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Objectives: 
Application of the modeling assumptions from the Model 2 to the full-scale Sandia Containment 
Vessel. 
Direct comparison with experimental results. 
Studying for the global and local response.  
Demonstration of the robustness of the model in modeling non-linear behavior of the structure. 
Improvement since last study in 2005  
 
Modeling assumptions : 
Complete Model: Geometry (simplification for the openings)  
Damage concrete law 
Reinforcement : rebars 
Prestressing tendons :  

 - ungrouted ducts 
 - grouted duct 

Large Displacements assumption 
Unstressed initial state 
 
 
Results and conclusions : 
Comparison of global and local response of the structure with experimental Data 

1. General Behavior of the fullscale SANDIA Model under LST  
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Model geometry 

Internal radius = 5.7 m 

External radius = 5.375 m 

Total Height= 22.5 cm 

Number of Elements: 
~ 18 000 
 
Number of Elements 
in the wall thickness: 
~ 3/5 elements 
 
Finer mesh for the  
Openings: 
-  E/H Hatch 
-  A/L Hatch 
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Components of the model : 
 

Component Element type Material model 

Concrete Structure 3D brick element 

Vessel, Dome Concrete Damage law 
 

Foundations, Buttress Linear Elastic Material   
 

Liner 2D plate element (DKT) Plastic Material ( VMIS) 

Reinforcement bars 2D membrane element  

Prestressing tendons 1D elements 
Associated with 1D string 
element 

Linear Elastic Material  
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Concrete constitutive model 
MAZARS  -> ENDO-ISOT 
 
Features :  
-  Based on damage mechanics 
-  Limit in traction (tension / compression distinction) 
-  Linear response in compression 
-     Isotropic damage effect (single scalar damage index D) 
-     Crack reclosure  
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Parameter: 
 SYT = 2.4E6 , D_SIGM_EPSI = -1.0e9  
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4 Reinforcement layers: 
-  INNER Vertical  
-  INNER Horizontal  
-  OUTTER Vertical 
-  OUTTER Horizontal  

Steel Reinforcement Layers 

Identification of the density of 
reinforcement (steel area/ m) for 
the different zones. 
8cm2 /m< <29cm2/m 
 

Layers are defined on the 
inner and outter surface of 
the vessel, without 
eccentricity  

Non-linear elasto-plastic model: 
 
Behaviour law: Non linear elasto-plastic 
GRILLE_ISOT_LINE 
Parameters: SY= 445.0E6 , D_SIGM_EPSI = 1250.0E6 
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Prestressing Tendons 

Modeling of the complete set of  ~180 cables 
With finer mesh  



 

A1 8 

Tendons section = 3.393 cm² (each tendon) 

Tendon steel constitutive model 
Elastoplastic 
 
Parameters: 
Young Modulus in elastic phase (E) = 191 000 MPa 

Young Modulus in plastic phase (E) = 5 894 MPa 

Poisson's ratio (ν) = 0.3 

Density (ρ) = 7850 kg/m3 

Yield Strength (Ys) = 1 679MPa 

Tensile Strength  (XXX) = 1 856.76 MPa   

Density (ρ) = 7850 kg/m3 

Angular and wobble friction:   µ =0.21; λ = 0.001 

Prestressing Loading: 
 - Initial Prestressing Force     Hoop Tendons  = 43.21t 

                               Vertical Tendons =48.02 t 
-  Setting Losses             Hoop Tendons = 0.00395 

            Vertical Tendons = 0.005 

Tendon’s	
  node 
θ	


 

z
 
 

r 
 Concrete’s	
  
node 

(perfectly bonded in Z and R direction, 
friction along tendon direction) 

Coefficient for bonding kx,ky,kz =1e9 

Ungrouted Model 
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Results  

-  Global structural Behavior: deformed shape  
Comparison radial and vertical displacement with experimental results 
 

-  Damage evolution in the Vessel  

-  Evolution of the axial force in the prestressing tendons  

-  Response of the Liner 
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Magnification Factor =100 
Values in meters 
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‘Discontinuity in deformed shape’ 

Magnification Factor =100 
Values in meters 
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Radial Displacements 

Z=0.25m Z=1.43m Z=2.63m 

Z=6.2m Z=9.23m Z=14.55m 
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Vertical Displacements 

