WEF Disinfection 2009 Workshop: Modeling UV Disinfection using CFD

February 28, 2009

Radiation Dose Modeling in FLUENT®

Clifford K. Ho

Sandia National Laboratories Albuquerque, NM

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Modeling Approach

Radiation Dose Modeling in FLUENT®

- Discrete Ordinates Radiation Model
- Particle Tracking and Dose
- Calculation of RED

Discrete Ordinates Radiation Model

- Solves the radiative transfer equation over a domain of discrete solid angles
- Calculates radiation intensity as a function of absorption, scattering, reflection, and emission
- Integrated within FLUENT CFD/hydraulic model
 - Impacts of geometry within the reactor (shadowing, reflection) readily implemented

Step-by-Step Guide

www.sandia.gov/cfd-water

Turn on Radiation Model in FLUENT

DO Model Parameters

Impact of Theta x Phi Discretization on Simulated Incident Radiation Field

theta x phi = 2×2 theta x phi = 5×5

Calgon 12" Sentinel® UV Reactor

Specify UV Transmittance of Water

• Define > Materials...

Name Material Type Order Materials By water-liquid fluid ✓ ✓ Chemical Formula Fluent Fluid Materials ✓ Chemical Formula h2o<1> water-liquid (h2o <l>) ✓ Fluent Database Mixture User-Defined Database User-Defined Database None ✓ Edit ✓</l>			×					laterials		
water-liquid fluid fluid ▼ Name Chemical Formula h2o<1> water-liquid (h2o <l>) Wixture hone Properties Absorption Coefficient (1/m) constant Edit</l>			Order Materials By		Material Type		Mate	Name		
Chemical Formula h2o<1> Mixture none Properties Absorption Coefficient (1/m) constant Edit 20.09 T			🔷 Name	V	fluid		fluid	water-liquid		
h2o<1> Water-liquid (h2o <l>) Fluent Database User-Defined Database User-Defined Database Absorption Coefficient (1/m) constant 20.09 T</l>			💠 Chemical Formula		Fluent Fluid Materials		Flue	Chemical Formula		
Mixture None Properties Absorption Coefficient (1/m) 20.09			Fluent Database	Y	water-liquid (h2o <l>)</l>		wat	20<1>		
Properties Absorption Coefficient (1/m) constant 20.09			User-Defined Database	1		Mixture	Mixt			
Absorption Coefficient (1/m) constant				Y		9000	non			
Absorption Coefficient (1/m) constant				770			19	operties		
20.09					Edit	t 💌	constant	Absorption Coefficient (1/m)		
			τ			>	20.09	\langle		
Scattering Coefficient (1/m) constant $UVT = \frac{1}{I} = e^{-ax}$			$-=e^{-ax}$	= 	UVT =	t	constant	Scattering Coefficient (1/m)		
	1	. 1	0 	- -	T / T		0			
Scattering Phase Function isotropic $I / I_o = Intensity reduction at x =$	1 <i>cm</i>	i at x = 1	itensity reductio	= 1	$I / I_o =$	ic 🛛	isotropic	Scattering Phase Function		
a = Absorption coefficient (1/m)		t(1/m)	orption coefficien	bsa	a = Ab					
Refractive Index constant					Edit	it 🔻	constant	Refractive Index		
				-			1			
Change/Create Delete Close Help										

National

Laboratories

Specify UV Radiation Boundary Condition

• Define > Boundary Conditions...

🔀 Wall	
Zone Name	
sleeve_1	
Adjacent Cell Zone	
fluid	
Momentum Thermal Radiation Species DPM Multiphase UDS	
BC Type Beam Width	Beam Direction
Semi-transparen Theta (deg) 1e-06 Phi (deg) 1e-06	X 1 Y 0 Z 0
(w/m2) 1000	Diffuse Fraction
Apply Irradiation Parallel to the Beam	
OK Cancel Help	

oratories

Applying Wall Reflection

• Define > Boundary Conditions...

🗙 Wall									×
Zone Name									
reactor_bo	ody								
Adjacent Cell Zone									
fluid									
Momentum	Thermal	Radiation	Species	DPM	Multiphase	UDS			
Thermal Con	ditions							140 - 140 -	
🔶 Heat Flux	<			H	eat Flux (w/m	2) 0		Constant	V
🔷 Temperat	ture		(Inte	ernal Emissivi	ty 0.8	>	 [constant	V
Radiation	n						wan mis	(ii) ©	
			Heat G	enerati	on Rate (w/m	3) 0		Constant	V
Material Nam	ie							🛄 Shell Co	nduction
aluminum		▼ Edit							
OK Cancel Help									

Incident Radiation Fields

Simulated UV radiation field with and without wall reflection

(Calgon 12" Sentinel[®] UV Reactor)

Radiation Dose Modeling in FLUENT®

- Discrete Ordinates Radiation Model
- Particle Tracking and Dose
- Calculation of RED

- Define injection points
- Define particle tracking model
- Define user-defined function to accumulate dose for each particle

Define Injections and Particle Tracking Model

• Define > Injections...

