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Abstract: Infrastructure resilience is a priority for homeland security in  
many nations around the globe. This paper describes a new approach for 
quantitatively assessing the resilience of critical infrastructure systems. The 
mathematics of optimal control design provides the theoretical foundation for 
this methodology. This foundation enables the inclusion of recovery costs 
within the resilience assessment approach, a unique capability for quantitative 
resilience assessment techniques. This paper describes the formulation of the 
optimal control problem for a set of representative infrastructure models. This 
example demonstrates the importance of recovery costs in quantitative 
resilience analysis, and the increased capability provided by this approach’s 
ability to discern between varying levels of resilience. 
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1 Introduction 

Historically, US Federal Government policy toward critical infrastructure protection 
(CIP) has focused on physical protection and asset hardening (see Reagan, 1982; Clinton, 
1998; Bush, 2002, 2003). In recent years, the inclusion of resilience enhancement 
strategies into CIP policies has become a priority in the USA and countries around the 
globe. Critical infrastructure resilience is a concept that describes the ability of 
infrastructure systems to absorb, adapt, and recover from the effects of a disruptive event 
while attempting to continue delivery of critical infrastructure services. 

Though aspects of resilience have begun to become integrated into federal, state,  
and local CIP policies, no resilience definitions or evaluation methodologies have  
been uniformly accepted within the homeland security and CIP communities. Many 
definitions have been proposed in several academic disciplines (e.g., see Bruneau et al., 
2003; Chang and Shinozuka, 2004; Rose and Liao, 2005), but few quantitative  
methods have been proposed for analysis of infrastructure and economics systems.  
Some of these quantitative methods (e.g., see Fisher et al., 2010) rely on subjective 
evaluations by subject matter experts (SMEs) of system features, such as redundancy, 
adaptivity, etc. These approaches are difficult to impose consistently across different 
infrastructure systems and types due to the subjective nature and variability of the SMEs’ 
responses. 

Some resilience measurement approaches have been developed that do not rely on 
these subjective evaluations. Bruneau et al. (2003) measure seismic resilience loss for 
communities by integrating the difference between optimal infrastructure quality and the 
degraded infrastructure quality following an earthquake. Chang and Shinozuka (2004) 
use a probabilistic formulation to compare time to recovery and the decrease in system 
performance, predicted through a set of Monte Carlo simulations, against pre-defined 
performance and duration standards. In this approach, the resilience of the system is the 
observed probability that both standards are met. Rose and Liao (2005) have developed 
resilience metrics for economic systems. Rose asserts that the static economic resilience 
of a system be measured as “the ratio of the avoided drop in [system] output and the 
maximum potential drop” in system output, and that dynamic economic resilience be 
measured as the cumulative difference between system outputs with and without hastened 
recovery efforts. Each of these approaches only consider the impact that a disturbance has 
on the state of the system or system outputs. They do not consider resources or costs 
expended during the recovery processes. Also, Bruneau et al.’s and Rose’s do not directly 
consider that the recovery strategy employed will directly affect their estimates of 
resilience and resilience loss. 

Resource allocation can be a critical concern during crisis events, and emergency 
responders need to decide how limited resources should be spent to minimise deleterious 
impacts and maximise response efficiencies. Vugrin et al. (2010) have proposed a 
resilience assessment framework that expands upon the aforementioned assessment 
approaches in two key areas. First, their mathematical formulation for measuring 
resilience costs is not reliant upon a specific modelling paradigm to represent the system, 
so it can be generally applied across various infrastructure and economics models. This 
flexibility is necessary for establishing resilience analysis standards across all critical 
infrastructure systems. Second, it explicitly considers the costs and resources expended 
during recovery efforts following infrastructure disruptions. Inclusion of recovery costs 
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in resilience evaluations provides a more comprehensive accounting of disruption 
impacts. This approach also provides a means for assessing feedback loops consisting of 
recovery and system performance that can ultimately determine system resilience. 

Vugrin et al. (2010) define system resilience as follows: Given the occurrence of a 
particular disruptive event (or set of events), the resilience of a system to that event (or 
events) is that system’s ability to reduce efficiently both the magnitude and duration of 
the deviation from targeted system performance levels. 

This definition provides the basis for the measurement of the two primary factors that 
determine the resilience costs. Systemic impact (SI) is the impact that a disruption has on 
system productivity and is measured by evaluating the difference between targeted and 
disrupted system performance. Total recovery effort (TRE) refers to the efficiency with 
which the system recovers from a disruption and is measured by analysing the amount of 
resources expended during the recovery process. The measurement of system resilience 
costs requires the quantification of both SI and TRE. The approach proposed by Vugrin  
et al. (2010) lends itself nicely to mathematical formulations used for the development of 
optimal feedback control laws. When applied to a system, feedback controller’s use 
measured system outputs to regulate system behaviours to target conditions while 
simultaneously providing a measure of the cost in doing so. Incorporating feedback 
control in the quantitative description of resilience could enable automatic system 
recovery from disruption while providing a prediction of recovery cost. 

