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Article

Introduction

Creativity is increasingly regarded as central to human 
knowledge production (Dietrich, 2015; Hennessey & 
Amabile, 2010). From human (Guilford, 1967) to machine 
(Schmidhuber, 2010) learning, from scientific (Feist, 2008) 
to artistic (Catmull & Wallace, 2014) innovation, from 
geniuses (Simonton, 1988) to ordinary mortals (Simon, 
1977), creativity helps advance the knowledge that enables 
humanity to adapt to its environments. Better definitions 
and quantitative assessments of creative outcome might 
thus accelerate knowledge advances in humans and, per-
haps, in cognitive entities more generally. How to define 
creative outcome with conceptual and mathematical con-
creteness, however, is still an ongoing challenge (Plucker, 
Beghetto, & Dow, 2004; Runco & Jaeger, 2012).

Recently, Simonton (2016b) proposed a three-factor def-
inition which led to an intuitive eightfold typology of cre-
ative outcome and its “uncreative” variants (Simonton, 
2016a). Most importantly, that proposed definition provides 
a foundation for increasingly concrete definitions of cre-
ative outcome. This article builds on and reframes 
Simonton’s definition from two different perspectives.

The first perspective is functional (Campbell, 1960; 
Dietrich, 2015; Simonton, 2011): that, in the exploration 
and exploitation processes that evolutionary adaptive sys-
tems use to produce and employ knowledge about their 
environments, creative outcome is posited to be successful 
exploration hence significant advance in that knowledge. 
Creative ideas are those that add significantly to knowledge 
by providing both utility and learning (“useful learning”): 

Ideas that provide utility are valuable and add to knowledge 
(Popper, 1962/2014), and ideas that also provide learning 
by changing expectations (probabilistic beliefs) about what 
is and isn’t useful are even more valuable because they 
force a reshaping of that knowledge.

The second perspective is calculational: That the learn-
ing part of useful learning can be estimated by the change in 
expectations (probabilistic beliefs) about an idea’s utility 
before and after it has played out in its environment 
(Campbell, 1960; Cropley, 2006; Simon, 1977; Simonton, 
2011). We imagine the following stylized sequence of 
events: An initial (prior) assessment is made of the utility of 
the idea, then the consequences of the idea are played out in 
its environment, and finally a subsequent (posterior) assess-
ment is made of the utility of the idea. From the change in 
the two assessments, an estimate can be made of learning: 
The change in perceived utility before and after the idea has 
been played out and thus of the degree to which the idea has 
forced a reshaping of knowledge. As will be described in 
sections “Functional Perspective: Creativity’s Evolutionary 
Purpose Is Useful Learning” and “Calculational Perspective: 
Learning as a Change in Probabilistic Beliefs About Utility,” 
learning will be shown to be dominated by surprise, the 
change in the perceived utility of the idea. Thus, creative 
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outcome is a combination of high utility and surprise at that 
high utility, or “implausible utility.”

In scientific knowledge, an example of creative outcome 
and implausible utility might be Alfred Wegener’s 
(1922/1966) theory of continental drift. Put forth in 1912, 
the idea was initially disbelieved (given a negative prior 
assessment). During the subsequent four decades, the con-
sequences of the idea were played out in numerous experi-
ments until the idea was confirmed in the early 1950s (given 
a positive posterior assessment), ultimately becoming the 
basis for the modern theory of plate tectonics. In techno-
logical knowledge, an example of creative outcome and 
implausible utility is the laser. First demonstrated in 1960, 
the laser was widely thought to be “an invention looking for 
an application” (Constable & Somerville, 2003). Its appli-
cations unfolded only gradually, culminating in the 1970s 
when its revolutionary significance for fiber-optic commu-
nications was recognized. In cultural knowledge, an exam-
ple of creative outcome and implausible utility might be 
women’s suffrage in the U.S. First proposed seriously in the 
1840s but to significant opposition, it was not until 1920 
that the 19th Amendment (“the right of citizens of the 
United States to vote shall not be denied or abridged by the 
United States or by any State on account of sex”) to the U.S. 
Constitution was adopted.

Importantly, all examples of creative outcome share the 
common characteristic of some degree of implausible util-
ity, though they might differ in various ways from these 
examples. The idea might be larger (Darwin’s theory of 
evolution) or smaller (a possible car-pool shortcut from the 
neighborhood to the office) in societal impact, and the idea 
could be singular or a set of mutually reinforcing ideas—a 
“paradigm,” in the classic descriptions of such mutually 
reinforcing ideas in scientific (Kuhn, 1962/2012) or techno-
logical (Dosi, 1982) knowledge, or a “schema,” in the 
broader context of human belief structures (Reisenzein, 
Horstmann, & Schützwohl, 2019). The gestation period 
during which the consequences and utility of the idea are 
“played out” could be more difficult and take longer 
(involving many knowledge domains and actors) or be sim-
pler and take very little time (involving few knowledge 
domain and actors). The knowledge domain of the idea 
might be those occupied by artists, writers, designers, or 
scientists, with each domain differing in the degree to which 
the assessments passed on the ideas are grounded in subjec-
tive human biases versus objective natural reality and thus 
in the degree to which creativity is not absolute but can 
change with time according to the vagaries and historical 
contingencies of the environment which surrounds it 
(Csikszentmihalyi, 1996).

The remainder of this article is organized in the follow-
ing way. Section “Functional Perspective: Creativity’s 
Evolutionary Purpose Is Useful Learning” discusses the 
functional perspective of creativity as having the 

evolutionary adaptive purpose of successful exploration, 
hence significant knowledge advance via useful learning. 
Section “Calculational Perspective: Learning as a Change 
in Probabilistic Beliefs About Utility” discusses the calcula-
tional perspective of estimating learning via the change in 
expectations (probabilistic beliefs) about an idea’s utility 
before and after it has played out in its environment. Section 
“Creative and Uncreative Outcome Typology and 
Underlying Factors” discusses the resulting typology of 
creative and uncreative outcomes and connects that typol-
ogy with more traditional creativity concepts. Finally, note 
that the term “creativity” is ambiguous and can refer either 
to creative outcome or to creative process (that probabilisti-
cally leads to creative outcome) (Simonton, 2004, p. 15). 
This article deals almost exclusively with creative outcome, 
but in section “Implications for Creative Process,” some 
implications of our proposed definition of creative outcome 
on creative process are discussed.

