

Thermal Runaway Severity Testing and Ranking

Hsin Wang, Lianshan Lin

Materials Science and Technology Division, Oak Ridge National Laboratory

Loraine Torres-Castro, Valerio De Angelis and Yuliya Preger

Sandia National Laboratories

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Battery Pack

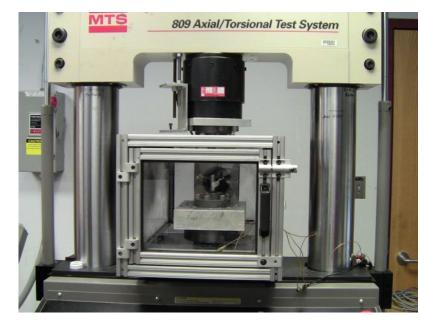
Battery Modules

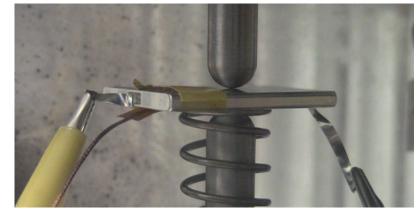
XCT: Indented Battery

Thermal Runaway: Mechanically Induced Short Circuit

• Simulated Internal short-circuit: small size, repeatable

- Nail penetration
- Single-side indentation
- Pinch test (two indenters)
- Pinch-torsion, indent-torsion


Real-time Monitoring:


Load, displacement, V_{OC} and temperature

Post-mortem Examination:

- X-ray computed tomography (XCT)
- Open cell examination
- Goal: Develop a database to rank/predict

hazard severity

Single-Cell Thermal Runaway Testing at ORNL

1998 DOE VTO HTML User Project

Motorola Door-Knob Test

Cellphone Batteries

2003 ORNL LDRD

Pinch Test

Capacity < 4 Ah

2010 DOE VTO, ARPA-E NSWC-Carderock

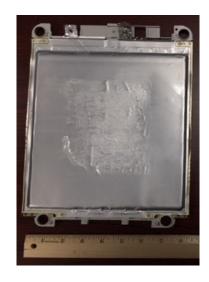
Pinch-torsion Test

18-24 Ah Pouch Cells

2014-2022 DOE VTO/NHTSA DOE OE

Standard Small Indentation

33 Ah Pouch Cells



Industry Partners: Motorola, General Motor, A123, Farasis Energy, FORD, UL, Soteria

Li-ion Cells: Disassembled EVs and Commercial Sources

Large-format Prismatic Cells Tested at ORNL and Sandia

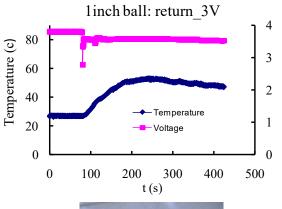
2017 Chevy VOLT (26 Ah)

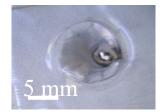
2013 Nissan Leaf (33 Ah)

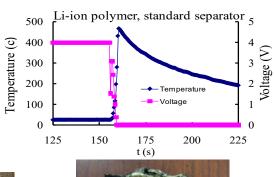
Commercial NMC Cells (10 Ah) Commercial LFP Cells (10 Ah)

10 NMC Cells (5 SOC x 2) after Testing Left to right: 0% SOC -> 100% SOC

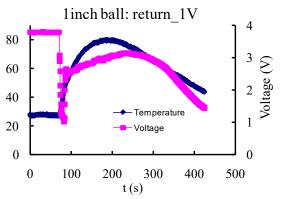
10 LFP Cells (5 SOC x 2) after Testing Left to right: 0% SOC -> 100% SOC

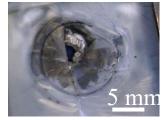

Extracting Li-ion Cells from Electrical Vehicles (Chevy VOLT, Nissan Leaf and FORD Focus EV)

