PERFORMANCE OF CONTAINMENT VESSEL UNDER SEVERE ACCIDENT CONDITIONS

SPE analysis meeting #3 March 27-29, 2012, Washington DC

SUMMARY

1. Global Behavior of the Containment Vessel LST (Model 3)

1

- 2. Modeling of the initial state
- 3. Permeability of the Containment Vessel
- 4. Rupture of linear seal (Model 2)

1. General Behavior of the fullscale SANDIA Model under LST

Objectives:

Application of the modeling assumptions from the Model 2 to the full-scale Sandia Containment Vessel.

necs

edf

Direct comparison with experimental results.

Studying for the global and local response.

Demonstration of the robustness of the model in modeling non-linear behavior of the structure. Improvement since last study in 2005

Modeling assumptions :

Complete Model: Geometry (simplification for the openings) Damage concrete law Reinforcement : rebars Prestressing tendons :

- ungrouted ducts
- grouted duct

Large Displacements assumption Unstressed initial state

Results and conclusions :

Comparison of global and local response of the structure with experimental Data

Sector Nector Ne

Model geometry

Internal radius = 5.7 m External radius = 5.375 m Total Height= 22.5 cm

Number of Elements: ~ 18 000

Number of Elements in the wall thickness: ~ 3/5 elements

Finer mesh for the Openings:

- E/H Hatch
- A/L Hatch

Components of the model :

Component	Element type	Material model
Concrete Structure	3D brick element	
Vessel, Dome		Concrete Damage law
Foundations, Buttress		Linear Elastic Material
Liner	2D plate element (DKT)	Plastic Material (VMIS)
Reinforcement bars	2D membrane element	
Prestressing tendons	1D elements Associated with 1D string element	Linear Elastic Material

-70 -

Concrete constitutive model

MAZARS -> ENDO-ISOT

Features :

- Based on damage mechanics
- Limit in traction (tension / compression distinction)
- Linear response in compression
- Isotropic damage effect (single scalar damage index L)
- Crack reclosure

$$\sigma_{ij} = (1 - D)C_{ijkl} \varepsilon_{kl}$$

Strain 2.4 1.8 Stress (MPa) Stress (MPa) 1.2 Tension 0.6 Tension 0 0 0.0005 0.001 0.0015 0.002 0.0025 Strain (m/m) **BETON (EIB)** Strain Strain (m/m) -0.001 -0.0005 -0.003 -0.0025 -0.002 -0.0015 -10 Stress (MPa) -20 Stress (MPa) Compression -30 -40 -50 Compression -60

BETON (EIB)

Parameter:

SYT = 2.4E6 , D_SIGM_EPSI = -1.0e9

Steel Reinforcement Layers

Non-linear elasto-plastic model:

Behaviour law: Non linear elasto-plastic GRILLE_ISOT_LINE Parameters: SY= 445.0E6 , D_SIGM_EPSI = 1250.0E6

eccentricity

Prestressing Tendons

Modeling of the complete set of ~180 cables With finer mesh

Tendon steel constitutive model

Elastoplastic

Parameters:

```
Young Modulus in elastic phase (E) = 191 000 MPa
Young Modulus in plastic phase (E) = 5 894 MPa
Poisson's ratio (v) = 0.3
Density (\rho) = 7850 kg/m3
Yield Strength (Y<sub>s</sub>) = 1 679MPa
Tensile Strength (XXX) = 1 856.76 MPa
Density (\rho) = 7850 kg/m<sup>3</sup>
Angular and wobble friction: \mu =0.21; \lambda = 0.001
```

Tendons section = 3.393 cm² (each tendon)

Prestressing Loading:

- Initial Prestressing Force
- Setting Losses

Hoop Tendons = 43.21t Vertical Tendons = 48.02 t Hoop Tendons = 0.00395 Vertical Tendons = 0.005

Results

- Global structural Behavior: deformed shape Comparison radial and vertical displacement with experimental results
- Damage evolution in the Vessel
- Evolution of the axial force in the prestressing tendons
- Response of the Liner

Magnification Factor =100 Values in meters

2.26e-07

Radial Displacements

Z=0.25m

Z=1.43m

Z=2.63m

Vertical Displacements

Effect of small displacements/ versus Updated geometry

Deformed shape with small displacement assumption

Deformed shape with updated geometry P = $3.6 \times pd= 1.40 \text{ MPa} - \text{Magnification factor: } 5$

Spread of damage in the concrete elements

A1

0

1

P =3.2Pd

Liner Response

Hoop Stresses (MPa) (2.5)

209

Hoop Stresses (MPa) (3)

Hoop Stresses (MPa) (3.2)

Tendons Response

- Ungrouted tendon(plain line)
- Grouted tendon (dotted line)

P = 0Pd

P = 1*Pd

P = 2*Pd

P = 2.5*Pd

P = 2.8*Pd

P = 3.0*Pd

P = 3.2Pd

P = 0Pd

P = 1*Pd

P = 2*Pd

P = 2.5*Pd

P = 2.8*Pd

P = 3.0*Pd

P = 3.2Pd

- -

Force in cable H067

х 1.1

N

Azimut ()

300

350

400

450

250

600000

550000

500000

450000

Force (N) 400000

350000

300000

150

200

- Ungrouted tendon (plain line)
- Grouted tendon (dotted line)

A1 — Grouted tendon (dotted line)

Conclusions:

- Good estimation of the global behavior of the structure.
- Better estimation in the central Vessel (far from foundations and dome)
- Negligible Effect on the tendons modeling on the global response
- Noteworthy effect of the choice of updated geometry for the calculation (updated geometry 'PETIT REAC')
- Comparison of the Grouted or Ungrouted cable modeling: smoothening of the response (axial force) close to the openings.

