Advanced Membranes for Flow Batteries: Anion Exchange Membranes

Cy Fujimoto

2019 Budget = $300k
SAND2019-10624 C
Membrane Basics

The performance of flow batteries are influenced by membrane properties. Membrane conductivity dictates battery round trip efficiency and membrane selectivity regulates capacity retention.

• Due to cost concerns of acidic vanadium flow batteries, this is driving R&D interest in pH neutral and high pH environments typically used in aqueous organic and non aqueous flow batteries.
• New flow battery chemistries being developed under a variety of pHs.

In acidic environments (VRFB)
CEM used pH < 7

In alkaline environments
AEM used pH > 7
Anion Exchange Membrane (AEM) Basics:

1. Polymer that contains bound positive charges.
2. *Alkaline stable* AEM allows for new electrochemical applications.
3. There is no widely accepted *alkaline stable* “state of the art” AEM.

Growth of AEM interest 2001 - 2017

Handful of small AEM companies
Recent independent stability survey of AEM

- Growth and interest in AEMs, but need to objectively determine best AEM candidates
- Third party lab investigated accelerated membrane durability under alkaline conditions by soaking films in 1 M KOH for 1000 hrs at 80 °C and monitoring any loss in 1. IEC 2. Conductivity 3. Mechanical

Credit: Kelly Meeks and Bryan Pivovar NREL
IEC and Conductivity stability:

- Hydroxide ion is a strong base and nucleophile.
- Three different mechanisms result in IEC and conductivity loss.

Acceptable loss < 5%

Sandia polymer, PPN6 passed this test!

64% of surveyed polymers saw less than a 5% loss in IEC (Sandia polymer is PPN6).

but

42% of surveyed polymers saw less than a 5% loss in conductivity (Sandia polymer is PPN6).
Mechanical stability:

Only 20% of films maintained mechanical properties. Only three poly(phenylene) type structures survived (PPN6 is the Sandia polymer). All other types of backbones look to degrade. PPN6 showing encouraging durability.

Credit: Kelly Meeks and Bryan Pivovar NREL
Membranes for Flow Batteries (FB)

- Membranes for flow batteries = precise control of IEC. Too High IEC = high crossover, capacity loss. Too Low IEC = low conductivity, low efficiency. Need to optimize polymer IEC which is dependent on polymer structure and battery chemistry.
- Recently discovered a processing issue that was affecting IEC control = performance in flow battery applications.
Aqueous Soluble Organic FB:

Polymer with large amount of alkyl bromide (4-5) Process 1 partial conversion.

SNL = Low resistance

SNL 3.5 x lower resistance than Selemion DSV

Target 1x10^-10 cm^2/s
SNL 6 x 10^-9 cm^2/s
Selemion DVS 1x10^-12 cm^2/s

Unpublished work from Dr. Aziz labs

Process 1 No reaction

Polymer with low amount of alkyl bromide (1-2) Process 1 no reaction.
Dissolve in CCl₃H

Using Process 1 poor IEC control: experimental IEC (2.3 eq/g) always lower than theoretical (2.7 meq/g).

Heterogeneous reaction rate dependent on polarity of polymer.
Polymer Process 2:

Dissolve in DMSO

Add amine to polymer

Process 2 improves control of IEC: Experimental IEC (2.68 eq/g) now matches theoretical (2.7 meq/g). Submitted non provisional patent SD15069.0.
Conclusions:

• High interest in alkaline stable anion exchange membranes.
• Various polymers are being investigated, but the SNL polymer has shown promising durability in comparison tests.
• Issues in controlling polymer IEC was due to processing conditions (Process 1).
• Developed Process 2 which has shown full conversion of alkyl bromide to ammonium; IEC control. Submitted non-provisional patent.

Future Tasks:

• Flow battery test of AEMs synthesized by Process 2
• Membrane commercialization

Patents/Papers:

• Acid-catalyzed benzoylation reactions of Diels-Alder polyphenylenes in Polymer (December 2018), 158, 190-197. Fujimoto, Cy; Sorte, Eric; Bell, Nelson; Poirier, Cassandra; Park, Eun Joo; Maurya, Sandip; Lee, Kwan-Soo; Kim, Yu Seung.
Thank You

Thank You to the DOE Office of Electricity and especially Dr. Gyuk for his dedication and support to the Energy Storage industry and Sandia’s Energy Storage Program.

Questions?

chfujim@sandia.gov