Functional Perspective: Creativity’s 
Evolutionary Purpose Is Useful 
Learning

Our functional perspective begins with Simonton’s (2013, 
2016b) ansatz for the creative outcome, c, of an idea:

 c u p= ⋅ −( ) ⋅ −( )1 1 ν .  (1)

The three parameters on the right side of Equation 1 are as 
follows: u, the eventual utility of the idea; p, the probability 
that the idea would have been proposed at all (what 
Simonton called the idea’s “initial response strength”); and 
ν, the prior knowledge (degree of certainty) of the eventual 
utility of the idea. Each parameter varies continuously 
between 0 and 1, but when taken to their binary (0 or 1) 
extremes, define 23 = 8 “pure” types. One of those pure 
types (u, p, ν) = (1, 0, 0) represents an optimally creative 
outcome, whereas the other seven pure types represent 
uncreative outcomes—consistent with common intuition 
that there are many more ways to fail than succeed in being 
creative, reminiscent of Tolstoy’s “all happy families are 
alike; each unhappy family is unhappy in its own way” 
(Simonton, 2016b).

Here, Simonton’s powerful ansatz is reframed from a 
functional perspective: That creativity has an evolutionary 
adaptive purpose. In the exploitation and exploration pro-
cesses by which cognitive entities interact with their envi-
ronments (Hills et al., 2015; March, 1991; Mehlhorn et al., 
2015), we posit that creativity’s function is successful 
exploration that advances knowledge about the world 
(Campbell, 1960; Dietrich, 2015; Simonton, 2011)—
knowledge that in turn enables more successful subsequent 
exploitation and exploration of the world.
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How does an idea advance knowledge? It does so in two 
distinct ways. The first way is in the intellectual content of 
the idea itself: If an idea has high utility, then it adds posi-
tively to the existing body of knowledge. The second way is 
in how much has been learned from the idea: If the utility of 
the idea, after its consequences have been played out, con-
tradicts its utility as initially predicted on the basis of cur-
rent knowledge, then it forces a reshaping of that knowledge. 
Exactly how usefulness and learning alter and reshape 
knowledge is beyond the scope of this article;1 here, we sim-
ply posit that the greater the utility and learning that have 
been provided by the idea, the more significant the advance 
of knowledge. Thus, if creativity’s evolutionary adaptive 
purpose is successful exploration that advances knowledge, 
then it is inextricably linked with usefulness and learning, or 
with what might be called “useful learning.”

How might “useful learning” be characterized mathe-
matically? Here, we propose a simple reframing of 
Simonton’s powerful Equation 1 ansatz. The first factor in 
Equation 1, utility, is kept as is because it is common to both 
framings. The second two factors in Equation 1, however, 
are not kept as they are. Because both those factors (1 − p, 
related to originality (Simonton, 2013), and 1 − ν, related to 
Campbell’s (1960) and Simonton’s (2010) blindness) can 
be thought of as “advance indicators” of learning, l, we 
make our own ansatz and reframe Simonton’s ansatz for 
creative outcome to

 c u l= ⋅ .  (2)

In this reframing, creative outcome is the product of utility 
and learning, hence a measure of “useful learning.” If either 
utility or learning is low, creative outcome is also low; for 
creative outcome to be high, both utility and learning must 
be high.

To see how the general behavior of c = u∙l makes intui-
tive sense, consider the scenarios in Figure 1 associated 
with a hunt for a treasure that is in one of six bins. A particu-
lar bin is proposed to be searched, and an assessment is 
made as to how likely that, according to best current knowl-
edge, the treasure will in fact be in that bin. The bin is then 
searched, the treasure is either found or not, and an updated 
assessment is made as to whether the treasure was in that 
bin or not.

Although there are various intermediate scenarios, 
shown in Figure 1 are just the four extreme scenarios, orga-
nized into a 2 × 2 matrix, associated with whether the result 
of the search was useful (was the treasure found) and 
whether the search led to learning (was there a change in the 
assessment of whether or not the treasure would be in the 
bin that was searched):

•• In the lower left quadrant, the red bin is proposed to 
be searched, current knowledge didn’t expect the 

treasure to be in that bin, and, after the search, indeed 
the treasure is found not to be in that bin. This result 
is not useful (in that the treasure was not found), and 
on top of that little has been learned (because current 
knowledge all along didn’t think that the treasure 
would be in the red bin).

•• In the lower right quadrant, the blue bin is proposed 
to be searched, current knowledge expects the trea-
sure to be in that bin, but, after the search, the trea-
sure is found not to be in that bin. This result isn’t 
useful either, but at least something has been learned 
(current knowledge has been overturned).

•• In the upper left quadrant, the blue bin is proposed to 
be searched, current knowledge expects the treasure 
to be in that bin, and, after the search, the treasure is 
found to be in that bin. The result is useful (the trea-
sure was found), but little has been learned (because 
current knowledge all along thought the treasure 
would be in the blue bin).

•• It is the upper right quadrant, outlined in green, 
where both utility and learning come together. The 
red bin is proposed to be searched, current knowl-
edge didn’t expect (or thinks it implausible) that the 
treasure would be in that red bin, but, after the search, 

Figure 1. A 2 × 2 matrix of scenarios associated with a search 
for a treasure that is in one of six bins.
Note. Bins are proposed to be searched, and an assessment based on 
current knowledge is made as to whether the treasure will actually 
be in that bin or not. After the bin is searched, it becomes known 
whether the treasure is in that bin or not, and whether the assessment 
of the treasure being in that bin or not was correct or not. Only in 
the scenario in the upper right quadrant (outlined in green) has “useful 
learning” occurred: usefulness in the sense that the treasure has been 
found, and learning in the sense that current knowledge as to whether 
or not the treasure would be in a particular bin has been overturned.
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the treasure is found in that bin. The result is useful 
(the treasure was found), and on top of that learning 
has occurred (current knowledge has been over-
turned). Useful learning and “implausible utility” 
have both taken place, so creativity, as reframed in 
Equation 2, is high.

Calculational Perspective: Learning as 
a Change in Probabilistic Beliefs About 
Utility

In section “Functional Perspective: Creativity’s Evolutionary 
Purpose Is Useful Learning,” the functional perspective of 
creativity was discussed. In this section, the calculational 
perspective of creativity is discussed. In this perspective, the 
learning part of useful learning is estimated by a change in 
expectations (probabilistic beliefs) about an idea’s utility 
before and after the idea has played out in its environment.

