Standard problem exercise SPE - 3

Performance of pre-stressed concrete containment vessel

under severe accidents

Part – I: Structural Analysis

AERB, India

- Introduction
 - Objective
 - Scope
- Phase-1 analysis
 - Model-1
 - Model-2
 - Model-3
- Phase-2 analysis: Case 1
- Summary

Objective

- Improve knowledge in the areas of:
 - Local containment behaviour under beyond design basis pressures

 Characterization of leakage behaviour as a function of pressure and temperature

function of pressure and temperature

Probabilistic aspects of containment response.

Scope

- Assessment of the ultimate load capacity of a Prestressed Concrete Containment Vessel (PCCV) structure.
- Principally based on the data of 1:4 scale model containment tests carried out at Sandia National Laboratories (SNL) in 2000-2001
- The SPE consists of two phases

- Phase 1:
 - Examination of local effects which were observed to require more study in the previous

round robin analyses

- Effects of containment dilation on prestressing force
- Slippage of prestressing cables
- Steel-concrete interface
- Failure mechanisms
- Use of nominal versus in-situ conditions

- Phase 2
 - Examination of methods to estimate leakage rate as a function of pressure
 - Evaluation of the methods relative to the PCCV test results
 - Enumeration of methods for predicting leakage of PCCV as function of pressure and temperature
 - Application of these methods to characterize performance, in terms of leakage rate, under pressure and temperature
 - Transition of performance to probabilistic space

Phase - 1

- Model 1: Tendon behavior model
 - Study tendon forces as a function of containment dilation
 - Change of tendon stress distribution from the classical angular friction design assumption to an approximately uniform distribution
 - Slippage of pre-stressing cables
 - Allow change in position of the tendon relative to the concrete after initial pre-stress to simulate tendon behaviour during overpressurization

Phase - 1

- Model 2: Local model of equipment hatch
 - Ovalizations of concrete versus steel
 - Study the displacement and leakage that can be caused by this
 - Slippage between the liner and the concrete
 - Influence on tearing and leakage
 - Failure mechanisms
 - Predict tears in the liner from the FE model strains

- Model 3: Global analysis model
 - Incorporate lessons from model 1 & 2
 - Provide PCCV response at all locations
 - Provide liner strain mapping
 - Response data versus pressure for the "55 standard output locations"

• Finite element model developed in ABAQUS

- Analysis of model 1 had to be discontinued due to
 - Issues related to convergence
 - Memory & hardware limitations
- Planned to be taken up further in future

- Modeling
 - Rebars as sub-elements of concrete wall
 - Smeared layer
 - Individual stirrups as 2-node truss elements
 - Horizontal and vertical cables using truss elements
 - Average initial stresses of 800 MPa in horizontal
 - Average initial stresses of 1200 MPa in vertical

- Boundary conditions
 - Symmetric boundary conditions applied to two

vertical surfaces.

- Bottom surface kept vertically restrained.
- Two horizontal rotations at the top surface are restrained
- Top surface allowed to slide vertically as plane

surface by applying constraint equation

- Loading & analysis
 - Pre-stress applied and model allowed

to reach equilibrium

- Internal pressure and meridional pull

at top surface

• Pull is a function of internal pressure

Parameter	Model – 2a (Integral connection)	Model – 2b (Friction contact)
Ultimate capacity	3.44 Pd	3.05 Pd (Convergence issues)
Concrete hoop cracking	1.64 Pd at 0° Azimuth	1.626 Pd at 0° Azimuth
Tendon strain	0.312% at ultimate pressure near 0º Azimuth	0.302% at ultimate pressure near 18º Azimuth

- Modeling
 - layered shell element with two layers
 - Layer 1: Liner; Layer 2: Concrete
 - Reinforcement and pre-stressing cables as

embedded oriented surfaces within concrete layer

- Uniformly distributed smeared surface
- Thickness is the ratio of rebar area to spacing
- Only equipment hatch and airlock openings are included in the model

- Material non-linear behavior
 - Concrete: Damage plasticity model
 - Bond slip and dowel action modelled by tension stiffening in concrete model

Rebars & cables: Metal plasticity model

- Liner: Metal plasticity model

- Analysis: Two steps
 - Step 1: Pre-stress (Average uniform value)
 - Hoop cable 840 MPa
 - Hairpin: Cylinder & dome till buttress 1250 MPa
 - Hairpin: Dome above buttress 1000 MPa
 - Step 2: Internal pressure

Un-deformed shape

Deformed shape after pre-stress

Model - 3

Deformed shape

1.0 x Pd

3.0 x Pd

3.65 x Pd

Stress in prestress tendon – 3.65 Pd

Phase - 2 Analysis

Model calibration

• Confirm adequacy of mesh refinement

• Check performance w.r.t test results

- Results compared with two other models
 - Model refined near openings
 - Local detailed (3D) model near E/H

Model – calibration: Refinement near openings

- Wall using 8 node solid elements
 - Concrete damage plasticity model for inelastic behavior
- Liner and pipe sleeve using 4 node shell element
 - Metal plasticity model to simulate inelastic behavior

Model calibration: Stress in tendon: 3.65 P_d

- No difference in response of the global models with and without refinement near openings
 - Confirms adequacy of mesh refinement near openings
 - global mesh itself very fine, 0.2m x 0.2m

• Estimated PCCV ultimate capacity and liner damage locations match closely with global and local models

• Hence global model of phase-1 (model-3) used for phase-2 studies also

Case - 1 analysis

- Calibrated Model-3 from phase-1
- Modification to include temperature loading
 - Number of layers changed from 2 to 4
 - Layer 1: Liner (9 integration points)
 - Layer 2 to 4: Concrete (9 integrations points each)
- Modified model designated as model-4

Model

Temperature & pressure variation

- As per problem statement
 - Stress free temperature = 25°C
- Temperature loading regions
- Temperature variation across thickness

• PCCV model is considered to have reached its ultimate

structural failure capacity when

- Yielding of following occur in any location in the structure
 - Reinforcing steel in both directions
 - Pre-stressing steel in both directions

Case-1 results: Deformed shape

Case-1 results: Deformed shape

- Output provided for 52 out of 55 locations
 - Output at base liner (loc 47) not provided
 - as the base liner is not modelled.
 - Output at anchorage loc. 54, 55 not provided
 - Pre-stressing tendons are modelled as smeared layer.
- Rebar strains: Generally provided for the outer layer.
- Liner strain: Integration point at inner surface of PCCV.
- Radial displ. at the centre of E/H and A/L: Mean of displ. at 4 nodes on the edge of E/H & A/L.

Displacement in general area

Displacement at openings

Reinforcement strains

Liner strains

Liner strain contours

Liner strain contours

Liner strain contours - Hoop

AERB ACT REGULATOR

Liner strain contours - meridional

Liner strain contours

Liner strain contours

Tendon stress profile

 Tendons not modeled individually

 Stress at tendon layer at the level of specified tendon

• Path for each tendon

Tendon stress profile

Tendon stress profile

Ultimate capacity: 3.46 P_d

Ultimate capacity: 3.46 P_d

Stress in prestress tendon layers

- Comparison of results with phase 1
 - Ultimate capacity
 - Phase 1: 3.65 x P_d
 - Case 1: 3.46 x P_d
 - Displacement at center of E/H & A/L
 - Strain in rebar location 31

Displacement at center of E/H & A/L Comparison of Phase-1 & Phase2-case1

Strain in rebar location – 31

 Temperature has a significant effect on strains and displacement

 The compression provided by the pre-stress is compensated by temperature at early loading stage.