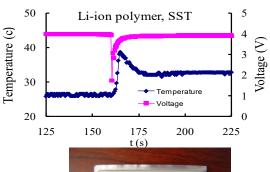


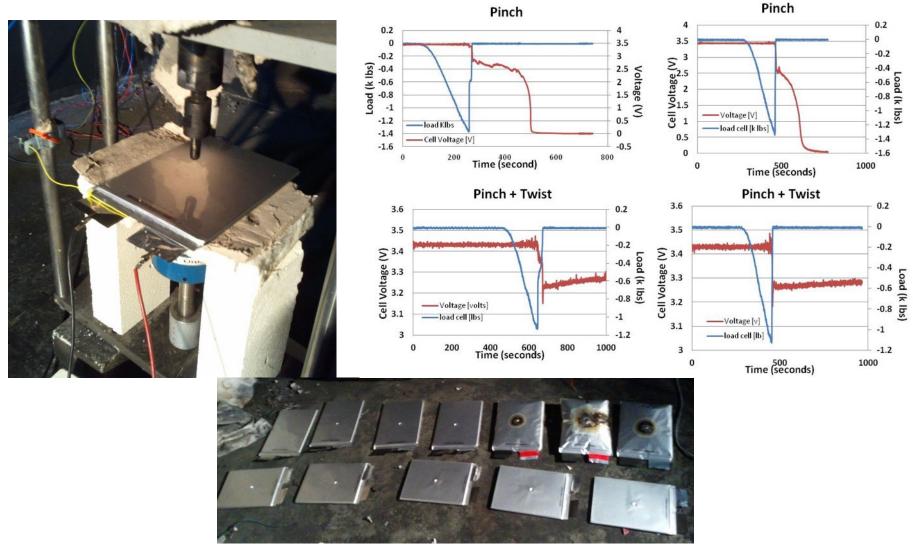

Internal Short Circuit Simulation: Mechanically Induced Short Circuit

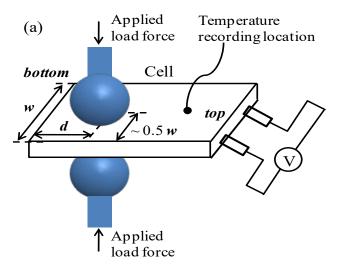
Simulate Short Circuit Inside the Cell

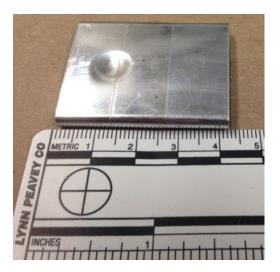




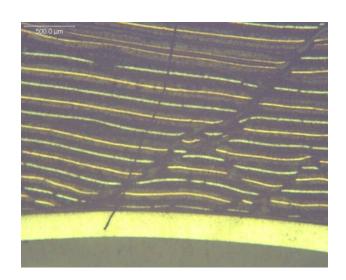


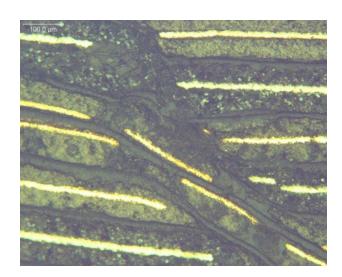


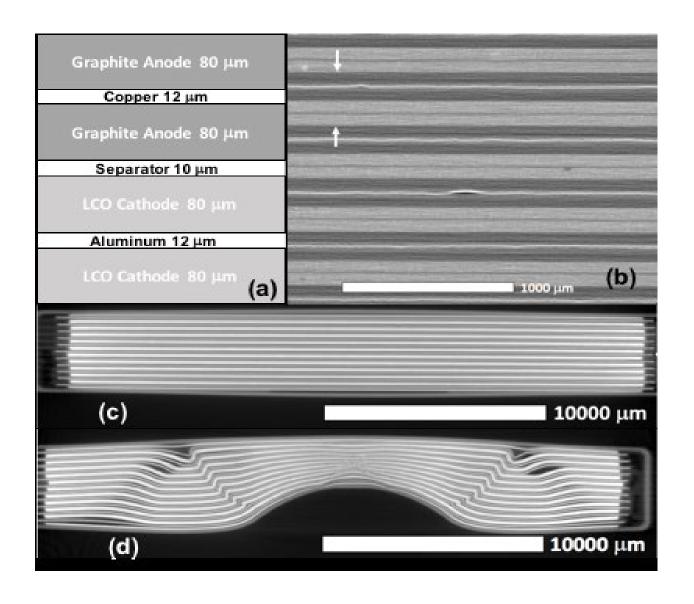