Assessments of Utility Are Probabilistic

We start with the notion that an idea is associated with a 
probability distribution over utility. As an example, suppose 
the new idea is for a material that might enable staying 
warm in a cold environment. Due to incomplete knowledge 
about the idea before its consequences have been played out 
in the environment (as well as incomplete knowledge about 
the environment, which may itself be changing), current 
knowledge assigns a most probable utility for the idea, but 
also allows for probabilities that it will have higher or lower 
utilities. The probability distribution p(u) over utility u is 
characterized by two properties, as illustrated in Figure 2.

The first property is the mean utility, ū, which is assumed 
for simplicity to correspond to the most probable utility. 
This mean utility is referenced to the set of ideas already 
known to current knowledge, that is, it is not an absolute 
value, but rather relative to the state of the art, or more pre-
cisely to the current knowledge used to exploit the environ-
ment. This case corresponds to Simonton’s “routine 
expertise” (Simonton, 2016b), to the patent office’s “person 
having ordinary skill in the art” (U.S. Patent and Trademark 
Office, 2008), and to the application of current knowledge 
to a problem routinely and expertly. The reference utility is 
denoted by the horizontal dashed green line in Figure 2.

The second property is the width (or standard deviation), 
σ, which is identified with “blindness,” an ingredient essen-
tial to any evolutionary process, including that for human 
knowledge. As articulated by Campbell (1960), “a blind-
variation-and-selective-retention process is fundamental to 
all inductive achievements, to all genuine increases in 
knowledge, to all increases in fit of system to environment.” 
An idea is blind to the extent that its utility is uncertain, just 
as an idea is sighted to the extent that its utility is certain 
(Simonton, 1999).2

As discussed in section “Introduction,” estimating learn-
ing involves making two assessments, prior and posterior. 
The prior assessment is an assessment according to best ini-
tial human knowledge; whereas the posterior assessment is 
an assessment that incorporates the learning associated with 
the playing out of the consequences of the idea. Thus, there 
are two probability distributions over utility, associated with 
these two assessments. Adopting Bayesian terminology, 
these can be called the prior and posterior distributions, 
respectively. Each distribution has a mean and width (or 
standard deviation); as shown in Figure 2, these are denoted 
(ūprior, σprior) and (ūpost, σpost). Note that both these distribu-
tions represent guesses about the actual utility, a joint func-
tional property of the idea and the environment. But the first 
distribution is a guess without benefit of a playing out of the 
idea in the environment, whereas the second distribution is 
a guess with benefit of that playing out.

Learning Is Determined by Blindness Reduction 
and Posterior Surprise

To derive an expression for learning, let us assume for con-
creteness and ease of mathematical manipulation that the 
prior and posterior probability distributions over utility are 
simple normalized Gaussians (Bell Curves):

Figure 2. Probability distributions p(u) over the utility (u) of an 
idea.
Note. On the left, in red, is the distribution on prior assessment 
according to best current knowledge; on the right, in blue, is the 
distribution on posterior assessment after the consequences of the 
idea have been played out. Both distributions are characterized by two 
parameters: a mean utility, ū, and a width (or standard deviation), σ. 
Assumed throughout is that the test is a “good” one so that the width 
of the probability distribution after test, as depicted, is relatively narrow. 
The green dashed line represents the utility of routine expertise and 
calibrates whether an idea is assessed to have higher or lower utility 
than those ideas already known by “persons having ordinary skill in the 
art.”
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The standard information theoretic measure of the learn-
ing, l, that takes place as beliefs are revised from a prior 
probability distribution pprior(u) to a posterior probability 
distribution ppost(u) is the Kullback–Leibler (KL) diver-
gence (Cover & Thomas, 2006):
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The KL divergence is a measure of the information lost 
when predicting using the prior rather than the posterior 
probability distribution and thus is a measure of the infor-
mation gained when the prior is updated to the posterior 
probability distribution.

For the Gaussian distributions given above, the 
KL-divergence learning can be calculated analytically 
(Baldi & Itti, 2010; Martins, 2013):
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If the posterior and prior probability distributions are identi-
cal (ūprior = ūpost, σprior = σpost), then l = 0 and no learning 
takes place; if they are not identical, then l > 0 and some 
learning takes place. Interestingly, from manipulation of 
Equation 6, it can be deduced that the magnitude of the 
learning does not depend on the absolute means or widths 
of either probability distribution, but instead on two nor-
malized differences between the means and widths. These 
two normalized differences might be called “blindness 
reduction” and “posterior surprise.”

Blindness reduction we define to be the change in the 
widths (or standard deviations) of the prior and posterior 
probability distributions, normalized to the width of the 
posterior probability distribution:

 ∆b =
−σ σ

σ
prior post

post

.  (7)

When an idea upon prior assessment is as sighted as upon 
posterior assessment, then the width of the prior probability 
distribution is the same as that of the posterior probability 
distribution (σprior  σpost), and the blindness reduction is 

zero (Δb  0). When an idea upon prior assessment is much 
more blind than upon posterior assessment, then the width 
of the prior probability distribution is much wider than that 
of the posterior probability distribution (σprior  σpost), and 
the blindness reduction is large (Δb  0). When an idea 
upon prior assessment is less blind than upon posterior 
assessment, the blindness reduction is negative (Δb < 0), 
though we do not treat this case here. We are most interested 
in cases in which an idea is known to be creative or not in 
the fullness of time and hindsight. In other words, we 
assume “good tests” in that σpost, the posterior blindness, is 
much narrower than σprior, the prior blindness. However, we 
note that the case of posterior probability distributions that 
are not narrow is of interest for other purposes. It gives rise 
to the possibility of “bad tests” —assessments whose results 
with respect to high or low mean utility are uncertain 
enough that best-guess posterior utilities are possibly 
reversed from actual utilities. In other words, there is the 
possibility of false positives (high best-guess posterior but 
low actual utilities) and false negatives (low best-guess pos-
terior but high actual utilities), with ramifications on the 
long-term accumulation of knowledge.

