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Standard Problem Exercise No. 3 Summary

Model 2 continues examining:

« Effects of containment dilation on prestressing
force

 Slippage of prestressing cables
» Steel-concrete interface
 Fracture mechanics behavior
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* Detailed model of the Equipment Hatch

 In addition, studying the ovalization of concrete
versus steel and the displacement and leakage
this could cause

 Temperature analysis was not part of the SPE for
Model 2

Model 2 Summary
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Model 2 — Local E/H Model Geometry
and Boundary Conditions
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Rebar Summary for Model 2
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Model Geometry and Initial Conditions

* Concrete modeled with 8-node 3D solid elements,
rebar modeled with embedded subelements,
tendons with two-node truss elements, and liner
with 4-node shell elements

* Losses handled by initial conditions applied to
tendons and by FE Model’s representation of
angular friction

* Every tendon was modeled
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Prestressing Tendon Geometry for Model 2
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Model Geometry and Initial Conditions

« With methodology in Model 1, contact condition requires
nodes of tendon and nodes of concrete be coincident

« Making concrete mesh compatible with tendon mesh is
extremely difficult and time consuming

 Strategy developed to facilitate modeling of tendon-
concrete interaction — embedded shell elements created,
surrounding each tendon (analogous to “sheaths” or
“ducts”)

« Elements fully embedded into concrete, while allowing
contact surface to follow 3d geometry and effectively model
actual conditions
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}Sheath Elements Along Tendon with

Jacking Elements
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Tendons Inside Duct
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Model Geometry and Initial Conditions

* Ends of tendons have a ‘jacking element’ protruding from
the edge of concrete mesh

* For Model 2, jacking ‘element’ assigned only on one side of
each tendon, the side closest to the buttress the tendon is
jacked from

 Other end of each tendon tied to concrete face

* This geometry difficult to set up, some unavoidable edge
effects which influence the tendon stresses and strains of
the end element, the tendon stress and strain distributions
interior to these end elements appear to be reasonable
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Model Overview

Liner
T _ Bonded Contact for Analysis 23,
1T | | Contact with no friction for Analysis 2b,
L Contact with friction =0.5 for Analysis 2c

A
1)

1333 R AT
a50s

Contact with no friction for
Analysis 2a and 2b,
Contact with friction = 0.5 for
. |
Analysis 2c

Penetration Sleeve
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%endon Sheaths with Jacking Elements
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Steel Liner and Penetration Pipe Mesh
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Vertical and Horizontal Liner Anchors
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A
* Key Locations for Reporting Liner

Strain Selected for Model 2 Exercise

Objectives:

1. To choose arelatively long gage length over which to
report strain in order to eliminate differences between
analysts due to mesh size

2. To focus on key aspects of liner-concrete interaction

3. Establish a framework for a fracture-mechanics based
liner failure prediction

« Locations are numbered 1 through 10, boundaries are
defined by liner anchors

« Atlarge anchor spacing, gage length is 450.45mm

« Locations 5 and 10 straddle two anchor spaces, for a
gage length equal to 300.30mm
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Iner (E/H) View Showing Strain Reports

(cut from Page A-28 of NUREG/CR-6810)
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%ﬂformation About Tendon Friction and

Seating Losses

Tendon Stress of H37

200

« Some tendons being Butfress
jacked from 270°
have

additional losses as el

they sweep around the /\

EqUIpment HatCh 140 mEi Stress Profile of H37 >
Center of E/H

Tendon Stress (ksi)

before reaching the

region of Model 2
* These tendons have

same anchor stress |

//
after losses as the free-
field hoop tendons = -10 0 10 20 BOA ) i:{d )50 60 70 80 90
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Tendon Stress Applied to Jacking
End of Model 2

Jacked from 270° Jacked from 90° Jacked from Basemat
Tendon | Stress(MPa) Tendon | Stress (MPa) Tendon | Stress (MPa)
H37 890 H38 959 V59 1,130
H39 885 H40 959 Vel 1,130
H41 873 H42 959 Vel 1,130
H43 01 Ha4 955 Va2 1,130
H45 862 H46 959 Va3 1,130
H47 1,006 H48 959 Ved 1,130
H49 1,015 H50 959 V65 1,130
H51 1,030 H52 959 Voeo 1,130
H53 1,030 H54 959 ve7 1,130
H35 1,030 H56 959 VeE 1,130
H57 1,030 H58 959 Va9 1,130
H39 1,030 Hel 959 V70 1,130
HE1 1,030 HB2 959 V71 1,130
He3 1,030 Hed 959 V72 1,117
HE5 1,030 HB6 959 V73 1,102
V74 1,090
V75 1,076
V76 1,065
V7T 1,054
V78 1,057
V79 968
Val 978
VEl 968
Va2 963
Va3 943
Va4 950
vas | 943 Sandia
National
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* For Model 2c, estimate for stiffness and strength of liner is
needed to complete the simulation