2. Initial State

Objective :

How to model / account for the different lifts and its effects on the structural response of the structure (short term / long term)

<u>Modeling :</u>

Full-scale structure at three successive construction state Reinforcement rebars and tendons not accounted for in the model

Concrete behavior Modeling

- Thermal effects: $\epsilon_{T^{\circ}}$: cooling of the concrete ($\Delta T = 40^{\circ}C$)
- Autogeneous effects : $\epsilon_{autogeneous^{\circ}}$: according to EC2
- Creep effects: $\epsilon_{creep^{\circ}}$: according to EC2

Model Assumption

Modeling :

Full-scale structure at three successive construction state 3d brick elements , quadratic mesh for mechanical part Reinforcement rebars and tendons not accounted for in the model

Concrete behavior Modeling

- Thermal effects: $\varepsilon_{T^{\circ}}$: cooling of the concrete ($\Delta T = 40^{\circ}C$)
- Concrete Hydration (Hardening) : according to EC2
- Autogeneous effects : $\epsilon_{autogeneous^\circ}$: according to EC2
- Creep effects: $\epsilon_{creep^{\circ}}$: according to EC2

Concrete behavior Modeling

- Thermal effects: $\epsilon_{T^{\circ}}$: cooling of the concrete ($\Delta T = 40^{\circ}C$)
- Concrete Hydration (Hardening) : according to EC2
- Autogeneous effects : $\epsilon_{autogeneous^\circ}$: according to EC2
- Creep effects: $\epsilon_{creep^{\circ}}$: according to EC2

Code_Aster: Creep Law of Granger:

With construction staging

Without construction staging

Stress Profiles at 6 months (Inner surface)

Hoop stresses (MPa) (6/6) 0.413

Meridional Stresses (MPa) (6/6)

2.45

Hoop stresses distribution over the structure height

Hoop strains decomposition over the structure height

Conclusions

- Interest of studying the different effects intervening in the setting of concrete: creep, hydratation, young age
- Stresses map at initial state different from the unstressed initial state assumption
- Future interest in more precise modeling of the phasing construction: drying effects w/wo with creep effects. account for the progressive prestressing of the cables use as initial state for LST test

3. Permeability of the concrete wall

Objectives :

Estimation of the permeability state of the wall Comparison between different configurations :

- initial state (permeability of concrete)
- initial state with staging and aging effects (permeability of the concrete damaged)

Modeling :

Complete structures No modeling of the cables

<u>Results :</u>

Map of gas flow for a given pressure and comparison between different configurations

Permeability in term of Degree of saturation

Permeability induced by damage

Gas Flow :

Application

Evolution of the pressure during the test

From Mahsa MOZAYAN KHARAZI

Aix-en-Provence, France

May 29-June 1, 2012

A1

Mechanical Calculation:

Evolution of the Damage indice at each test

From Mahsa MOZAYAN KHARAZI

Hydric Calculation:

Degree of saturation in the wall thickness for each test

Hydraulic Calculation :

Incoming massic gaz flow during tests

Outgoing massic gaz flow during the tests (effect of the increasing damage)

Application to the case of SANDIA: qualitative results

Leakage Map of the inner surface at a given pressure

Conclusions

- Development of a uncoupled thermo-hydro-mechanical methodology to compute leakage rate for containment without liner
- The method allows for measuring the effect of the degree of saturation and progressive damage
- Limitations of the model for law damage structures. Improvement required for large cracks.

4. Rupture of the Liner

<u>Objective :</u>

Model the rupture of the liner with Cohesive Zone Model elements

Modeling :

Sub-structuration : - Extraction of the displacement field on the liner from the complete structural model.

- Application of the resulting displacements on certain zones of the liner.
- Study of the Liner response with 3 possible tears.

Comparison Liner Hoop strains Experimental versus Numerical close to the E/H at the elevation 4.8

Liner hoop stresses close the E/H hatch at an elevation 4.8m

Meshing: liner

Solid element

Quadratic

Thickness 1.6mm

Liner perfectly bonded with concrete at nodes except around seal lines

Properties: same as for model 1

Meshing: seal

Cohesive zone model elements

Hexa-CZE (zero volume element)

Quadratic number of nodes with special shape function $GC = 130 MPa.\mu m$

Liner / concrete interface: same radial displacement

E= 223 GPA ν= 0 ρ= 7 850 kg/m³

GC = 130 MPa.µmSurface energy densitySIGM_C = 400 MPaFailure stressCOEF_EXTR =0.Shape of stress vs jumpCOEF_PLAS = 0.5displacement curve - Mode I crack
opening

Seals surrounding the E/H

Cohesive zone model elements

Example of tetra-cohesive zone elements with opening in Mode I

Assembly of a cohesive element with adjacent liner elements

Deformed shape of the liner

Application of the displacement on the liner.

From the zone close to the cohesive zone, the radial displacement of the liner is imposed

Visualization of the opening of the seals at P=2.9Pd

Consulting Service

Opening of the **SOUD 4**: Measure of the displacement jump along the seal length

Normal stress in the cohesive zone element along the seal length

CONSTRUCTION OF CONSULTING SErvices

Opening of the **SOUD 1**: Measure of the displacement jump along the seal length

Opening of the **SOUD 3**: Measure of the displacement jump along the seal length

Conclusions

Promissing results of Application of the CZM to the rupture of the Liner: Activation of the various seals. Progressive opening of the seal

Limitations and problems to overcome: Sensitivity to the refinement of the mesh / parameters Sensitivity to the methodology (displacements imposed) Overcome convergence problems related to the softening behavior of the CZM law