Posterior surprise we define to be the absolute difference 
between the means of the prior and posterior probability 
distributions, normalized by the width of the prior probabil-
ity distribution:

 s
u u

=
−post prior

prior2σ
.  (8)

That posterior surprise increases with the difference between 
the prior and posterior mean utilities is intuitively reason-
able: The larger the difference between the prior and poste-
rior mean utility of an idea, the more surprised one is. That 
posterior surprise is larger the narrower the width of the 
prior probability distribution is also intuitively reasonable: 
The less blind one’s guess was, and the more certain one was 
of the mean utility of the idea, the more surprised one will be 
if the mean utility of the idea turns out to be different (Faraji, 
Preuschoff, & Gerstner, 2016). Interestingly but not coinci-
dentally, this definition of posterior surprise is similar to the 
optimal degree by which knowledge of state variables should 
be updated in recursive Bayesian estimation (or, in the case 
of state variables evolving linearly with Gaussian noise, in 
Kalman filtering) in response to new measurements (Bishop 
& Welch, 2001; Wikipedia Contributors, 2018b). It is also 
similar to the surprise discussed by Macedo and Cardoso 
(2001) in the context of artificial creativity.

Using these definitions for blindness reduction and pos-
terior surprise, Equation 6 for learning can be rewritten as 
follows:

 l ln b
b
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+( )

+1
1

2

1

2 1 2
2∆

∆
.  (9)



284 Review of General Psychology 23(3)

The first three terms on the right-hand side of the equa-
tion represent learning due to blindness reduction, whereas 
the fourth (last) term on the right-hand side of the equation 
represents learning due to posterior surprise. Note that this 
decomposition of learning into blindness reduction and pos-
terior surprise differs from previous treatments such as Itti 
and Baldi’s (2006) Bayesian surprise. In their treatment, 
posterior surprise is equated with learning, whereas in this 
treatment, posterior surprise is one of two components of 
learning. To some extent these are simply mathematical 
definitions, but, in the context of creativity, we believe it is 
important to distinguish between blindness reduction and 
posterior surprise, and so to distinguish their different con-
tributions to learning. It is possible to have blindness reduc-
tion that one learns from, but that isn’t surprising (we once 
were never quite knows how the next Moore’s Law 
improvements in integrated circuits will come, but is not 
surprised when they do come), just as it is possible to have 
no apparent blindness reduction but be surprised (we once 
were certain that our local universe is geocentric and then 
became equally certain that it is heliocentric). Both of these 
represent learning but of different kinds.

Importantly, as illustrated in Figure 3, learning depends 
much more sensitively on posterior surprise than on blind-
ness reduction. Learning depends on the square of posterior 
surprise, but only on the logarithm of blindness reduction 
(the second and third terms on the right-hand side of 
Equation 9 become negligible compared with the logarith-
mic first term at large blindness reduction). In other words, 
more is learned from changes in the means (ūs) than from 
changes in the widths (σs). In the language of hypothesis 
testing and the scientific method, more is learned from the 
quick-and-dirty experiment that changes one’s view of an 
idea than from the detailed experiment that simply confirms 

(though narrowing the uncertainty of) one’s view of an idea. 
To apply this to learning in science, and to borrow Kuhn’s 
language, we might say that surprise is what leads to para-
digm shifts and revolutionary science, whereas blindness 
reduction is what leads to paradigm extensions and normal 
science (Kuhn, 1962/2012). The magnitude of learning is 
much larger for the former than for the latter.

Creative and Uncreative Outcome 
Typology and Underlying Factors

In sections “Functional Perspective: Creativity’s Evolutionary 
Purpose Is Useful Learning” and “Calculational Perspective: 
Learning as a Change in Probabilistic Beliefs About Utility,” 
a three-factor mathematical definition of creative outcome 
was proposed. Although the meanings of those factors are 
somewhat different than in Simonton’s definition, we can 
nonetheless construct a similar typology of creative and 
uncreative outcomes. In this section, we construct such a 
typology and then connect it to more traditional creativity 
concepts.

Underlying Factors

To recapitulate, the three factors that enter into Equations 2 
and 9 are as follows. The first factor is blindness reduction 
(Equation 7), which is proportional to prior blindness 
(assuming “good tests” and small posterior blindness). 
Because prior blindness is what intuitively one would mean 
if one would refer to a just-generated idea as blind, it will 
sometimes be referred to in shorthand simply as “blind-
ness.” The second factor is posterior surprise (Equation 8). 
Because posterior surprise is what intuitively one would 
mean if one said one was surprised by how an idea played 

Figure 3. (a) Learning, l, versus posterior surprise, s, for constant values of blindness reduction and (b) learning, l, versus blindness 
reduction, Δb, for constant values of posterior surprise, s. Learning depends much more sensitively on posterior surprise than on 
blindness reduction.
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out, it will sometimes be referred to in shorthand simply as 
“surprise.” The third factor is posterior utility, the same 
property carried over from Simonton’s typology, and which 
will sometimes be referred to in shorthand simply as 
“utility.”

All three of these factors vary continuously, but, for the 
purpose of a simplified typology, it is assumed in the 
remainder of this section that they each take on just two 
extreme values (low and high). In principle, this leads to 23 
= 8 types. In practice, however, there are only six types. The 
reason is that the relationship between prior and posterior 
utilities is not independent of prior blindness. When prior 
blindness is low (prior sightedness is high), then the prior 
and posterior utilities must be similar; when prior blindness 
is high (prior sightedness is low), then the prior and poste-
rior utilities are free to be dissimilar. Because of this partial 
correlation, one might say that this is a two-and-a-half-fac-
tor typology, rather than a two- or three-factor typology. 
The resulting six types are summarized in Figure 4 and 
Table 1. Two are sighted and four are blind, and these are 
discussed in turn in the following two subsections “Sighted 
Ideas” and “Blind Ideas.”

Sighted Ideas

The two “sighted” types, illustrated in Figure 4(a), are the 
“overlooked low-hanging fruit” (high utility) and “irratio-
nal perseverance” (low utility) types. These two types are 
the simplest: sighted ideas with narrow prior probability 

distributions over utility. For these types, much is known 
about the newly generated idea, and the consequences of 
the idea can be played out intellectually with confidence 
almost without having to play them out in the world. If the 
idea is about an alternative route to the grocery store that 
circumvents an accident on the normal route, with both 
routes within a neighborhood familiar to current knowl-
edge, current knowledge can be confident about its prior 
estimate of the utility of the idea.