This paper describes the mathematical formulation that Vugrin et al. (2010) 
developed for measurement of resilience costs and the application of optimal feedback 
control design methods to identify recovery strategies that optimise resilience costs. 
Specifically, this paper describes the formulation of the linear quadratic regulator (LQR) 
problem for a set of representative infrastructure models. Analysis of these models 
demonstrates how the resilience assessment approach can be used to assess resilience 
costs and identify optimal resilience strategies that minimise those costs. 

Furthermore, the systems have different resilience enhancement features, such as 
system redundancy and emergency inventory (EI) stocks, and this paper confirms that the 
Vugrin et al. (2010) approach identifies the system that logic indicates is most resilient. 

2 A quantitative framework for assessing infrastructure and economic 
resilience 

Consider a dynamic system modelled as follows: 

( )( )( ) ,( ), ( ),=y t f x u t d t t  (1) 

where 

• x is a time-varying state vector with dependence on the control term u and the 
disturbance d. 

• u is a time-dependent control vector representing the means by which the system 
recovers, i.e., the recovery effort. 

• d represents a time-dependent, piece-wise continuous, disturbance forcing term. 
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• y is the vector of system outputs under disturbance d, and is obtained by calculation 
of the function f. 

Let z be an exogenous reference signal that represents the time-dependent, targeted 
system performance level. 

The quantities SI  and TRE  are calculated according to 

[ ]1

0

( ) ,( ) ( )= −∫
t T

t
SI q t dtz t y t  (2) 

1

0

( ) ( ) ,= ∫
t T

t
TRE r t u t dt  (3) 

where t0 > 0 is the time at which the disturbance initiates and t1 is the time at which 
recovery is considered complete. 

Since x and y are dependent upon u, two resilience cost measurements are defined. 
The first, recovery dependent resilience costs, are those costs resulting from a particular 
control strategy. They are calculated according to 

( )( )
{ }1

0

0 ., ,
( ) ( )

t
T

t

SI TRERDR x t u d
dtq t z t

+
=

∫
 (4) 

In (2) and (3) the weighting vector q converts differences between y and z into the units 
of SI  and the weighting vector r is used to set the relative importance of SI  to .TRE  
The denominator in (4) is a normalising term that permits comparison of RDR  values for 
systems of varying magnitudes. 

The second resilience cost, namely optimal resilience costs, ,OR  of system x to 
disturbance d are defined (when they exist) as 

( )( )
{ }1

0

0 min .,
( ) ( )

tu T
t

SI TREOR x t d
dtq t z t

+
=

∫
 (5) 

According to the above definitions, SI  and TRE  may be negative. For example, a 
particular disruption may actually cause y to exceed z, resulting in a negative integrand. 
However, frequently, it is not beneficial from an inventory or economic standpoint to 
greatly exceed target goals as this typically invokes even greater cost. Hence, it is 
reasonable to modify the definition of SI  and TRE  so that y tracks z, and all deviations 
from z are penalised in the objective function that is used to calculate RDR  and .OR  
Additionally, the definitions above can be simplified by assuming the weighting factors 
are constant with respect to time. In particular, we define the terms SI and TRE using 
fixed semi-definite and positive semi-definite weighting matrices Q and R according to 

1

0

[ ] [ ] ,
t T

t
SI z y Q z y dt= − −∫  (6) 

1

0

.
t T

t
TRE u Ru dt= ∫  (7) 
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These equations lead to a definition of OR as 

( )( )
{ }1

0

0 min ,,
[ ]

tu T
t

SI TREOR x t d
dtz Qz

+
=

∫
 (8) 

where the optimal resilience cost calculation is now specified in a manner amenable to an 
LQR control formulation. 

3 Resilience from optimal feedback control 

Equation (8) indicates how to measure resilience costs for an optimal recovery strategy, 
but it does not indicate how to identify that strategy. To do that, we appeal to the 
mathematics of optimal control. 

In the work presented here, we assume the availability of a linear dynamical system 
model. There are several reasons for this. For applications that exhibit non-linear 
dynamics, a linearisation is often done around an equilibrium point, resulting in a linear 
system model from which linear feedback controllers can be developed. Often, the 
resulting linear controller is placed into the original non-linear plant with control 
performance being satisfactory for the non-linear system. System identification can also 
be used to develop linear system models from known input-output data. The direct 
application of non-linear control methods to highly non-linear system models is beyond 
the scope of this paper. 

As previously mentioned, an overall quantitative description of resilience must 
include measurements of the cost of departure from target operating conditions as well as 
the cost associated with inputs necessary to maintain preferred operating conditions 
following a systemic disruption. These requirements lend themselves nicely to tracking 
feedback control formulations. 