Pinch Tests vs. Pinch/Torsion Tests

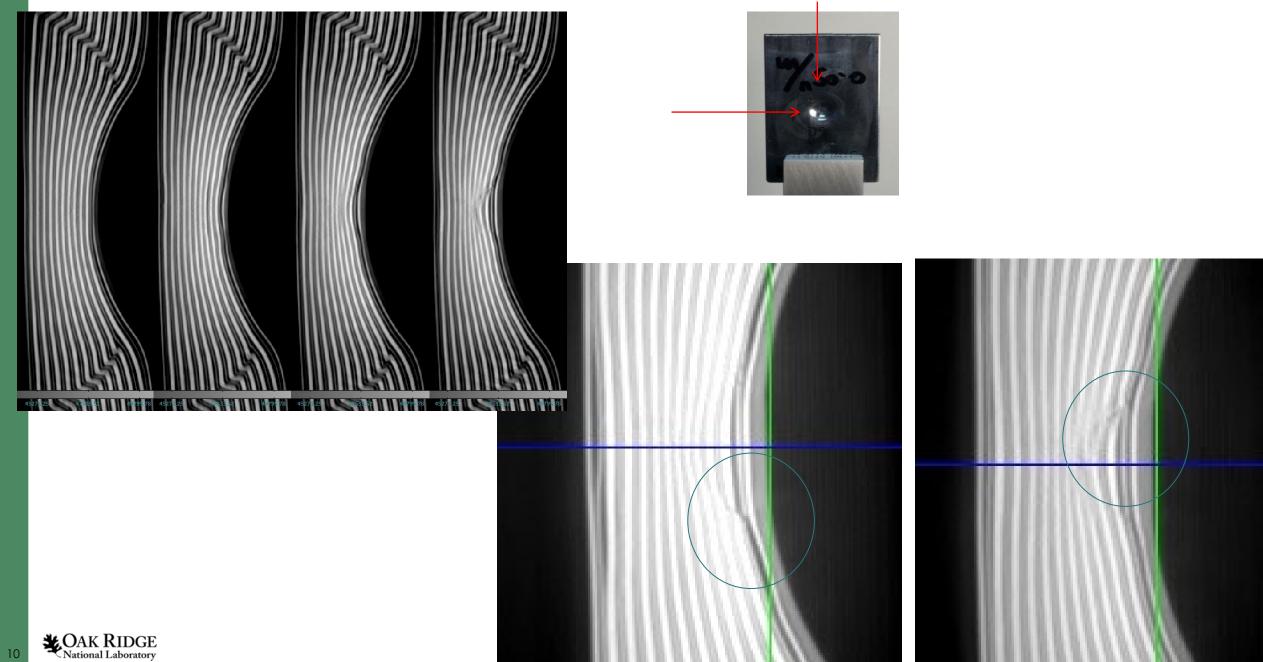


- F. Ren, T. Cox and H. Wang, "Thermal Runaway Risk Evaluation of Li-Ion Cells Using a Pinch-Torsion Test", *Journal of Power Sources* Vol.249, March 2014, pp156-162 (2014)
- Yuzhu Xia, Tianglei Li, Fei Ren, Yanfei Gao and H. Wang, "Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells", Journal of Power Sources, Vol 256C, pp356-362, May 2014