“Confirm strong belief ” (“overlooked low-hanging fruit”). In the 
first type, the idea before and after it has been played out 
has higher mean utility than the reference. There was a 
strong prior belief that the idea would be useful, and this 
was confirmed by its playing out. This type might be called 
“overlooked low-hanging fruit.” This is a “why didn’t I 
think of that?” idea that was overlooked but, once gener-
ated, can be immediately seen to have higher utility than the 
reference. Note that it had to have been overlooked, because 
if it hadn’t, it so obviously has higher utility that it would be 
the reference—and indeed, after the idea has been incorpo-
rated into the knowledge base, it will become the new refer-
ence, resetting the reference point. An example of this type 
might be Gauss’ famous trick (Hayes, 2006) for adding the 
numbers 1 through 100: adding the extreme pair (101 = 1 + 
100) once and then multiplying the sum by 50. Another 
example of this type might be Archimedes’ legendary (but 
possibly apocryphal) “Eureka” bathtub moment when he 
realized that an object immersed in water displaces a 

Figure 4. Prior and posterior probability distributions corresponding to two general types of ideas (a) sighted and (b) blind.
Note. In the sighted ideas, on the left, ideas upon generation are more sighted, so more is known about them and their possible utility, and the prior 
probability distributions over utility are relatively narrow. In the blind ideas, on the right, ideas upon generation are more blind, so less is known about 
them and their possible utility, and the prior probability distributions over utility are relatively broad. The various types of creativity and uncreativity 
are determined by the relative positions of the mean utilities before and after the ideas have been played out. There are two types of sighted 
uncreativity: “confirm strong belief” (“overlooked low-hanging fruit”) and “confirm strong disbelief” (“irrational perseverance”). There are three types 
of blind uncreativity: “confirm belief” (“confirm cautious optimism”), “confirm disbelief” (“rational perseverance”), and “disconfirm belief” (“problem 
finding”). There is only one type of creativity: “disconfirm disbelief” (“change the way we think”).
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volume of water equal to the volume of the object immersed 
and thus could be used to solve the gold crown “density” 
problem posed by Hiero of Syracuse. Once one “sees” the 
idea, and is knowledgeable in the area, it is obvious that it 
will work. But because it is obvious to current knowledge, 
it is also not likely to overturn it. The degree of utility could 
very well be profound, but the degree of learning will be 
less profound.

“Confirm strong disbelief ” (“irrational perseveration”). In the 
second type, the idea before and after it has been played out 
has lower mean utility than the reference. There was a 
strong disbelief before it was played out that the idea would 
be useful, and this was confirmed by its playing out. Fol-
lowing Simonton, this type might be called “irrational per-
severation.” This is an idea that could be new and overlooked 
or could be old and have been tried many times before. 
Once generated, though, it is obvious that it is a “fool’s 
errand,” that it will not work, or that it will have lower util-
ity than the reference. Thus, it is irrational to persevere in 
trying the idea. Nonetheless, there are many situations in 
which people do try ideas that they and current knowledge 
do not think will work. Examples from daily life might be a 
bad habit that one knows one should break but cannot, or a 
superstition that one knows is incorrect but cannot help but 
follow anyway; or a known bad idea that is tried simply 
because no better ideas have been found and time is of the 
essence (a “Hail Mary”). An example from science and 
technology might be an idea for yet another perpetual 
motion machine—one that violates energy conservation 
and therefore could not be possible.

Blind Ideas

The four “blind” types are illustrated in Figure 4(b). For 
these types, much less is known about the idea as generated, 
so surprise is possible after it has been played out. There are 
thus four rather than two types, depending on whether util-
ity is high and whether one was surprised by that utility.

These four types, interestingly, map approximately and 
suggestively to four types of reward prediction error (RPE) 
signals associated with neural representations of an out-
come’s valence (higher or lower utility than expected) and 
surprise (deviation from expectations) (Fouragnan, Retzler, 
& Philiastides, 2018). High utilities are the “confirm belief” 
and “disconfirm disbelief” types and low utilities are the 
“disconfirm belief” and “confirm disbelief” types. And, just 
as in Simonton’s typology, in this typology only the last 
type (“disconfirm disbelief”) is identified with creative out-
come. It is the one type that combines (prior) blindness, 
(posterior) utility, and (posterior) surprise. All other types 
might be precursors for future creativity or interesting for 
other reasons but are in the end uncreative because they are 
missing one or more of these factors.

“Confirm belief ” (“confirm cautious optimism”). In this type, 
the idea before it has been played out has a high prior utility, 
and the idea after it has been played out has a high posterior 
utility. This type might be called “confirm belief,” though it 
could also be called “confirm cautious optimism.” It is sim-
ilar to the “confirm strong belief” type except that there is 
more uncertainty and thus more opportunity to learn. An 
example might be the idea that blue-light-emitting diodes 

Table 1. Typology of creative and uncreative outcomes.

Type Descriptive Rubric

Creativity Typology

Intuitive Rubric
Blindness Reduction 

(“Blindness”)
Posterior Utility 

(“Utility”) Surprise(“Surprise”)

(σprior − σpost)/σprior ūpost

|ūpost − ūprior|/
(21/2σprior)

Sighted Confirm Strong Belief Overlooked Low-Hanging Fruit L H L

 Confirm Strong Disbelief Irrational Perseverance L L L

Blind Confirm Belief Confirm Cautious Optimism H H L

 Confirm Disbelief Rational Perseverance H L L

 Disconfirm Belief Problem Finding H L H

 Disconfirm Disbelief Change the Way We Think H H H

Note. The first five types are uncreative, and the sixth type (“disconfirm disbelief” or “change the way we think”) outlined at the bottom is creative. 
The typology is based on three derived properties of the prior and posterior probability distributions over utility. The three derived properties 
are: blindness reduction (or “blindness,” for short), posterior utility (or “utility,” for short), and posterior surprise (or “surprise,” for short). For 
blindness, “H” means relatively blind, “L” means relatively sighted; for utility, “H” means utility higher than the reference, “L” means utility lower than 
the reference; and for surprise, “L” means relatively low surprise, “H” means relatively high surprise. The descriptive rubrics are suggestive of the 
mathematical differences between the mean prior and posterior utilities for each type. The rubrics are suggestive of how the types might be viewed 
intuitively.
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could create economical white light for illumination. The 
idea was initially thought somewhat plausible but highly 
uncertain by the technical community, taking about a decade 
to be proven correct (Haitz & Tsao, 2011). In the limit 
where uncertainty is extremely large, this type becomes 
equivalent to Simonton’s “fortuitous response,” or the 
“lucky guess.” In the limit where uncertainty is extremely 
small, this type becomes equivalent to the “confirm strong 
disbelief” or “irrational perseveration” type.

