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Abstract
The electrostatic micro-engine is one of the

major actuators used in MEMS applications.  To
ensure this MEMS actuator is operated in a
fashion that will produce peak performance and
long life, the system dynamics must be fully
understood.  One of the major trade-offs in the
micro-engine design is the use of either pin or
flexure joints. This paper will develop the
equations of motion for flexure-jointed and pin-
jointed surface micromachined microengines.
An analytical mechanics approach will be used
to derive the equations of motion and the
appropriate equations of constraint.  The effect
of the flexure joints on the drive signals of the
micro engine is experimentally shown to be
significant during static tests.

Introduction
The development of actuation devices for

micro-electro-mechanical systems (MEMS) is an
essential advance in the development of useful
MEMS devices.  Sandia National Laboratories
has developed the Sandia microengine [1], which
has been used as actuation for a number of
applications [2,3], such as optical shutters, gear
reduction units, linear racks, and a counter-
meshing gear discriminator [4].  The
microengine shown in Figure 1 consists of a
pinion gear connected by linkages to two
electrostatic comb drives, which supply linear
forces. The development of reliable, long-life
MEMS devices requires the proper
understanding of the dynamics of the micro-
engine. Previous work has been done to
determine the optimum drive signals for the pin-
jointed microengine [5], which has resulted in
extending the operational life of the Sandia
micro-engine over a broad range of speeds.

A significant design choice in the microengine
is the use of pin-joints versus flexure joints,

Figure 2, in the linkages of the micro-engine.
The use of a pin-jointed linkages allow linkage
movement which is impeded only by the friction
in the pin-joint; however, the pin-joint clearances
which arise from the surface micromachine
fabrication technology may give rise to
undesirable dynamic effects or positional
inaccuracy. The use of flexure joints in the
linkages removes concerns regarding the joint
clearances; however, non-negligible force is
required to overcome the joint stiffness during
micro-engine operation. In order to properly
operate the micro-engine for maximum load and
system lifetime, the dynamics and design
tradeoffs of the Sandia micro-engine must be
fully understood.

This paper examines the effect of the linkage
joint on micro-engine dynamics.  Sandia micro-
engines have been designed and fabricated with
both pin joint and flexure-joint linkages shown
in figure 2.  This paper will derive the equations
of motion for both types of micro-engines and
the optimal drive signals required to minimize
friction effects in these devices.  Experimental
evaluation of the effects of linkage joint type on
system operation and the required drive signals
will be presented.

Microengine Model
The equations of motion for the micro-engine

will be developed using an analytical mechanics
approach.  The equations of motion for the pin-
joint micro-engine have been previously
developed [5] using Newton's laws. However,
when complications of additional constraints or
degrees of freedom, such as flexures, are added
to the problem this approach becomes unwieldy.
Lagrange’s equations that incorporate system
constraints via Lagrange multipliers will be used
[6]. This approach results in n+m equations for a
system with n-m degrees of freedom. The system
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of equations which describe the system dynamics
consist of n equations of motion for the n
generalized coordinates of the system, and m
constraint equations which relate the constrained
generalized coordinates, equations 1. Upon
solution of the system equations, the Lagrange
multiplier, λi, correspond to the force required to
enforce the ith constraint.

Figure 3 is a schematic of the microengine
that show the variables, which will be used in the
development of the equations of motion. The
schematic will be used for both flexured and pin-
joint micro engine analysis.  The flexured micro
engine analysis will involve torsional springs k2,
k3, k4 located at joints 2, 3 and 4.

Flexured Microengine
The flexured micro-engine equations of

motion will be derived using n=6 generalized
coordinates. The generalized coordinates, qi, are:
• y3, x4 which describe the comb drive mass

positions
• βx, βy  which describe the linkage

configuration
• r, θ which describe the pinion position

Since the microengine has only one
independent degree of freedom which could be
taken as θ, there must be m=5 constraint
equations.  The constraint equations, equation 2,
for the flexured micro-engine relate the comb
drive positions and linkage configuration which
can be derived from geometric considerations.
The last constraint equation, g5, state that the
linkage-pinion connection is at a constant radius,
r0.

The kinetic, potential and dissipation
functionals (T, V, D respectively) can be written

as shown in equations 3.  Equations 3 also show
the generalized forces, Qi, for the system.

The application of Lagrange's equations,
equations 1, yield equations 4, which along with
the constraints, equations 2 fully describe the
flexured micro-engine system dynamics. The
radial force at the pinion, Fr, has been substituted
for the Lagrange multiplier, λ5, because this is
the force required to enforce constraint g5.

Pin-jointed Microengine
Since there is no flexure potential energy to be

described mathematically, the pin-jointed micro-
engine can be modeled using 4 generalized
coordinates which describe the comb drive mass
positions (x4, y3) and pinion position (r, θ).  Once
again the micro-engine has 1 independent degree
of freedom, and the 3 relevant system
constraints, equations 5, relate the comb drive
position and pinion position. Also the pinion
linkage connection is once again at a constant
radius, r0.  The pin-joint micro-engine
constraints are a subset of the flexure-jointed
micro-engine constraints.
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Application of Lagrange's equations yield
equations 6, which are a simplified subset of the
flexure-joint microengine equations. The radial
force at the pinion, Fr, has been substituted for
the Lagrange multiplier, λ3.

Comb Drive Signals
In order to minimize the friction force in the

pinion hub, the optimal drive signal would
produce no radial hub force, Fr. The system of
equations can be rearranged to explicitly show
the functional dependence of comb-drive
voltages (Vx , Vy) on the system parameters.
Equations in this form help to solve for the
comb-drive signals required to minimize the hub
radial force, Fr. The system of equations for the
pin-joint and flex-joint microengines can be
simplified by the following assumptions to yield
equations 7 and 8. The simplifications used are:
• Assume small angle rotations for βx and βy

since L and L3 are long compared to the
comb drive displacements. Also, products of
angles βx and βy are negligible.