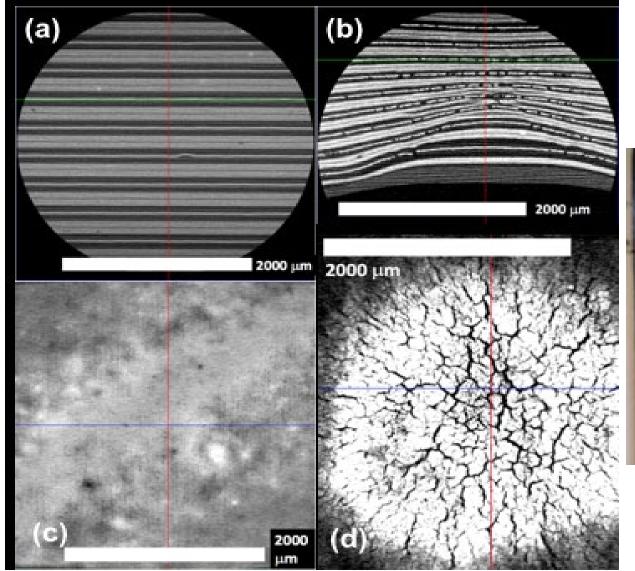


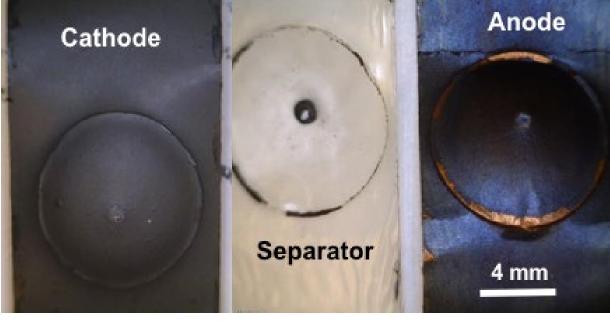

Pinch Tests and Deformation of Layers



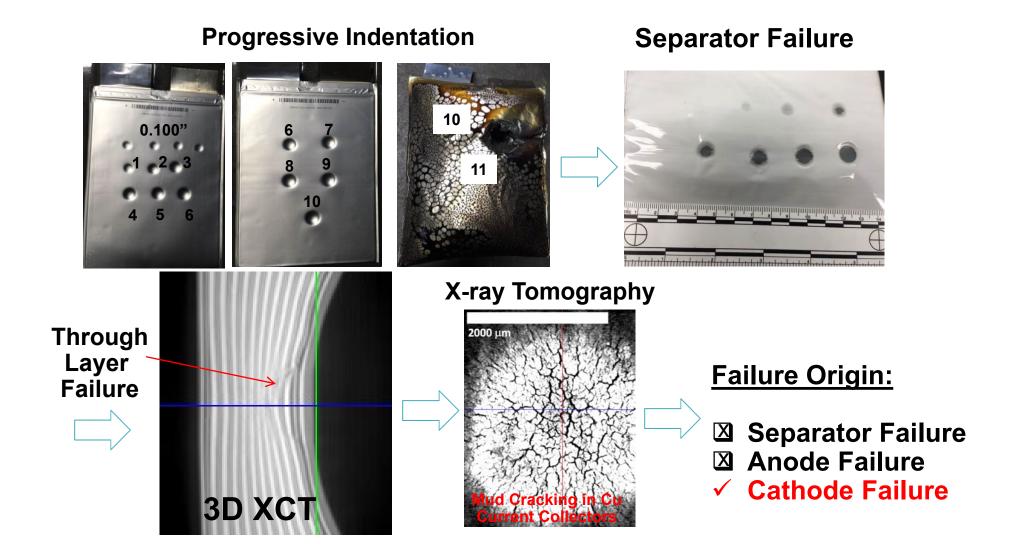

H. Wang, S. Simunovic, H. Maleki, J. N. Howard, J. A. Hallmark, Journal of Power Sources, 306 (2016) 424-430

Cell Internal Structures under Spherical Indentation - XCT





Tomography Images Across the Cell: Internal Short Circuit



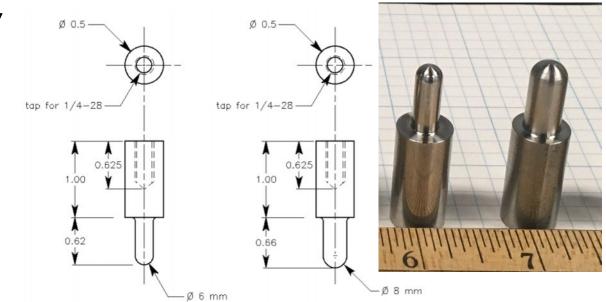
XCT Showed Mud-cracks in Copper Current Collectors

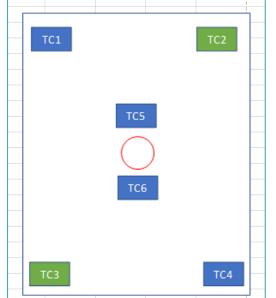
The Origin of Mechanically Induced Short Circuit