“Confirm disbelief ” (“rational perseverance”). In this type, the 
idea before it has been played out has a low prior utility, and 
the idea after it has been played out has a low posterior util-
ity. This type might be called “rational perseverance,” simi-
lar to “irrational perseverance” except that prior blindness 
is high enough that it might be considered rational to perse-
vere in trying the idea. An example might be cold fusion, 
which was disbelieved when first proposed, but with just 
enough uncertainty (as well as enormous potential utility if 
it were found to be true) to launch world-wide efforts to test 
and confirm the disbelief (Close, 2014). Another example 
might be Linus Pauling’s 1952 triple helix model for DNA 
(Pauling & Corey, 1953), a model that was thought unlikely 
even when it was first published, and that later was indeed 
proven incorrect by x-ray diffraction data that confirmed 
Watson and Crick’s (1953) alternative 1953 double-helix 
model. In other words, although the idea is unlikely to have 
high utility, it might, so thoroughness might dictate perse-
vering with the playing out of the idea.

“Disconfirm belief ” (“problem finding”). In this type, the idea 
before it has been played out has a high prior utility, but the 
idea after it has been played out has a low posterior utility. 
This type might be called “disconfirm belief,” but, after 
Simonton, could also be called “problem finding,” to high-
light the future exploration opportunities it presages. An 
example might be the Ehrenfest or Rayleigh–Jeans ultravio-
let catastrophe: the prediction that an ideal black body at 
thermal equilibrium should emit more energy at higher fre-
quencies, a prediction that was completely plausible based 
on the known classical physics of the late 19th century and 
early 20th century. That prediction did not pass the “test” of 
conservation of energy, however, and thus could not be cor-
rect—indicating a “problem” with the idea that only later 
was resolved by Planck via quantization, ultimately leading 
to the development of quantum mechanics (Kuhn, 1987).

“Disconfirm disbelief ” (“change the way we think”). In this 
type, the idea before it has been played out has a low prior 
utility, but the idea after it has been played out has a high 
posterior utility. This type might be called “disconfirm dis-
belief,” though it could also be called “change the way we 
think.” An example might be that mentioned in section 
“Introduction”: Alfred Wegener’s 1912 theory of continental 

drift, initially disbelieved by current knowledge, but then 
ultimately confirmed and now the basis for the modern the-
ory of plate tectonics (Wegener, 1922/1966). This type rep-
resents classic creativity, in which revolutionary ideas that 
run counter to current knowledge are ultimately proved use-
ful. Flying machines heavier than air, evolution by natural 
selection, quantum mechanical action at a distance, wave-
particle duality, all of these ideas were initially disbelieved 
but later proved useful and hence “changed the way we 
think.”

Note that the just-previously-discussed type, “discon-
firm belief,” also can change the way we think, but less 
directly. To change the way we think, it is not sufficient to 
find a problem with an idea; the idea with the problem must 
be followed with an idea that does not have a problem, and 
it is that idea that changes the way we think. People typi-
cally do not change the way they think even when they 
know the current way they think is wrong; they only change 
when there is an alternative way to think that is more satis-
fying (Kuhn, 1962/2012). Nonetheless, problem finding 
can certainly be an important stepping stone to creativity, as 
evidenced by the successes spawned by Thomas Edison’s 
numerous failures (Dyer & Martin, 2010), and as captured 
in the quote attributed to Isaac Asimov: “The most exciting 
phrase to hear in science, the one that heralds new discover-
ies, is not ‘Eureka!’ but ‘That’s funny . . .’”

Connection of Prior Blindness and Posterior 
Surprise to Traditional Creativity Factors: 
Novelty/Originality and Nonobviousness

Note that these three “creativity factors”—(prior) blind-
ness, (posterior) utility, and (posterior) surprise—can be 
taken to be “fundamental” properties derived from the 
probability distributions. Although utility is a widely used 
traditional creativity factor, the other two are not. Here, we 
discuss the two factors, prior blindness and posterior sur-
prise, that are not. In particular, we discuss how these two 
factors are related to other factors traditionally associated 
with creativity, including novelty, originality, unlikeliness, 
unpredictability, and nonobviousness—as well as to one 
introduced by Simonton (initial response strength).

First, consider prior blindness: An idea has some degree 
of prior blindness to the extent that, upon generation, cur-
rent knowledge is uncertain how to predict its utility.

Closely connected to prior blindness is a related factor 
that might be called “prior surprise.” Prior surprise is differ-
ent from the “posterior surprise” used throughout this arti-
cle and introduced in section “Calculational Perspective: 
Learning as a Change in Probabilistic Beliefs About Utility.” 
It is the surprise associated with the idea even being gener-
ated at all, even before it is tested, even before it is known 
whether it has utility or not, and thus even before there 
could be posterior surprise at that utility. Prior surprise is 
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the same as Simonton’s “initial response strength”—if an 
idea has a low initial response strength, or low initial prob-
ability of being generated at all, then there will be prior sur-
prise if it is generated. And it is somewhat similar to novelty 
and originality: If an idea is novel or original, it has not 
been seen before in the context that the cognitive entity is 
currently addressing, thus is unlikely to be generated in that 
context (Simonton, 2013), and thus likely to be surprising if 
it is generated.

Prior blindness, however, is only correlated with, but is 
not the same as, prior surprise and novelty/originality. If the 
idea is novel, and hence generates prior surprise, then it is 
likely not an idea that has been explored in the context of 
the relevant knowledge domain, and so it is also likely there 
will be some degree of blindness with respect to the even-
tual utility of the idea. But an idea could be novel but not 
blind: Through analogic or other kinds of reasoning, it may 
be obvious even for an extremely novel idea what its conse-
quences will be (e.g., an idea that violates energy conserva-
tion). And an idea might also be not novel but blind: The 
idea could be a well-known but difficult to prove conjecture 
that one is blind about (e.g., Fermat’s Last Theorem, before 
it was finally solved in 1995). Thus, prior surprise and, by 
implication, initial response strength, novelty and original-
ity, are clearly correlated with, and might be used at times as 
a shorthand heuristic for, prior blindness. But prior blind-
ness is the more foundational factor for defining useful 
learning and creativity.

Second, consider posterior surprise: An idea has some 
degree of posterior surprise to the extent that, after test, cur-
rent knowledge is surprised at the utility it ended up 
having.

