

Standard Problem Exercise No. 3

Phase Two

March 27, 2012

Herman Graves Madhumita Sircar Lili Akin Robert Dameron Christopher Jones

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Agenda

Tuesday, March 27, 2012						
** · ·			Wednesday, March 28, 2012			
lime	Торіс	Speaker	Time	Торіс	Speaker	
8:30	Meet at Building Lobby for		8:30	Meet at Building Lobby for Badging and Security		
0.20	Badging and Security		9:00	Model 4 Case 2 Comparisons	NRC / SNL / M&N	
9:30	Address	NRC / AERB	9:30	Model 4 Case 2 Panel Discussion	All Participants	
9:45	Overview of Model 4 – Case 1	NRC/SNL/	10:30	Break		
	and 2	M&N	10:45	Leakage Rate Problem Definition	NRC/SNL/	
10:00	Model 4 Case 1 Presentations	All Participants	11:00	Lookago Poto Procontations Ry	IVIAN / AERD	
12:00	Group Photo		11.00	Participants	All Participants	
12:15			12:00	Lunch – NRC Cafeteria		
				Leakage Rate Presentations By	All Dortioinanto	
1:00	Case 1 – Comparison of Results	NRC/SNL/		Participants (continued)	All Participants	
		M&N	2:00	Leakage Rate Panel Discussion	All Participants	
1:30	Case 1 – Panel Discussion	All Participants	3:30	Discussion of Transition to	NRC / SNL /	
2:30	Break	All Participants		Probabilistic Space	M&N	
0.45	Droak		4:00	Probabilistic Space Presentations	All Participants	
2:45	Model 4 Case 2 Presentations	All Participants	4:45	Adjourn		
4:45	Adjourn					

Agenda

Thursday, March 29, 2012					
Time	Торіс	Speaker			
8:30	Meet at Building Lobby for Badging and				
9:00	Probabilistic Space Presentations (Continued)	All Participants			
10:30	Probabilistic Space Panel Discussion	Participants			
11:30	Discussion of In-Situ Vs Design (If Applicable)	Participants			
12:00	Projects of Interest to Panel	NRC / SNL			
12:15	Discussion of Future Work (Publications, Results sent in, Next Workshop)	All Participants			
12:45	Adjourn				

Standard Problem Exercise No. 3

Phase One Overview

March 27, 2012

Herman Graves Madhumita Sircar Lili Akin Robert Dameron Christopher Jones

Model 1 Summary

MOFFATT & NICHOL

- Model 1: Tendon Behavior Model
 - Investigate Tendon Forces as a Function of Containment Dilation
 - Use Friction Models to Represent Slippage of Prestressing Cables
 - Pressure and
 Pressure/Temperature
 Analyses Completed

Model 1 Results

- Milestones:
 - 1. Concrete Hoops Stress Equals 0
 - 2. Concrete Hoop Cracking Occurs
 - 3. Tendon A Reaches 1% Strain
 - 4. Tendon B Reaches 1% Strain
 - 5. Tendon A Reaches 2% Strain
 - 6. Tendon B Reaches 2% Strain

Model 1 Results

Example of Tendon Stress Distribution

Model 2 Summary

- Model 2: Equipment Hatch Model
 - Effects of Containment
 Dilation on Prestressing
 Force
 - Slippage of Prestressing Cables
 - Steel-Concrete Interface
 - Fracture Mechanics Behavior
 - Ovalization of Concrete vs
 Steel
 - Pressure Only Analysis

Model 2 Results

Pressure Milestones:

1. Concrete Hoop Cracking Occurs

2. Tendon Reaches 1% Strain

Comparison of Pressure Milestones

Model 2 Results

Model 3 Summary

- Model 3: Detailed Global 3D Model
 - Effects of Containment
 Dilation on Prestressing
 Force
 - Slippage of Prestressing Cables
 - Steel-Concrete Interface
 - Fracture Mechanics Behavior
 - Ovalization of Concrete vs
 Steel
 - Pressure Only Anlaysis

Model 3 Results

Displacements - SOL 4

Model 3 Results

Liner Strains - SOL 39 -h,6.2m

Standard Problem Exercise No. 3

Model 4 – Case 1 and 2

March 27, 2012

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration index contract DE-AC04-94AL85000.