• Fx and Fy are the comb-drive electrostatic
forces, which can be modeled as axVx

2 and
ayVy

2 respectively [5].
• Assume the comb-drive mass, damping,

stiffness and electrostatic parameters are
equal (i.e. mx=my=m, cx=cy=c, kx=ky=k,
ax=ay=a).

•  ω0 and δ are the natural frequency and
damping ratio of the comb-drives.

• The flexure stiffnesses are assumed to be
equal. (kflex=k2=k3=k4).

The flexure-jointed equations are very similar in
form to the pin-jointed equations except for the
additional term at the end.

Pin-Jointed Microengine:
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Flexure-Jointed Microengine:
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Experimental Verification of Micro-
Engine Equations

The pin-jointed micro-engine equations have
been used to develop drive signals for the Sandia
micro-engine. These drive signals have been
used to drive both pin-jointed and flexure-jointed
micro-engines. If the flexure effects on the
micro-engine dynamics were either small or
could be modeled as a simple increase in an
effective stiffness term, the micro-engine drive
signals would be simple to implement.  It should
be noted that the strain energy of the comb drive
springs have maxima or minima at 0o, 90o, 180o,
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270o, Figure 4. However, the flexure strain
energy of joint 2 has a maxima at an angle
between 90o, 180o, Figure 4, which is determined
by the linkage lengths.  This effect produces a
phase shift in the drive signals.

An experimental comparison of the two
methods for drive signal calculation can be
performed using a gearless micro-engine as the
characterization vehicle.  The gearless micro-
engine is a microengine with orthogonal comb
drives and linkage arms, but no pinion or hub.
The linkage arms for this engine are not
physically constrained to circular motion.
Therefore the ability of a particular set of drive
signals to make the gearless microengine track a
circle is a measure of the physical significance of
the flexure stiffness in the micro engine.

The determination of the physical constants
used in the drive signal calculations can be
difficult, however, many grouped or lumped
parameters can be determined. For example, the
force balance of a comb drive between the
restoring force of the springs and the applied
electrostatic force is

kxaV =2                 (9)
where x is the linear displacement of the shuttle.
In this instance, voltage can be applied and x can
be measured, but only the lumped term k/a can
be determined. For the drive signal equations,
however, these lumped terms are sufficient for
drive signal calculation. For the microengine, the
important lumped parameters are kr/a and kflex/kr,
which can be experimentally determined by
applying DC voltages to the comb drives such
that the linkage arms sweep out a circle of the
prescribed diameter.  This data can then be used
to determine the parameters kr/a and kflex/kr in
the pin-jointed and flex-jointed microengine
equations. Since this is a DC experiment the
dynamic terms (θ&andθ&& ) of the equations are
neglected. The terms Fl and Fr are also removed,
since this is a gearless microengine.  The static
pin-jointed equations for a gearless microengine
are:
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Figure 5 shows the results of the experimental
determinations of normalized spring constants
using both sets of equations. At discrete ‘gear’
angles, the required voltages Vx and Vy were
recorded. As the graph shows, both sets of
equations adequately model the motion of the y
comb drive, whereas the flex joint equations are
better at describing the motion of the x drive than
the pin-jointed equations.  The flexure-joint
equations are able to adequately model the phase
shift required in the x drive signal, which arises
from the stiffness of the center link flexure.
Figure 6 shows the significance of the correction
terms λ1mod/a, λ2mod/a.

Summary
This paper presents a procedure for

development of the pin-joint and flexure-joint
microengine equations of motion. Experimental
data was presented which illustrates the ability of
the flexure-jointed microengine equations to
model the phase shift due to the flexure-joint
used in the microengine linkages.  The
experimental data shows the phase shift effects.

Additional work needs to be done to study the
dynamics of the pin-jointed and flexure-jointed
microengines over a range of operational speeds.
At speeds above the natural frequency of the
comb drive the inertial forces will tend to play a
larger role in system dynamics.  However, for
low speed and positional accuracy the effects of
the flexure-jointed terms have proved significant.
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Nomenclature
ax, ay, a – comb drive electrostatic coefficients
cx, cy, c – comb drive damping coefficients
Fx, Fy – Forces on comb drive masses
Fl, Fr – Lateral and radial pinion gear forces
gi, - Constraint equation
kx, ky, k – comb drive spring stiffnesses
k2, k3, k4,kflex – flexure  stiffnesses
L, L1, L2, L3 – Linkage lengths
mx, my, m – comb drive masses
qi, Qi   - Generalized coordinates and forces
r0 – Pinion gear radius
T, D, V – Kinetic, Dissipation, Potential Energy

functionals
x4 – X comb drive displacement
y3 – Y comb drive displacement
βx , βy – Linkage rotation angles
γ - L1/L
λi – Lagrange multipliers
λ1mod , λ2mod – Flexure joint correction terms
θ - Pinion rotation angle

Figure 1. Flexure-Jointed Micro-Engine                                        Figure 2. Flexure-Joint and  Pin-Joint

Flexure-Joint Pin-Joint
Flexure-Joints
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Figure 3. Microengine Schematic                                          Figure 4. Normalized Spring Potential Energy

Figure 5. Comparison of Pin-Joint and Flexure-Joint Drives Signals and the Measured Data

Figure 6. Pin-Jointed Drive Signals and the Correction Terms (λ1mod/a, λ2mod/a)
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