Closely connected to posterior surprise, interestingly, is 
the first foundational factor, (prior) blindness (or, more pre-
cisely, blindness reduction). In other words, these two fac-
tors are not independent of each other. At one extreme, 
when prior blindness is low, posterior surprise is unlikely; 
this is why, in Figure 4 and Table 1, there are only two 
“sighted” idea types. And, if posterior surprise is unlikely, 
learning in turn is also unlikely. At the other extreme, when 
prior blindness is high, posterior surprise is also unlikely. 
As discussed in connection with Equation 8, posterior sur-
prise depends inversely on prior blindness—the lower the 
prior blindness, the more one is surprised when the utility 
turns out to be different than what was expected. In other 
words, posterior surprise (hence learning) might be maxi-
mized for ideas with intermediate prior blindness—blind 
enough for there to be a reasonable probability of posterior 
surprise, but not so blind as to reduce the posterior surprise 
by too much. Thus, there is a probabilistic and nonmono-
tonic relationship between prior blindness and posterior 
surprise (Maher, 2010).

Also closely connected to posterior surprise is the “non-
obviousness” criterion used by the U.S. Patent Office. 

However, nonobviousness is correlated with, but not identi-
cal to, posterior surprise. An idea could be nonobvious for 
two very different reasons. The first reason is that the idea 
was so “blind” that one has almost no idea of the utility of 
the idea upon generation. The second reason is that the idea 
wasn’t so blind that one didn’t have some idea of the utility, 
but the utility turned out after the idea was played out to be 
very different from the anticipated utility—in other words, 
one was “surprised.” The first would not give as much sur-
prise and would not lead to as much learning, as the second. 
Thus, nonobviousness is correlated with posterior surprise 
and might be used at times as a shorthand heuristic for it. But 
posterior surprise is the key feature, not nonobviousness.

Also closely connected with posterior surprise is nov-
elty/originality (or, as just discussed, prior surprise). 
However, as has been discussed recently, novelty/original-
ity (which we take to be synonymous3) are correlated with, 
but are not identical to, posterior surprise (Barto, Mirolli, & 
Baldassarre, 2013). In human cognition, novelty/originality 
might be thought of as associated with events or ideas that 
are not represented in one’s “schema or episodic event 
memory,” whereas posterior surprise might be thought of as 
associated with events or ideas that “disconfirm expecta-
tions or beliefs” (Reisenzein et al., 2019). And, in artificial 
cognition, there are preliminary indications, from reinforce-
ment learning algorithms which combine extrinsic (u) with 
intrinsic (l) rewards, that learning is more strongly corre-
lated with surprise than with novelty/originality (Achiam & 
Sastry, 2017; Bellemare et al., 2016). For example, that we 
find that our car door is locked could be not at all novel, but 
if we find it is locked after we thought we had just clicked 
the key fob’s unlock button it becomes surprising and an 
occasion for questioning our mental model about key fobs 
and their function (Barto et al., 2013).

Implications for Creative Process

This article has thus far been devoted to defining creative 
outcome. But we are cautiously optimistic that these defini-
tions might also enable insights into creative processes 
aimed at probabilistic production of creative outcomes. 
Here, we discuss two insights, both associated with criteria 
for generating ideas that might subsequently be considered 
creative.

Relative Weighting of Anticipated Utility and 
Learning

Note first an analogy to evolutionary biology. In biology, 
organismal variants are generated, and those variants are 
tested in (and by) their world. Those that survive go on to 
reproduce, inheriting the original variation but also adding 
yet new variations. As formalized in Fisher’s Fundamental 
Theorem of Natural Selection, the greater the variance in 
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properties across organisms within each generation, the 
faster the rate at which the organismal population evolves 
(become fitter) from generation to generation. Variation, 
however, is costly, as most variants are less fit and die 
before reproducing, so the degree of variance is itself an 
optimizable and evolvable trait. The more complex and 
changing the world, the more reason to incur the cost of 
variance; the simpler and more static the world, the less rea-
son to incur the cost of variance. The optimal rate of evolu-
tion or “evolvability” (Pigliucci, 2008) depends on the kind 
of world the organismal population is embedded in.

The analogy to knowledge and creativity is that idea 
variants are generated, and these idea variants are tested in 
the context of the existing body of knowledge as they are 
played out in the world. The measure of variance here is the 
degree to which the idea differs from or contradicts the 
existing body of knowledge, hence the degree to which one 
might anticipate learning/surprise will take place. Thus, the 
idea-generation process can be skewed either toward antici-
pated utility or anticipated learning/surprise. Skewing 
toward learning/surprise, however, is costly, as most ideas 
that disagree with current knowledge are wrong and will 
have low utility. Thus, the optimal degree of creativity or 
“innovability” (Wagner & Rosen, 2014) depends on the 
kind of world the cognitive entity is embedded in. The more 
complex and changing the world, the more reason to incur 
the cost of learning; the simpler and more static the world, 
the less reason to incur the cost of learning.

At one extreme, if the risks of not learning are high 
(because the world is changing fast) and/or if proximate util-
ity signals are sparse and related in a complex and indirect 
way to ultimate utility (Maher, 2010), then optimal explora-
tion might weight learning more heavily (Burda, Edwards, 
Storkey, & Klimov, 2018). Indeed, at the extreme of worlds 
that are complex and changing fast, one might imagine it 
might be optimal to have almost no utility criterion for filter-
ing out ideas low in the knowledge hierarchy. So long as 
they satisfy some other heuristic for ultimate utility (e.g., 
interestingness), ideas might be worth keeping “alive” 
(Stanley & Lehman, 2015) and exploring further just out of 
“curiosity” (Berlyne, 1966). At the other extreme, if the risks 
of not learning are low (because the world is not changing 
fast) and/or if proximate utility signals are dense and related 
in a simple and direct way to ultimate utility, then optimal 
exploration might weight utility more heavily.

Thus, one might imagine generating ideas which maxi-
mize an anticipatory and weighted creativity:

 c u lanticipatory = ⋅−1 α α ,  (10)

where 0 < α < 1. This is a mathematical form which main-
tains the product form for creative outcome but weights util-
ity and learning differently, reminiscent of the Cobb–Douglas 
production function used in macroeconomics (Wikipedia 

Contributors, 2018a). If α = 0, then u is favored regardless 
of learning: the conservative, low innovability strategy. If α 
= 1, then l is favored regardless of utility: the aggressive, 
high innovability strategy.

