Predicting and Mitigating Cascading
Failure in Stacks of Lithium-lon Cells

PRESENTED BY

John Hewson, Andrew Kurzawski, Loraine Torres-Castro,

™ il i

1 gl Pl s, 4

Randy Shurtz, Yuliya Preger, Joshua Lamb, Summer Ferreira

Office of Electricity Peer Review, September 23, 2019

SAND2019-11411 C

©@ENERcY NISA

e i ety

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



BACKGROUND OVERVIEW
Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges S
identified in 2013 Grid Energy Storage Strategic Plan B
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Safety incidents are rare but possible, including external
causes.

How can we reduce facility investment risk?

* Prevent single point failure from cascading to
large-scale system risk.

* Current approach is test to safety.
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Large-scale testing is costly and simulations
allow exploration of the design space if well
grounded in reality.
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OVERVIEW
Predicting and Mitigating Thermal Runaway

How can we reduce facility investment risk?
- |dentify boundaries between mitigation and cascading failure
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Short circuit
simulated in
first cell acts
as boundary
condition

Lamb, J., et al. (2015). ). Power Sourc I
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OBJECTIVES
Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges

identified in 2013 Grid Energy Storage Strategic Plan
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Develop validated predictive models of cell-to-cell then module-to- :..
module propagation.
Concurrent experimental program for validation (Loraine Torres-Castro)
Other tasks link predictive heat release to material science (Randy Shurtz)
|dentify boundaries of propagation versus mitigation
Thermal aspects of system design
Electrical aspects of system design
Battery chemistry and material science
Algorithms for active control strategies.
Develop capabilities to evaluate design tradeoffs. a1

Promote a broader acceptance of quality approaches to energy
storage safety.
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METRICS AND MILESTONES
Predicting and Mitigating Thermal Runaway

MILESTONES RESULTS
o Relate material models to ‘ : Imple.ment new h1gh_temp§rgture :
chemistry according to statistical analysis

experimental measurements at

multi-cell level. of calorimetry and propagation.

° Provides factor of two global
Improvements in propagation
predictions.
> Address safety modeling

associated with thermal

modifications. Determine limits ‘ ’ Increased heat capacity per stored
of cascading failure. Cnergy mitigates propagation.

o Thermal resistance between cells
contributes. Mapped out limits.

° Quantified relative effectiveness

> Future goals listed on Looking experimentally and through predictions.

Forward slide.



e | CHALLENGES

Most models for thermal runaway heat sources are ~20 years old
* Successful in terms of single-cell onset
+ Lack higher-temperature measurements needed for cascading failure prediction.

« Lack tie to material science developments.

— Data
=+ E,=135kl/mol,z;,=5.8
— E,=79kl/mol, z,,,,= 2.6
| --- Primary SEI

» 2018 addressed anode heat release models

| Sandia Gen 2
Oger = 10 m?/g
Lig ¢3C¢ at 10°C/min

Heat Flow (W/g Anode)
_= O = N W ke 00 OO N

0 100 200 300 400
Temperature (°C)



7 I RESULTS Predicting and Mitigating Thermal Runaway

CHALLENGE: No measurements of thermochemical
decomposition rates at propagation temperatures. Bayesian likelihood of

: : cathode rate parameters
- Bayesian analysis of cathode runaway P
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chemistry/ physics giving improved
predictions. =&

calorimetry measurements: DSC parameters ARC parameters
«  ARC and DSC measurements show two P :
distinct parameter sets. 1 S
- Both consistent within expt. uncertainty. ?:q.; : :_Qd_q‘
- Suggests adjustments in high-temp =i f/\

- See also Randy Shurtz talk on cathode ok

:J 12 14 16% 18 20 22 2™

chemistry tied to new materials Acfvation Temperature 6 [x 108 K]
* L 4

®aam» aEEEEER 1)
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Cascading failure testing with thermal inserts: metallic spacers between cells

LiCoO, 3Ah pouch cells

5 closely packed cells with/without aluminum or copper
spacer plates

o Spacer thicknesses between 1/32” and 1/8”
o State of charge between 50% and 100%

Failure initiated by a mechanical nail penetration in the
outer cell (cell 1)

Thermocouples (TC) between cells and spacers (if present)
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9 I Cascading failure testing
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Simulation and measurements: 100% SOC, no
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> Prediction of peak temperatures and cooling

> Cell crossing speed over-predicted






N ‘ RESULTS - Predicting and Mitigating Thermal Runaway

Temperature-time propagation measurements and predictions
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Metallic inserts
- Add heat capacity.

o Increase time delay for cell
runaway.

(oPrevent propagation for 30% )
increase in net heat capacity.

> Reduced SOC results suggest
homogeneous heat capacity
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changes of 25% sufficient.

o Simulations more sensitive to
mitigation than observation.
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RESULTS - Predicting and Mitigating Thermal Runaway

Cascading failure propagation rates.