Thermal Runaway Severity Safety Database

Project Goal: Develop a thermal runaway database to rank/predict hazard severity

Updated ORNL-Sandia Test Procedures and Standards

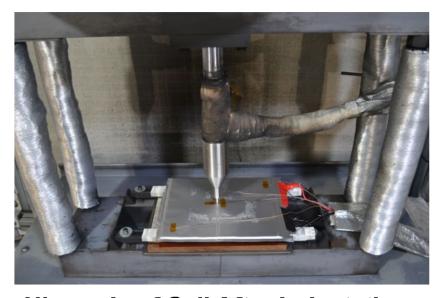

Internal Short-ciruit Induced Thermal Runaway


Mechanical abuse (indentation)

Updated Test Protocols:

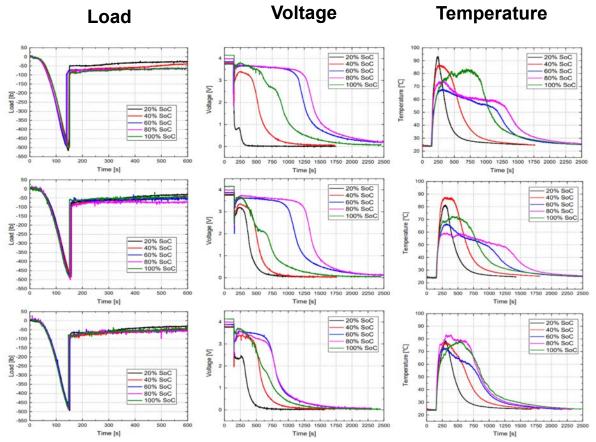
- Cycle cell 3-5 times at C/2 between 3.0-4.2V to determine SOC and discharge to test SOC
- Hydraulic or servo-motor driven load frame
- 6 mm punch (most sensitive, small contact)
- 0.05 inch per minute compressive loading
- 25 mV V_{oc} drop
- Hold the punch after short circuit
- Temperature measurement:
 - 5 mm from the indenter
 - At cell corners when possible

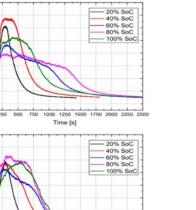
Thermocouple Locations on Large-format Cells


Punches f	or B	attery	Testing
ELC-2019.03.001			Scale: 1.5:1
Dimensions: inches (un otherwise specified)	less	Material: stainless steel	
Make fo	ur (4)	pieces o	of each
Edgar Lara-Curzio	(DRNL	March 2019

Select the most sensitive test to allow safety risk ranking

ORNL and Sandia Testing Facility: Large Format Cells


Nissan Leaf Cell in Sandia Test Chamber



Nissan Leaf Cell After Indentation

Thermal Runaway Risks for Li-ion Batteries (ORNL-Sandia)

Test Data and Cell Information:

- **Cell Capacity**
- Loading curve: before & after short
- Cell Voltage: drop and response
- **Cell Temperature vs. Time**
- Open cell voltage
- Anode thickness
- Cathode thickness
- Separator thickness
- C/2 Charge curve
- 1C discharge curve

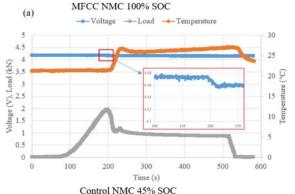
Example of Traditional Data Analysis

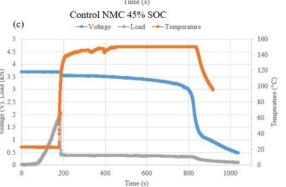
Cell Capacity (mAh)	500	500	500	500	500
SOC %	20%	40%	60%	80%	100%
Test Cell Capacity (mAh)	100	200	300	400	500
Voc (V)	3.75	3.784	3.861	3.991	4.147
V drop Initial (V)	0.25	2.284	0.351	3.581	3.955
V at 300 sec (V)	0.0183	0.095	0.407	0.15595	0.033569
Sumof V*∆t (V-Sec)	120.63	110.47	220.09	77.176	29.462
Load at failure (lb)	-338	-337.52	-345.7	-355.16	-353.82
Load during hold (lb)	-81.79	-88	-131.6	-170.04	-147.09
Temp Max	79.83	78.055	82.93	81.913	86.655
Sum of ΔT*Δt (K-Sec)	6685.3	8093.482	10168.27	14668.71	17089.57
Time to reach Tmax (sec)	62.57	33.6	61.2	60.8	57.8