In other words, α might play the role in knowledge 
growth that fitness variance plays in Fisher’s fundamental 
theorem of natural selection—the larger the α, the faster the 
knowledge grows, albeit at the expense of greater risk, 
uncertainty, and resource consumption. In a simple, unchang-
ing environment, it might be more optimal for α to approach 0; 
in a complex, rapidly changing environment, it might be more 
optimal for α to approach 1. Human cognition might be char-
acterized by a particular weighting (with variations across indi-
vidual humans) based on the worlds to which it had to adapt 
during the long-term course of human evolution; an engineered 
or augmented human cognition might adopt a weighting more 
appropriate to the current world; and a purely artificial cogni-
tion might adopt whatever weighting is appropriate to the 
world in which humans have embedded it.

Informed Contrariness

Suppose now that α > 0, so there is some weighting toward 
learning. How might ideas be generated with the best pos-
sibility of leading to learning? It is one thing to understand 
creative outcome as an ex-post measure: It is creative out-
come measured in hindsight, after an idea has played itself 
out. It is totally another thing to develop foresight—the pos-
sibility of assessing before the idea has played itself out the 
probability that the idea will represent learning (and cre-
ative) outcome after it has played itself out (Rietzschel, 
Nijstad, & Stroebe, 2010). In other words, can a theory of 
anticipatory surprise, anticipatory learning, and anticipa-
tory creativity (Girotra, Terwiesch, & Ulrich, 2010; Storck, 
Hochreiter, & Schmidhuber, 1995) be developed? Idea gen-
eration and playing out is not cost-free, so improved pro-
cesses for more accurate, albeit probabilistic, assessment of, 
for example, research proposals en route to them being 
executed and played out could potentially improve the pro-
ductivity of society’s research enterprise.

For the case of researchers proposing ideas to current 
knowledge gatekeepers (research funders and peer review-
ers), this might involve understanding differences between 
what the researcher knows versus what current knowledge 
knows and “arbitraging” those differences to enhance 
research success probabilities.

On the one hand, current knowledge is not always right, 
and it is precisely when the researcher’s idea is implausible 
to current knowledge that the potential for creative outcome 
is greatest. Ideas must be generated with some disregard for 
current knowledge, as ideas that perfectly reflected current 
knowledge would be nothing more than deductions inherent 
in current knowledge itself. Thus, idea generation must con-
tain “what if?” divergences, perpetrated by individuals at 
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least temporarily flaunting some portion of current knowl-
edge and offering up to it contrarian alternatives for test.

On the other hand, current knowledge is usually correct, 
so if the researcher is going to go against current knowl-
edge, the researcher had better have good reasons. These 
reasons might be called “inside knowledge”—knowledge 
or capabilities that the researcher has that current knowl-
edge doesn’t that make the researcher think the researcher is 
right and current knowledge is wrong. The researcher is an 
“informed contrarian,” going against current knowledge but 
in an informed way so as to reduce the risk of going against 
current knowledge. A close analogy can be made to venture 
capitalists choosing which start-ups to back. As Peter Thiel, 
the well-known Silicon Valley venture capitalist, puts it to 
entrepreneurs he might invest in: “tell me something that’s 
true that almost nobody agrees with” (Hof, 2014). Or, to 
build on Pasteur’s famous saying, one might instead say 
“contrariness favors the informed mind.”

Note that such an “informed contrariness” idea-genera-
tion strategy for successful creative outcome may have 
interesting implications for the emotional and/or heuristic 
processes inside an individual researcher’s brain. Divergent 
(idea generation) and convergent (idea test) thinking may 
still be the overarching two-step cognitive processes (Beaty, 
Benedek, Silvia, & Schacter, 2016; Ellamil, Dobson, 
Beeman, & Christoff, 2012; Emmanuel-Avina et al., 2018; 
Jung, Mead, Carrasco, & Flores, 2013), but with alternative 
criteria for the internal heuristic and emotional processes 
for idea selection. Are there, for example, emotional pro-
cesses that are correlated with contrariness, where contrari-
ness has both intellectual and social components? Might a 
contrarian intellectual “aha” moment be accompanied by a 
sense of social fear in some but social neutrality or even 
excitement in others? Are there, for example, heuristic pro-
cesses (or combinations of processes) that are correlated 
with informed contrariness? Boden discusses three types of 
heuristic processes for creativity: conceptual-space explo-
ration, concept combination, and conceptual-space trans-
formation (Boden, 2004). Perhaps the first enables 
“informedness” (i.e., enables the researcher to understand 
the limits of current knowledge), whereas the second and 
third enable contrariness (i.e., enables the researcher to gen-
erate the new combination concept or conceptual transfor-
mation that the researcher immediately knows, if the 
researcher has internalized current knowledge and its limits, 
is contrary to that current knowledge).

Also note that creativity is a joint process, involving at 
least two distinct cognitive entities, for example, research-
ers proposing ideas to knowledge gatekeepers (research 
funders and peer reviewers). Thus, gatekeepers also play an 
essential role in creative processes. On the one hand, gate-
keepers determine what ideas are plausible or implausible, 
so they must have a well-developed understanding of cur-
rent knowledge. On the other hand, they must be open to 

researchers proposing to do the implausible—provided they 
are convinced the researchers are “informed.” Thus, there is 
an implied shift in emphasis from gatekeepers assessing 
plausibility/implausibility to assessing informed contrari-
ness—a strategy more consistent with funding people than 
with funding projects (Narayanamurti & Tsao, 2018). There 
is also the implication that creative process is not just to be 
found in the neuroscience of the individual human brain but 
also in characteristics of the social and cultural environment 
that the brain is surrounded by.
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Notes

1. Note, however, that this concept of knowledge reshaping is 
very similar to the concept of improvement of “absorptive 
capacity”: both have to do with improving the future abil-
ity to predict the utility of new ideas, hence to “absorb” and 
make use of those new ideas (Cohen & Levinthal, 1989).

2. Note that there can be subtleties associated with various math-
ematical definitions of blindness and sightedness (Simonton, 
2013). Here, we opt for the simplest definition of blindness 
(the width of the probability distribution), but it will be of 
future interest to connect the various definitions.

3. Note that there are subtleties associated with various interpre-
tations of novelty, originality, and prior surprise (Simonton, 
2013). Here, we opt for the simplest interpretation (that the 
three are identical), but it will be of future interest to connect 
the various interpretations.
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