Z=2.63m Z=4.68m 

Z=7.73m Z=12.8m Z=14.55m 



 

A1 14 

SOL #8 - Vertical Displacement
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Effect of small displacements/ versus Updated geometry 
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Deformed shape with updated geometry 
P = 3.6 x pd= 1.40 MPa - Magnification factor: 5  

Deformed shape with small displacement assumption 
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Spread of damage in the concrete elements 
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P =3.2Pd 
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Liner Response 
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Tendons Response 

Grouted tendon 

Ungrouted tendon (plain line) 

(dotted line) 
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Grouted tendon 

Ungrouted tendon (plain line) 

(dotted line) 
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Ungrouted tendon (plain line) 

(dotted line) 
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Conclusions: 
  
-  Good estimation of the global behavior of the structure.  

-  Better estimation in the central Vessel ( far from foundations and dome) 

-  Negligible Effect on the tendons modeling on the global response 

-  Noteworthy effect of the choice of updated geometry for the calculation  
  (  updated geometry ‘PETIT REAC’) 

 
-  Comparison of the Grouted or Ungrouted cable modeling:  

smoothening of the response (axial force) close to the openings. 
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2. Initial State 

Objective : 
How to model / account for the different lifts and its effects on the structural response of the 
structure ( short term / long term ) 
 
 
Modeling : 
Full-scale structure at three successive construction state 
Reinforcement rebars and tendons not accounted for in the model  
 
Concrete behavior Modeling 
-  Thermal effects:  εT° : cooling of the concrete (ΔT = 40°C) 
-  Autogeneous effects : ε autogeneous° : according to  EC2 
-  Creep effects: ε creep° : according to  EC2 
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Model Assumption  

Modeling : 
Full-scale structure at three successive construction state 

 3d brick elements , quadratic mesh for mechanical part 
Reinforcement rebars and tendons not accounted for in the model  
 
 

C1 and C2 

Foundations 

C1 - C2 

C3 - C4 

Time = -6 months 

Time = 0 

Time = 2 months 

Time = 4 months 
D1 – D2- D3 
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Concrete behavior Modeling 
-  Thermal effects:  εT° : cooling of the concrete (ΔT = 40°C) 
-  Concrete Hydration (Hardening) : according to  EC2 
-  Autogeneous effects : ε autogeneous° : according to  EC2 
-  Creep effects: ε creep° : according to  EC2 
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Concrete behavior Modeling 
-  Thermal effects:  εT° : cooling of the concrete (ΔT = 40°C) 
-  Concrete Hydration (Hardening) : according to  EC2 
-  Autogeneous effects : ε autogeneous° : according to  EC2 
-  Creep effects: ε creep° : according to  EC2 
 

Code_Aster: 

Creep Law of Granger: 
Eurocode 

Numerical Response 
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Calculation process 

Thermic 
Computation 

Drying  
 Computation 

Mechanical 
Computation 

Variation of T (time) Variation of xxx (time) Activation of the various effects (time) 
At each stage : thermic, hydratation, … 
 
At each lift : 
Activation of the new group element  
Accounting by the imposed displacement  
Of the part already constructed 
 
Activation of all the proprieties after  
setting of the concrete 
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Magnification Factor =500 

With construction staging Without construction staging 
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Stress Profiles at 6 months (Inner surface) 
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For Azimut 135 ° 

Hoop stresses distribution over the structure height  
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Autogeneous  
Strain 

Mechanical  
Strain 

Thermal  
Strain 

Total  
Strain 

Hoop strains decomposition over the structure height  
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-  Interest of studying the different effects intervening in the setting of concrete:  
    creep, hydratation, young age  
 
-  Stresses map at initial state  different from the unstressed initial state assumption 

-  Future interest in more precise modeling of the phasing construction:  
drying effects w/wo with creep effects. 
account for the progressive prestressing of the cables 
use as initial state for LST test 

Conclusions  
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3. Permeability of the concrete wall  

Objectives : 
Estimation of the permeability state of the wall 
Comparison between different configurations :  

 - initial state (permeability of concrete) 
 - initial state with staging and aging effects (permeability of the concrete damaged) 

 
 