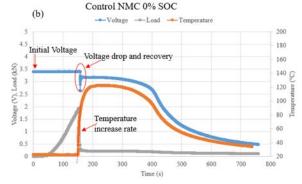
Small Cells Testing at ORNL:

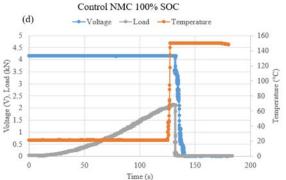
SOC: 20%, 40%,60% 80%,100% Capacity at 500, 1500, 200 mAhr Number of Cells: 4 cells/condition

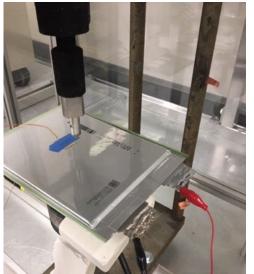
ESS Batteries at Various SOCs:


Sandia: 30%, 50%, 75%, 100%


ORNL: 20%, 40%,60% 80%,100%




Thermal Runaway Risks for Li-ion Batteries (ORNL-Sandia)


Load Voltage Temperature

Test Data and Cell Information:

- Cell Capacity
- Loading curve: before & after short
- Cell Voltage: drop and response
- Cell Temperature vs. Time
- Open cell voltage
- Anode thickness
- Cathode thickness
- Separator thickness
- C/2 Charge curve
- 1C discharge curve

Cell Name	Chemistry	Capacity (mAH)	Sample Number
Commercial LCO	LiCoO ₂	500	15
Commercial LCO	LiCoO ₂	1500	10
Commercial LCO	LiCoO ₂	2000	15
Commercial LCO	LiCoO ₂	6400	13
Control NMC	LiNiMnCoO ₂ (811)	5200	12
Metallized Film Current Collector (MFCC) NMC	LiNiMnCoO ₂ (811)	5200	10
Commercial LFP	LiFePO ₄	10000	16
Commercial NMC	LiNiMnCoO ₂	10000	14

Acronyms for cathode chemistry: lithium cobalt oxide (LCO); lithium nickel manganese cobalt oxide (NMC); lithium iron phosphate (LFP)

Thermal Runaway Severity: EUCAR vs Test Data-driven Severity Levels

EUCAR Severity Levels

Hazard Level	Description	Classification Criteria & Effect
0	No effect	No effect. No loss of functionality.
1	Passive protection	No defect; no leakage; no venting, fire, or flame; no rupture; no explosion; no exothermic reaction or
	activated	thermal runaway. Cell reversibly damaged. Repair of protection device needed.
2	Defect/Damage	No leakage; no venting, fire or flame; no rupture; no explosion; no exothermic reaction or thermal runaway. Cell irreversibly damaged. Repair needed.
3	Leakage ∆mass < 50%	No venting, fire, or flame; no rupture; no explosion. Weight loss < 50% of electrolyte weight (electrolyte = solvent + salt).
4	Venting ∆mass ≥ 50%	No fire or flame; no rupture; no explosion. Weight loss ≥ 50% of electrolyte weight (electrolyte = solvent + salt).
5	Fire or Flame	No rupture; no explosion (i.e., no flying parts).
6	Rupture	No explosion, but flying parts of the active mass.
7	Explosion	Explosion (i.e., disintegration of the cell).