Phase Two Overview

- Examine differences in behavior brought on by temperature
- Estimate Leak Rates as a Function of Pressure
- Estimate Leak Rates as a Function of Pressure and Temperature
- Transition to Probabilistic Space

Model 4 Overview

- Use Model 3 as a Starting Point
- Modify Model 3 as Needed
- Apply Two New Load Cases To Model 4: Cases 1 and 2

Case 1: Pressure-Temperature Relationship

Case 2 – Station Blackout

Thermal Analysis – Temp distr. From ISP48

- Model: Full-scale Axisymmetric with additional nodes throughout cylinder and dome - 12 through-thickness
- Material Properties: based on typical data
- Thermal Gradient calculation locations:
 - See figure
- Boundary Conditions:
 - Liner: Uniformly applied temperature; quasistatic, but transient
 - Dome & Cylinder: convection to air
 - Basemat/soil: conduction
- Reference:

Dameron, et. al., "Analysis of Axisymmetric Presstressed Concrete Containment Vessel (PCCV) Including Thermal Effects", May, 2004

Case 1 Thermal Time Histories @ Section 2

Case 1 Gradients @ Section 2

MOFFATT & NICHOL

Case 1 Contours

Case 2 Thermal Time Histories @ Section 2

Case 2 Gradients @ Section 2

Case 2 Contours

Time = 260 Minutes

Time = 960 Minutes

Time = 3600 Minutes

Concrete Degradation Properties at Elevated Temperatures per Eurocode

Concrete	Siliceous aggregates			Calcareous aggregates		
temp. θ	$f_{c,\theta} / f_{ck}$	Ec1,0	Ecu1,0	$f_{c,\theta}/f_{ck}$	Ec1,0	Ecu1,0
[°C]	[-]	[-]	[-]	[-]	[-]	[-]
1	2	3	4	5	6	7
20	1,00	0,0025	0,0200	1,00	0,0025	0,0200
100	1,00	0,0040	0,0225	1,00	0,0040	0,0225
200	0,95	0,0055	0,0250	0,97	0,0055	0,0250
300	0,85	0,0070	0,0275	0,91	0,0070	0,0275
400	0,75	0,0100	0,0300	0,85	0,0100	0,0300
500	0,60	0,0150	0,0325	0,74	0,0150	0,0325
600	0,45	0,0250	0,0350	0,60	0,0250	0,0350
700	0,30	0,0250	0,0375	0,43	0,0250	0,0375
800	0,15	0,0250	0,0400	0,27	0,0250	0,0400
900	0,08	0,0250	0,0425	0,15	0,0250	0,0425
1000	0,04	0,0250	0,0450	0,06	0,0250	0,0450
1100	0,01	0,0250	0,0475	0,02	0,0250	0,0475
1200	0,00	-	-	0,00	-	-

Steel Degradation Properties at Elevated Temperatures per Eurocode

	Reduction factors at temperature θ_a relative to the value of f_y or E_a at 20°C				
Steel Temperature θ_a	Reduction factor (relative to fy) for effective yield strength	Reduction factor (relative to f_y) for proportional limit	Reduction factor (relative to E_a) for the slope of the linear elastic range		
	$k_{\rm v,\theta} = f_{\rm v,\theta}/f_{\rm v}$	$k_{\rm n,\theta} = f_{\rm n,\theta}/f_{\rm v}$	$k_{\rm E,\theta} = E_{\rm a,\theta}/E_{\rm a}$		
20°C	1,000	1,000	1,000		
100 °C	1,000	1,000	1,000		
200 °C	1,000	0,807	0,900		
300 °C	1,000	0,613	0,800		
400 °C	1,000	0,420	0,700		
500 °C	0,780	0,360	0,600		
600 °C	0,470	0,180	0,310		
700 °C	0,230	0,075	0,130		
800 °C	0,110	0,050	0,090		
900 °C	0,060	0,0375	0,0675		
1000 °C	0,040	0,0250	0,0450		
1100 °C	0,020	0,0125	0,0225		
1200 °C	0,000	0,0000	0,0000		
NOTE: E	0,000	0,0000	0,0000		

be used.

