend line, flexural
 - Regions where reinf. is reduced
- Non considered strain localisation
 - Grinding of welds, 50% of thickness
 - Discrete concrete cracks / friction

Liner near equipment hatch (Model 2)

Results, concrete cracking

Initial cracking in E/H region at 1.33 P_d (0.52 Mpa)

Global containment response (Model 3)

Global containment response (Model 3)

FE-model

Global containment response (Model 3)

FE-model, tendon interaction

Global containment response (Model 3)

Results, concrete hoop cracking

Initial cracking (1.23*Pd*, 0.48 MPa)

Initial through-wall cracking (1.38*P*d, 0.54 MPa)

<u>~ All regions cracked</u> (1.92*Pd*, 0.75 MPa)

 Over 2P_d concrete stress ~ 0 in general parts of the cylinder wall

- Objective
 - Study the influence of variation in input data on the global expansion
 - Important for liner integrity
- Model
 - Simple structural model describing the radial deformation in midheigth
 - Variation in input data given from material tests and literature (JCSS)

- Results, statistical variation
 - Large number of analyses with randomly selected input (Monte Carlo simulation)
 - Nominal values differs mainly in steel yield limits
 - Load level critical for liner integrity, COV ~ 7.5%
 - Global displacement in midheigth fits to normal distribution

- Results, statistical variation
 - Originates mainly from variation in prestress