ORNL-Sandia Test Data Based Severity Levels

Hazard Severity Level	Description
1 (VL, 0-10)	Very low, instant local Joule heating, detectable voltage drops
2 (L, 10-25)	Low, localized heating, small voltage drops and recovery
3 (M, 25-75)	Moderate, localized heating spread, significant voltage drops, continued discharge after recovery
4 (H, 75-90)	High, heating due to chemical reactions, cell puff and gas release, voltage drop to close zero
5 (VH, 90-100)	Very high, heating spread to the cell, heavy smoke and possible fire, voltage drops to zero

Calculation of Thermal Runaway Severity Score

Severity Score Calculation Based on Temperature and Voltage

$$\begin{cases} 5, & if \ Max \ Temperature < 40 \ ^{\circ}\text{C} \\ & wA * \left(\frac{Max \ Temperature}{160}\right)^{0.25} \\ \min \left\{ \begin{array}{c} +wB * \left(\frac{Temperature \ Increase \ Rate}{200}\right) \\ +wC * wCap * wSOC * Voltage \ Drop \ Score \\ & +cOffset, \ 100 \right\} \\ 100, & if \ Max \ Temperature > 160 \ ^{\circ}\text{C} \\ \end{cases} \end{cases}$$

Voltage Drop Score=

$$\begin{cases} 1, \ if \ (Voltage \ Range)/(Initial \ Voltage) < 0.2 \\ 2, if \ \frac{Voltage \ Range}{Initial \ Voltage} > 0.5 \ and \ \frac{Final \ Voltage \ Change}{Initial \ Voltage} < 0.2 \\ 3, \ if \ \frac{Voltage \ Drop \ in \ 2 \ Seconds}{Initial \ Voltage} < 0.4 \ and \ \frac{Final \ Voltage \ Change}{Initial \ Voltage} > 0.7 \\ 4, \ if \ \frac{Voltage \ Drop \ in \ 2 \ Seconds}{Initial \ Voltage} \ge 0.4 \ and \ \frac{Final \ Voltage \ Change}{Initial \ Voltage} > 0.7 \\ 5, \ if \ \frac{Voltage \ Range}{Initial \ Voltage} > 0.7 \ and \ \frac{Final \ Voltage \ Change}{Initial \ Voltage} > 0.7 \ and \ \frac{Voltage \ Drop \ in \ 5 \ Seconds}{Initial \ Voltage} > 0.7 \end{cases}$$

wA = 2.0 cScale, wB = 3.0 cScale, wC = 2.0 cScale (3)

$$wCap = Battery Capacity/10000$$
 (4)

$$wSOC = Battery SOC/100$$
 (5)

$$cScale = 95/6$$
, $cOffset = 5$ -cScale (6)

L
Г
⊦
Г
L
r
L
Н
L
H
H
⊦
Γ
⊢
Г
H
Г
H
Г
H
Г
┡
Г
L
Г
L
Г
L
⊢
L
⊢
L
٦
•

(2)

Calculated

Severity

Level (CHS

5-100)

14.4

17.6

Test Name

LCO 500mAh1-20SOC

LCO 500mAh1-40SOC

SOC

(%)

40

Battery

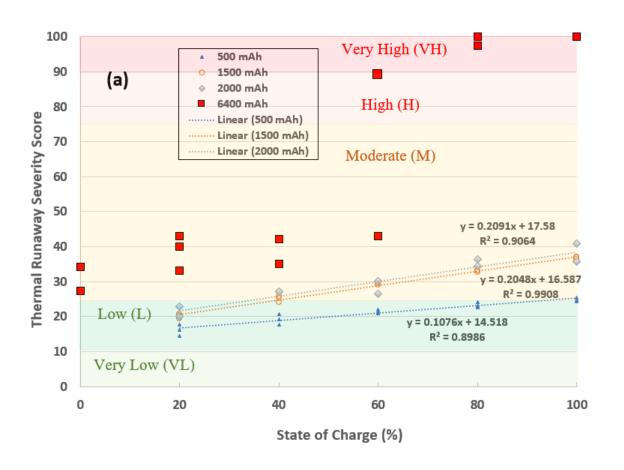
Capacity

(mAH)