* Detailed local models for vertical and horizontal anchors
created to obtain force-versus deflection curves

« Used to determine stiffness of springs connecting the steel
liner to the anchors

 For anchor to concrete interaction, a friction coefficient of
0.5 was used

 Liner has fully yielded at the anchor, and the concrete is
crushing

 This data converted to a bilinear curve

« Results of the local models were applied in the direction
perpendicular to the direction of the anchor
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Vertical Liner Anchor Local Model at 10x deformed shape

Horizontal Liner Anchor Local Model at 10x deformed shape
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E, Max. Principal
(Avg: 75%)

Max Principal Strain in Liner and Vertical Anchor

E, Min. Principal

(Avg: 75%)
0.0000
-0.0002
-0.0005
-0.0007
-0.0010
-0.0012
-0.0015
-0.0017
-0.0020
-0.0022
-0.0025
-0.0027
-0.0030
-0.0071

Min Principal Strain in Liner and Vertical Anchor
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Vertical Liner Anchor
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Horizontal Liner Anchor

— 3,000
=

<. 2,500
g 2,000 //

E 1,500 // Local Model o
i 1,000 Used in —
>00 Global Model |
0
0 0.002 0.004 0.006 0.008

Displacement (in.)

Force-Deflection Curve for Horizontal Liner Anchor

Sandia
National
) ¥ MOFFATT & NICHOL @ Laboratories



'},7

 For Model 2, tendon criteriaremains at 3.8%
strain as for Model 1

« But Model 2 1s also focused on liner tear and
leakage

Failure Criteria
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Biaxial-Stress Liner Failure Criteria

p= 2(1 -~ TF)

where: U Is the ductility (reduction) ratio
TF is the Davis Triaxiality factor

2 (0, + 0, +0y)
. YelOh) T 0 3

[(‘}1 - ”2)1 + (o0, = "T.‘:JE + (o, — ﬂl:}l]

But when the third principal stress is zero or nearly
zero, as in the case of the TBT shell plates,

ﬂ+l}
e (nt)

- (:::r —a]ﬁ1+a1)

1 /2

For instance when o, and o,, TF = 2 and the
ductility ratio is 0.5
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Biaxial-Stress Liner Failure Criteria

 Many containment analysts have concluded there
IS extensive judgment involved in its application

 Strains predicted by FE models can be highly
dependent on the level of detail (and mesh
refinement)

* The existence of flaws in the material (especially
at weld seams) mean that tears might occur with
strains significantly lower than the absolute
ductility of the material
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« Model 2 was analyzed with three sets of liner-
concrete interaction assumptions

2a) Liner assumed bonded (no-slip) to concrete
2b) Liner only connected to concrete at
anchors, free-slip in between
2C) Best estimate connection and consideration
of friction

Analysis Results

@ Sandia
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Required Output/Results for Model 2

Description of modeling assumptions and phenomenological models
Description of liner failure criteria used

Pressure milestones. Applied pressure:

1) Where and when concrete hoop cracking occurs

i1) First tendon reaches 1% strain

Deformed shape and liner strain distribution at P=0 (prestress applied);
1xPy; 1.5Py; 2Py; 2.5P; 3Py; 3.3P; 3.4P,; Ultimate pressure

Liner strain magnitudes (hoop direction) at locations indicated in Figure

Ovalization: Change in diameter of hatch and adjacent concrete, in
hoop direction, versus pressure

Ovalization: Change in diameter hatch and adjacent concrete, in
Meridional direction, versus pressure

@ Sandia
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Results by Pressure Milestones

Milestone

Pressure (MPa) [x Pd
Zero Concrete Hoop Stress (at 0° azimuth) 0.534 136
Concrete Hoop Cracking Occurs (at 0° azimuth) | 0.585 1.49
Tendon A and B Reach approx.1% Strain (at 0°
azimuth) 1.362 347
) MOFFATT & NICHOL @
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Results and Observations

* The results for 2b) and 2c) are similar, so no separate plots
« Significant differences begin occurring at 3.0xP,
* The yield strain for the liner is 0.0018

» Pockets of yielding begin to occur at 2.5xP,4, and become
widespread by 3.0xPy4

* First yielding occurs in area adjacent to liner thickness
transition near hatch and in larger areas between 0-degree
and 18-degrees azimuth. Note that near O-degrees is where
transition occurs in hoop rebar area density

@ Sandia
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Results and Observations

 Elevated strain zones are somewhat more prevalent in
Model 2b and 2c than in Model 2a

» By 3.3xP4, many elevated liner strain zones are reaching
0.01, and by 3.7xP,4, 0.014 to 0.017 or nearly 2% strain