	X Set Injection Properties	
	Injection Name	
	drw	
\langle	Injection Type	
	file V	
	Particle Type Laws	
	◆ Inert ◇ Droplet ◇ Combusting ◇ Multicomponent □ Custometer	>m
	Material Diameter Distribution Oxidizing Species	
	anthracite 🗴 linear 🖉	
	Evaporating Species Devolatilizing Species Product Species	
	<u> </u>	
	Point Properties Turbulent Dispersion Wet Combustion Components UDF Multiple F	leactions
<	Stochastic Tracking Cloud Tracking	· [
	Discrete Random Walk Model	
	Random Eddy Lifetime Min. Cloud Diameter (m)	
	Number of Tries	
	3 Max. Cloud Diameter (m)	
	Time Scale Constant	
	0.15	
	OK File Cancel Help	

Injection Pre-Processor

- Defines arbitrary number of injection points in a circular region (e.g., pipe inlet) and writes to a file for FLUENT
 - www.sandia.gov/cfd-water

Particle Tracking Discrete Random Walk model

No-DRW

Calgon 12" Sentinel[®] UV Reactor

DRW

Calculating Dose from Particle Tracks

User-Defined Function (UDF)

Particle Dose Calculation

- Dose UDF ("libudf") for Windows and Unix can be found at <u>www.sandia.gov/cfd-water</u>
 - Extract "libudf" directory into same directory as case and data files being used in FLUENT
- Load the Dose UDF into FLUENT
 - Define > User-Defined > Functions > Compiled...
 - Specify "libudf" for the library name

For each particle:

Dose (J/m^2) = Incident radiation (W/m^2) x Exposure time (s)

Dose UDF Settings

• Define > Models > Discrete Phase...

🗙 Discrete Phase Model	
Interaction Particle Treatment	
☐ Interaction with Continuous Phase ☐ Unsteady Particle Tracking	g
Tracking Physical Models UDF Numerics Parallel	
User-Defined Functions User Variables	
Body Force none V Number of Scalars 1	
Scalar Update uv_dosage::libudf	
Source none	
DPM Time Step none	
OK Injections Cancel Help	

Display Particle Tracks

• Display > Particle Tracks...

🗙 Particle Tracks					
Options	Style	Color by			
📕 Node Values	line 🛛	Particle Variables 🔻			
📕 Auto Range	Style Attributes	User Value 0			
📕 Draw Grid	Report Type	Min Max			
☐ XY Plot	◆ Off	100 300			
☐ Write to File	\diamond Summary	lindota kiin/kiov			
Pulse Mode	💠 Step by Step				
	Report to	Track Single Particle Stream			
◆ Single	⇔ File	Stream ID Skip Coarsen			
	Console	1 200 1			
		Release from Injections			
		no_drw			
Display Pulse Track Axes Curves Close Help					

Calgon 12" Sentinel® UV Reactor

Particle Tracks Colored by Dose

Calgon 12" Sentinel® UV Reactor

Output Dose Results

Report > Discrete Phase > Sample

- Generates "[outlet].dpm" file
 - Cumulative particle doses (J/m²) are contained in this file
 - Can be read by Excel

%

View Dose Histogram

Report > Discrete Phase > Histogram

Radiation Dose Modeling in FLUENT®

- Discrete Ordinates Radiation Model
- Particle Tracking and Dose
- Calculation of RED

Calculate Reduction Equivalent Dose (RED)

- Use appropriate dose-response curve to calculate survival ratio (N/No) for each particle
- Sum particle survival ratios and divide by total number of particles to yield cumulative survival (and inactivation) ratios
- Use dose-response curve to get RED

RED Post-Processors

- Takes data from "[outlet].dpm" and calculates RED and log inactivation
- Available at <u>www.sandia.gov/cfd-water</u>
 - (1) Windows-based executable and source file
 - (2) Excel spreadsheet

Output from FluentRED.exe

So now we have a simulated RED... Now what???

- Compare simulated RED to measured RED
 - Evaluate the model
- Use simulated RED as a metric to compare alternative reactor/piping designs
 - Installed vs. validated configurations

Measured RED vs. Simulated RED

- Simulating UV dose distributions in FLUENT
 - Discrete ordinates radiation model in FLUENT generates UV incident radiation field
 - Honors geometry used in hydraulic CFD simulation (e.g., shadowing, reflection)
 - Particle tracking yields dose distribution
 - Dose distribution yields RED
- Tutorial and tools are available at:
 - <u>www.sandia.gov/cfd-water</u>

- Wizard-like template for generating models and grids of UV reactors and piping in FLUENT
- Muhammad.Sami @ansys.com

FluentUV

Acknowledgments

- AwwaRF (Project #4107)
 - Alice Fulmer, Project Manager
- Project Advisory Committee
 - Brian Bernados, Joel Ducoste, Steve Deem, Dennis Greene, Michael Montysko
- Calgon Carbon Corporation
 - Keith Bircher
- Infilco Degremont, Inc. (DENARD)
 - Robert Kelly and Bruno Ferran
- Trojan Technologies Inc.
 Ted Mao

Sandia Corporation gratefully acknowledges that the Awwa Research Foundation is the joint owner of the technical information upon which this manuscript is based. Sandia thanks AwwaRF for their financial, technical, and administrative assistance in funding and managing the project through which this information was discovered. The comments and views detailed herein may not necessarily reflect the views of the Awwa Research Foundation, its officers, directors, affiliates, cofunding organizations, or agents.