Analysis Results

Required Output/Results for Model 4:

- 1. Description of Failure Prediction Model or Criteria Selected
- 2. Assumptions Made In Geometric Modeling / Model Description
- 3. Subset of response information defined by "55 standard output locations" of 1:4 Scale PCCV round-robin;
- 4. Contour Plot of Peak Strains in Liner During LST at pressure milestones: P = 0 (prestress applied); 1 x P_d; 1.5 P_d; 2 P_d; 2.5 P_d; 3 P_d; 3.3 P_d; 3.4 P_d; Ultimate Pressure

For direct comparison amongst participants, also requested to plot (Using Excel)

- Liner Strain Magnitudes (Hoop Direction) at Locations Indicated in Figure 11 (of SPE problem statement), versus pressure
- Tendon stress distribution at P = 0 (prestress applied); 1 x P_d; 1.5 P_d; 2 P_d; 2.5 P_d; 3 P_d; 3.3 P_d; 3.4 P_d; Ultimate Pressure for
 - Hoop Tendons # H35, H53, H68
 - Vertical Tendon # V37 and V46
 - Plots of response versus pressure for Standard Output Locations:
- 1-15 (displacements)
- 22-29 (rebar strains)
- 36-42 (liner strains)
- 48-55 (tendon strains and stresses)

(see Table 4-1 in NUREG/CR-6809 for locations of SOL's)

Standard Problem Exercise No. 3

Leak Rate Problem Definition

March 28, 2012

Failure Criteria for PCCV

- From SPE Phase 1, the relevant failure criterion for Model 1 was Tendon failure. The rebar generally has higher ductility than the tendons, so it is not the controlling criteria. For Models 2, 3, and 4, Tendon Failure criteria remains at 3.8% strain as for Model 1. But for Models 3 and 4, liner tearing is the predominate failure mode
- For SPE Phase 2, a key objective of the work is to estimate crack size and leak area
- Based on the existing research of behavior of steel-lined concrete containments, liner-tearing with associated leakage is the failure mode for slow pressurization of the containment

- Participants are asked to develop a prediction of leak rate as a function of pressure.
 - Liner Strains
 - Crack Size
 - Leak Rate
- Participants shall use the functions provided by AERB to calculate leak rate based on crack area if they so desire

Liner Tears and Acoustic Events

Liner Strain Map (see results presentation)

Laboratories

PCCV LST - Calculated Leak Rate

PCCV LST - Estimated Leak Rates (2.5-3.1 Pd)

PCCV LST - Calculated Leak Rate

Leak Rate as a Function of Crack Size

See Presentation by AERB

Standard Problem Exercise No. 3

Transition to Probabilistic Space Problem Definition

March 28, 2012

Probabilistic Space

Projects of Interest

March 29, 2012

Projects of Interest

OFFATT & NICHOL

NRC / SNL Projects:

Degraded containment research

- Detailed submodeling
 - Global boundary conditions
 - Refined mesh
 - Additional detail
 - XFEM
- Plant specific investigation
 - Forensic analysis
 - Computational reconstruction

Grouted Tendon Study

- Behavior
- Monitoring
- Corrosion

Projects of Interest

Insert Slides from NRC here

Future Work

March 29, 2012

Future Work

- NUREG Publication of Phase One and Phase Two Reports
- Follow Up Workshop?
- Additional Publications?