« Agree reasonably well with observed behaviors from the 1:4
Scale Model Test

* Mesh size of 2”7-3” for modeling the liner

* With this mesh-size, we would not anticipate predicting as
large of localized liner strains as may occur at an individual
strain gage
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Results and Observations

« Ovalization of the penetration sleeve, and resulting
separation between pipe and concrete

« Found differences in diameters (both horizontal and
vertical) between the pipe and concrete are not uniform
through the thickness

* We plotted the separation gap between the penetration
surface and the concrete surface

* No significant separation until approximately 2.5P,, but
then separations of 0.03 inch, 0.08 inch 0.12 inch, 0.14 inch,
and 0.16 inch for 2.5P4, 3.0P4, 3.3P, 3.4P,, and 3.47Py,
respectively

 Model 2a showed more separation than Model 2b and 2c
« Maximum separation occurs at 2 o’clock position of E/H
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National
MOFFATT & NICHOL Laboratories




Min Principal Stress (psi) in Concrete
Under Prestress Only
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Tendon Stresses (psi) After Prestress Only
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Multiple section points
(Avg: 75%)
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5,511 /__
Multiple section points |,.. -
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Tendon Stresses (psi) with 3.47xP,

5,511
Multiple section points
(Avg: 75%)
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Tendon Strain with 3.47xP,

E, E11
Center
(Avg: 75%)
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Liner Max Principal Strains at 2.0xP,

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)

Step: Pressure, Pressure

7 Increment 65: Step Time = 0.5000
Primary VYar: LE, Max. In-Plane Principal

Deformed VYar: U

Deformation Scale Factor: +1.0000e+00
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Liner Max Principal Strains at 3.0xP,

for Model 2a

(Avg: 75%)
0.0060
0.0048
0.0044
0.0040
0.0036
0.0032
0.0028
0.0024
0.0020
0.0016
0.0012
0.0008
0.0004
0.0000

LE, Max. In-Plane Principal
Multiple section points

Step: Pressure, Pressure
Increment 162: Step Time = 0.7498
Primary Var: LE, Max. In-Plane Principal
Deformed ¥ar: U Deformation Scale Factor: +1.0000e+00

(note change in contour limits)
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Liner Max Principal Strains at 3.3xP,
for Model 2a

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)
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Step: Pressure, Pressure
7 Increment 209: Step Time = 0.8254
Primary VYar: LE, Max. In-Plane Principal

Deformed Yar: U Deformation Scale Factor: +1.0000e+00
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Liner Max Principal Strains at 3.3xP,
for Model 2b

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)
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Increment  31: Step Time = 1.4607E-02
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Liner Max Principal Strains at 3.3xP,
for Model 2c

LE, Max. In-Plane Principal
Multiple section points
(Avg: 750%3)
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Step: Pressure, Pressure
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Liner Max Principal Strains at 3.47xP
for Model 2a

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)
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Liner Max Principal Strains at 3.47xP
for Model 2b

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)
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Increment 105: Step Time = 5.6033E-02

% Primary Var: LE, Max. In-Plane Principal
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Liner Max Principal Strains at 3.47xP
for Model 2c

LE, Max. In-Plane Principal
Multiple section points
(Avg: 75%)
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Primary Var: LE, Max. In-Plane Principal

Deformed Yar: U Deformation Scale Factor: +1.0000e+00

Sandia
National

) ¥ MOFFATT & NICHOL Laboratories




A
%Pipe Separation from Concrete (in) at

2.5XPy4 for Model 2b
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Primar y Var: COPEN SNEG
Deformed ¥ar: U Deformation Scale Factor: +1.00e+00
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%Pipe Separation from Concrete (in) at

3.0xPy4 for Model 2b
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Step: Pressure, Pressure
X Inl_:rement 193: Step Time = 0.7496

Primar y Var: COPEN SNEG
Deformed ¥ar: U Deformation Scale Factor: +1.00e+00
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A
%Pipe Separation from Concrete (in) at

3.4XPy for Model 2a
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%Pipe Separation from Concrete (in) at

3.4XPy for Model 2c
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X Incremen t 23: Step Time = 1.7774E-02

Primary Var: COPEN SNEG
Deformed Var: U Deformation Scale Factor: +1.00e+00
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A
%Pipe Separation from Concrete (in) at

3.47XPy for Model 2a
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A
%Pipe Separation from Concrete (in) at

3.47XPy for Model 2c

COPEN SNEG
0.16

=]
.
2

= et at it i n t nt i e at
F=1=1=1=1=1=1=1=1=1=T e et
ORNQEAT-HEOORMNWE

Y
Fi
Step: P e, Pr
X Incremen t  26: Step Tim 1.9846E-02
Primary Var: COPEN SN
Deformed Yar: U Deformation Scale Factor: +1.00e+00