Global rates allow estimates of possible active cooling requirements.

Thermocouple time derivatives
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Adding spacers increases space crossing time, but decreases cell crossing time.

Increasing state of charge (SOC) decreases both space and cell crossing time.
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Heat capacity and SOC propagation/mitigation summary

Quantified:
Increased heat
capacity per
stored energy can
inhibit cascading
propagation.

Results suggest
homogeneously
distributed heat
capacity is more
effective than
intermittent heat
sinks.
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Limits of cascading thermal runaway

Energy per heat capacity, cooling and inter-cell resistance defines propagation limits

Model maps delay in propagation: yellow region is infinite delay—failure to propagate.

Fully insulated Moderate cooling Strong air cooling
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Convection cooling and conduction through stack results in failure to propagate for some
scenarios.

[ Consider cost/design tradeoff : cooling versus thermal resistance. ]
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15 1 LOOKING FORWARD

From defining limits of propagation at cell-stack level to larger-scale facilities:

Limits of propagation
Moderate cooling

ha
100
03
£
0 F
w0
20
20 100 720 °

> Module and rack-scale heat release and dissipation. s ca
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> Improved thermal source term models for new battery materials.
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> Stand-alone application to analyze cell-stack and eventually module-scale then rack-scale scenarios.

° Analyze consequences of various abuse scenarios.

° Develop robust mitigation approaches to fit your economic model.

60 80
Time (s)

Cell venting of flammable gases: Flammability and heat release consequences.
° Flammability of unignited mixtures: CO-H2 versus electrolytes.

> Heat release distribution, consequences and dissipation.



16 1 LOOKING FORWARD

Collaborative workshops: Thermal Runaway Investigation, Prediction and Prevention

° Follow models of Turbulent Nonpremixed Flames Workshop (https:/ /www.sandia.gov/ TNF/abstract.html),
Measurements and Computation of Fire Phenomena Workshop (https:/ /iafss.org/mactp/)

> Setup online forum for validation quality measurements and validated predictive models.

° Collaboratively address inconsistencies across literature.

> Organizational meeting at Dallas ECS meeting, May 2019 including range of contributing institutions.

o . Electrochem. Soc. Perspectives paper on calorimetry measurements. Difficult to predict broadly across
different systems.

Suggest collaborative workshop structure bringing together experimentalists and
modelers to create a dialogue working through these challenges.
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*Mitigation of Failure Propagation in Multi-Cell Lithium
Ion Batteries (in preparation)

Presentations and Proceedings

*Toward understanding and preventing cascading failure
with computer modeling; ESS Safety Workshop, Albuquerque,
March 2019.

*Predicting and Mitigating Cascading Failure of Thermal
Runaway in Stacks of Li-lon Pouch Cells, 77#) FM Global
Open Source CEFD Fire Modeling Workshop, Norwood, MA, June
2019.
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Western States Section Combust. Instit., October 2019,
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Nanotechnologies

Sandia Battery Test . .
, K —

300 376 452

Summer Ferreira Loraine Torres-Castro John Hewson Sergei Ivanov
Yuliya Preger Joshua Lamb Randy Shurtz
Armando Fresquez Jill Langendorf Andrew Kurzawski i
Heather Barkholtz |
(former SNL)

*s

Baseline Materials Whole-cell Modeling of Design of new
electrochemical characterization abuse response thermal power

performance and thermal analysis propagation electronics for

analysis stability testing battery safety

"-""'-"-"-"-'-.
..-"-"-"-"--'---'

*

D D D D L L L L D L L L L L L L L L L L L T L L L L L S S S S o



19 1 SUMMARY

* Thermal runaway is a risk and potential barrier to development and

acceptance.

* Multi-physics thermal models are identifying critical ignition and

propagation trends.

* Quantifying mitigation strategies in terms ot physical parameters.

* Progress this term >

* Bayesian analysis of cathode measurements show parameter range Limits of propagation
Moderate cooling

heony = 25 (W/m?K)

allowing improved propagation predictions.

140

* Predictions and measurements of cell-to-cell propagation with varying

SOC and thermal mitigation. N

* Identify cascading failure limits: heat release per heat capacity
(homogeneous and inhomogeneous) -- combine with last-year’s analysis of
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thermal resistance.
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Thank you

* Funded by the US. Department of Energy, Office of Electricity, Energy Storage
program under the guidance of Dr. Imre Gyuk, Program Director.

= Sandia National Laboratories is a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LL.C., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-NA-
0003525.

= For further information: John Hewson - jchewso(@sandia.gcov
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This Sandia program brings together core capabilities in

- Thermal abuse of battery systems through Battery Abuse Lab.

- Fire hazard analysis for energy-containing system through the fire science based nuclear deterrent safety.
- High temperature chemistry and reacting systems through the Combustion Research Facility.
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