Modeling : 
Complete structures 
No modeling of the cables 
 
Results : 
Map of gas flow for a given pressure and comparison between different configurations 
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Hydraulic Equation 
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•  Relative permeability induced  
by degree of saturation   

Permeability in term of Degree of saturation 

Damage 

Permeability 

Saturation 
With Sl liquid water degree of Saturation 
        Kg  the gas permeability 
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Application 

Calculation of leakage rate 

Evolution of the internal pressure during the 
60 years 

Evolution of the pressure during the test 

Geometry and modeling of a Vessel 

 
From Mahsa MOZAYAN KHARAZI  
 



 

A1 40 

Evolution of the Damage indice at each test  
Hydric Calculation: 

Degree of saturation in the wall thickness for each test 

Mechanical Calculation: 

 
From Mahsa MOZAYAN KHARAZI  
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Incoming massic gaz flow during tests Outgoing massic gaz flow during the tests (effect of 
the increasing damage) 

Hydraulic Calculation : 

 
From Mahsa MOZAYAN KHARAZI  
 



 

A1 42 

Application to the case of SANDIA: qualitative results 

u   the deformations obtained with the model with staging after 1 year  

Estimation of the local damage using Mazars Law 

u  Saturation Hypothesis: 
Degree of Saturation :80% 
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Leakage Map of the inner surface at a given pressure  
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Conclusions  

•  Development of a uncoupled thermo-hydro-mechanical methodology to compute leakage rate 
  for containment without liner 
 
•  The method allows for measuring the effect of the degree of saturation and progressive damage 

•  Limitations of the model for law damage structures. Improvement required for large cracks. 
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4. Rupture of the Liner  

Objective : 
Model the rupture of the liner with Cohesive Zone Model elements 
 
 
 
Modeling : 
Sub-structuration : - Extraction of the displacement field on the liner from the complete  

   structural model. 
              - Application of the resulting displacements on certain zones of the liner.  

             - Study of the Liner response with 3 possible tears. 
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Comparison Liner Hoop strains Experimental versus Numerical close to the E/H at the elevation 4.8m 
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Liner hoop stresses close the E/H hatch at an elevation 4.8m 
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Meshing: liner 
Solid element 

Quadratic 

Thickness 1.6mm 

Liner perfectly bonded with concrete at nodes 
except around seal lines  

Properties: same as for model 1 
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Meshing: seal 
Cohesive zone model elements 

Hexa-CZE (zero volume element) 

Quadratic number of nodes with special shape function 

Liner / concrete interface: same radial displacement 

Seals surrounding the E/H 

E= 223 GPA 
ν= 0 
ρ= 7 850 kg/m3 
 
GC = 130 MPa.µm  Surface energy density 
SIGM_C = 400 MPa  Failure stress                                        
COEF_EXTR =0. 
COEF_PLAS = 0.5 

Shape of stress vs jump 
displacement curve - Mode I crack 
opening 

SOUD4 

SOUD1 

SOUD3 
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Assembly of a cohesive element with 
adjacent liner elements 

Cohesive zone model elements 
Example of tetra-cohesive zone elements with opening in Mode I 

The cohesive law for ductile fracture 
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Deformed shape of the liner  

Application of the displacement on the liner. 
 
From the zone close to the cohesive zone,  
the radial displacement of the liner is imposed   

40cm 10cm 
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Magnification Factor =10 

Visualization of the opening of the seals at P=2.9Pd 
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Displacements of the seal lips at P =2.85Pd 

Variation of Radial Displacement  
over the height of the seal  

Variation of Hoop Displacement  
over the height of the seal SOUD4 
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Opening of the SOUD 4: 
Measure of the displacement jump 
along the seal length 

Normal stress in the cohesive zone element 
along the seal length 
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Opening of the SOUD 1: 
Measure of the displacement jump  
along the seal length 

Opening of the SOUD 3: 
Measure of the displacement jump  
along the seal length 

SOUD4 

SOUD1 

SOUD3 
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Conclusions 

Promissing results of Application of the CZM to the rupture of the Liner: 
Activation of the various seals. 
Progressive opening of the seal 
 
 

Limitations and problems to overcome: 
 Sensitivity to the refinement of the mesh / parameters 
 Sensitivity to the methodology ( displacements imposed ) 
 Overcome convergence problems related to the softening behavior of the CZM law 
 