@ Sandia
National
MOFFATT & NICHOL Laboratories




:;,'

 State-of-the-art for predicting tearing for steel shells
comprised of plates, weld seams, stiffeners consist of two
fundamental types of failure criteria:
1. Strain-based failure criteria applied to unflawed steel
material and components (described earlier)
2. Fracture-based methods applied to postulated
flaws, which are commonly found in welded steel
structures
* Both are relevant to PCCV liners, but both have different
Information requirements
 Failure Criteria Type 2 is more demanding in terms of
information required

Failure Prediction
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 For PCCVs, it may be a better predictor of “failure” because
It guides the prediction of failure size, while Criteria Type 1
does not

 Approximate procedure is needed, or “transfer function” for
correlating J-based fracture prediction to strains in PCCV
Liner

« Ultimately, this also leads to prediction of liner tear lengths
and opening areas versus strain in the liner

 Final step from prediction of J for a typical “flawed” piece
of liner, to prediction of specific numbers and sizes of
cracks, requires addition of statistical assessment

Failure Prediction
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rack Modeling for Use in Strain-to-J-
Mapping
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rack FE Modeling for Development of
Strain-to-J Mapping

b 4
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Contours for J - Integral calculation

Center of Crack Crack Tip
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Failure Prediction

Two fracture models developed as separate FE models with extremely fine
mesh (element size of 0.01-inch), appropriate to embedding small initial
cracks into the models, calculating J-integrals and propagating cracks

Fracture models consider two particular conditions where local liner strain
concentrations significant — a vertical seam weld, straddled by horizontal
stiffener, with or without presence of a vertical T-anchor

In fracture mechanics work;, it is typical to assume a ‘flaw’ size equal to
thickness of material (in our case 1/16”)

Fracture submodels have a standardized length
In PCCV, it is the length between the liner anchors

A gage-length for strain mapping should be relatively immune to
differences between analysts mesh size in Models 2 or 3

For Model 2c, largest strains observed at Locations 6, 8, and 1. This tends
to agree with observations around the E/H Region. The largest strains
(Location 6) are applied to the fracture analyses
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Assumed Initial Flawsize in Fracture Mechanics
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» Crack propagation threshold needs to be established (but say for
example it is J., = 350 in-lb/in?); values such as this come from
fracture toughness testing

» Typical J, values for Grade 50 ksi carbon steels can range from
50-100 in-Ib/in2 to as high as 600-800 in-lIb/in? but based on recent
work on another project, J., = 350 in-Ib/in? was found to be a
reasonable median value

« J., is reached when the “averaged strain” (between anchors) is
0.0028. This corresponds to a pressure of approximately 2.7xP,
(by cross referencing to the Model 2c Liner Strain graph)

« A small flaw in the liner would first begin to grow (and leak
substantially) at a pressure of 2.7xP4. Conclusion from this is
similar to observations made during the PCCV testing

« Such predictions for onset of tearing, AND predictions of the
length of tears will be conducted in the Phase 2 work

Failure Prediction, cont’d
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} Dimensions of Fracture Model 1

(same as Fracture Model 2)

Vertical Liner Anchor
(cT 32.3x36.5x 1.6 x2.3)

Circumferential Liner Anchor
(3.2mm x 37.5mm)
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%oundary Conditions Applied to fracture

Model (shell thickness rendered)

Uy=0

Uy=applied disp.

4
5§
T
X

Uz=0 on bottom face
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Crack Size and Location on Fracture
Model 1

J-Integral Calculated
at Crack Tip

1/8" Initial Crack
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racture Model 2 (Same a Fracture Model 1

with Vertical Liner Anchor Removed)
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Gci:

ircumferential Strain at Specified

V
%cations vs. Multiples of Design Pressure

for Model 2a
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V
Mcumferential Strain at Specified
0

cations vs. Multiples of Design Pressure
for Model 2b

Model 2b Liner Strain
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%cumferential Strain at Specified

V
%cations vs. Multiples of Design Pressure

for Model 2c¢
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Circumferential Strain in Model 1 with
Average Strain of 0.00372

Y
ep: Step-
Incremen t 38: Step Time = 0.5356
Primary Var: E, E22

X Deformed Var: U Deformation Scale Factor: +1.000e+01

(Vertical Liner Anchor not Displayed for Clarity)
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Circumferential Strain in Model 1 with
Average Strain of 0.00419

Y
Step: Step-1
Incremen t 37:Step Time = 0.6026
Primary Var: E, E22

X Deformed ¥ar: U Deformation Scale Factor: +1.000e+01
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-integral vs. Circumferential Strain in

'},

Fracture Model 1 and 2

J-Integral vs. Circumferential Strain
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