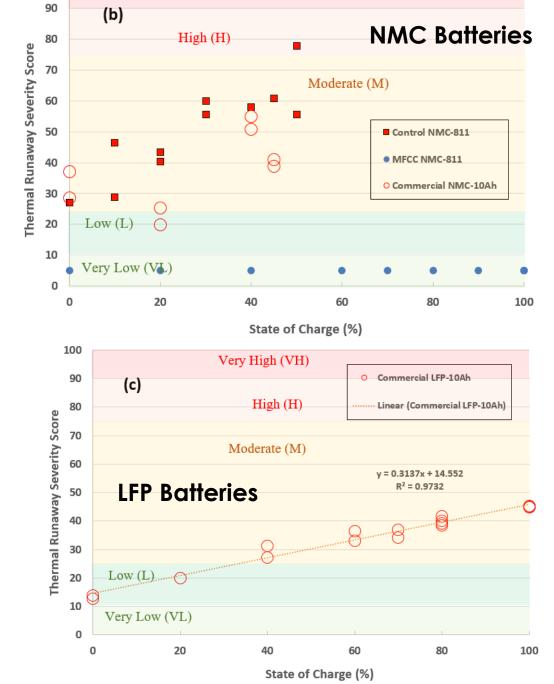
500

500

Observed


Seventy Level

(OHS)


Low

Low

Results: Linear Change vs "Step Change"

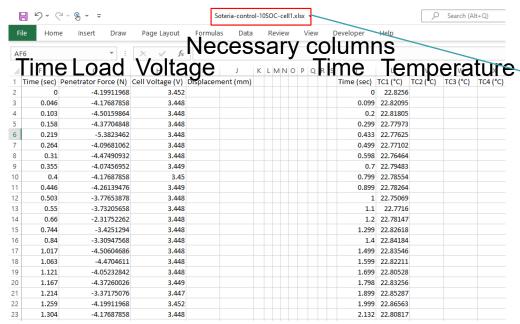
LCO Batteries: 500 mAh to 6400 mAh

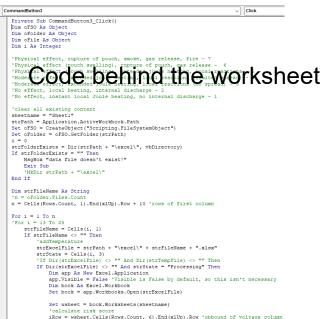
Very High (VH)

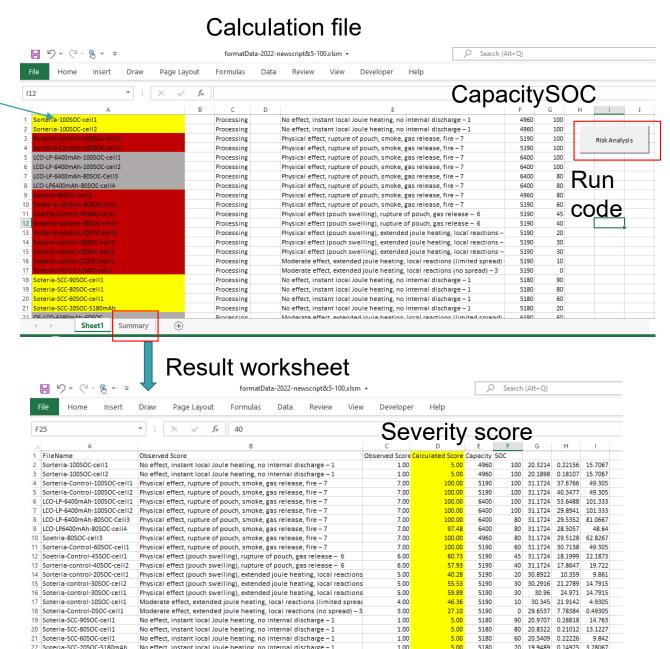
100

Thermal Runaway Severity Calculation Workflow

22 Soteria-SCC-20SOC-5180mAh


Sheet1 Summary


23 OE-LCO-6470mAh-60SOC


No effect, instant local Joule heating, no internal discharge - 1

Physical effect (pouch swelling), rupture of pouch, gas release - 6

Formatted data file in 'excel' folder

1.00

6.00

5180

89.10

20 19.9489 0.14925 3.28067

60 31.1724 31.8859 36.879

Search Database by Battery and Abuse Test Metadata (Host: Sandia Labs)

Future Plan: ESS Reliability Safety Testing and Analysis

Thermal Runaway Severity Database (managed by Sandia):

- > Single-cell indentation test standard
- > Standard test: testing labs, industry, UL etc.
- End-user upload: database utilization and expand database
- Future functions: machining learning, prediction of hazard severity