Given a linear system with state dynamics described by (9) to (10) 

( ) ( ) ( ), 0,X t AX t Bu t t= + >  (9) 

0(0) ,X X=  (10) 

consider the cost function used in the tracking formulation of the LQR control problem 

( ) { }0
0

, ( ) ( ) .T TJ X u X z Q X z u Ru dt
∞

= − − +∫  (11) 

In (9), X(t) is called the state vector with components x1(t), x2(t), …, xn(t) being state 
variables. Notation X  denotes the differentiation of the state vector with respect to time. 
The control input to the system is denoted by u(t). The coefficient matrices A and B are 
time invariant. In (11), the quantity (X – z) is a measurement of the difference between 
the system measurement, X, and its target value z. Potential inputs to the system 
necessary to keep X close to z are captured in the control input term u. Quantity Q is a 
diagonal, symmetric, positive semi-definite matrix consisting of state weights. R is a 
diagonal, symmetric, positive definite matrix of control weights. The optimal control 
problem to consider is to minimise (11) over all square integrable control functions, i.e.,  
u ∈ L2(0, ∞), subject to the constraints (9) to (10). 
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To solve the LQR tracking problem, one formulates the augmented dynamical system 
as follows. As the tracking signal is time-invariant, the dynamics of the system and the 
reference signal are given by 

0
0 0 0
A X BX

u
zz

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (12) 

,AX Bu= +  (13) 

where we have defined the augmented state X  as [ ] .TX X z=  The initial data of the 
augmented system is given by 

0
0 .

(0)
X

X
z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (14) 

For a controllable system, the tracking LQR problem has a unique solution (Kirk, 2004) 
of the form 

optu KX= −  (15) 

[ ]1 2 XK K= −  (16) 

1 1
11 12 ,T T XR B R B− −⎡ ⎤= − Π Π⎣ ⎦  (17) 

where Π11 is the unique symmetric, non-negative solution of the algebraic Riccati 
equation 

1
11 11 11 11 0.T TA A BR B Q−Π +Π −Π Π + =  (18) 

The matrix Π12 in (17) satisfies the equation 

1
1211 .T T QA BR B−⎡ ⎤Π =−Π⎣ ⎦  (19) 

There are many commercial software packages available that can solve the Riccati 
equation given by (18). With the Riccati matrix Π11 in hand, Π12 is found by simply 
solving matrix equation (19). 

Once the gain matrix K is obtained, the feedback control law is placed into the 
augmented state-space equation. The resulting closed-loop system is of the form 

( ) ,X XA BK= −  (20) 

0(0) .X X=  (21) 

LQR is only one of several optimal control methods suitable for linear systems. Other 
techniques include linear quadratic Gaussian (LQG) optimal control, a method utilised 
when measurements are affected by ‘white, Gaussian noise’ or if full state measurement 
is not possible. There are also robust control techniques, such as H-infinity control, that 
are used when it is necessary to stabilise a system in the presence of external 
disturbances. Zhou and Doyle (1996) provide an excellent discussion of robust and 
optimal control methods for linear systems. 
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4 Application to a stock management model 

Having demonstrated the solution approach, the methodology is now applied to a set of 
relatively simple dynamical models. The goal of this application is two-fold. First, the 
application is intended to show the types of results one gets from using the approach. The 
second goal is to demonstrate that the approach can assess how different resilience 
enhancement features affect resilience and can recognise the system that logic indicates is 
most resilient. This application demonstrates how to measure resilience costs and how 
feedback control can be used to select optimal recovery strategies that minimise 
resilience costs. 

4.1 Model description 

Consider the stock management model illustrated with systems dynamics conventions in 
Figure 1. This model, a modification of Sterman’s (2000) stock management structure 
model, includes a stock manager that attempts to control the stock acquisition rate (SAR) 
so that consumption rates (C) track an external demand function, D. The stock loss rate, 
LR, is proportional to the stock level, S. The acquisition rate is determined by three 
factors: 

• The manager utilises a stock adjustment strategy, AS, that attempts to have stock 
levels track a desired stock profile, S∗. In this strategy, AS, is proportional to the 
difference between stock and desired stock levels. 

• The SAR is the sum of AS and the average demand over the previous td time units. 

• The system is also subject to external disruptions, N, that affect the SAR. 

Figure 1 Stock management model 

 

For a single stock system, this model is governed by the following set of  
delay-differential equations: 
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( )

( )

1
1

1

1

( )
( )

1( ) ( ) ˆ ( )
20

S td SAT k SS S
C tdt k S

td C t C t td N t

− ∗

−

⎡ ⎤⎡ ⎤ −−= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− −+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (22) 

0 1

1

( ) ( )ˆ ˆ
( ) ( )

1 ˆˆ ( ) ( ),
0 0

S t S t td
A A

C t C t td

SATN t S t
−

∗

−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
+ + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (23) 

where 

• 
1 1

1
0

1

ˆ ,
0

SAT k tdA
k

− −⎡ ⎤− −
= ⎢ ⎥
⎣ ⎦

 

• 
1

1
0ˆ ,
0 0

tdA
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

• SAT is a constant and represents the stock adjustment time in the stock adjustment 
strategy, AS = (S∗ – S) SAT–1. 

• k1 represents the constant of proportionality between LR and S. 

The measured output, y, for the system is denoted by C and calculated according to 

( )
( ) [0 1] ( ).

( )
S t

y t C t
C t
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 (24) 

This paper considers the base system and three variations of it: 

• The EI system: This system is identical to the base system except that it includes an 
excess supply of stock. The emergency supply is activated when the consumption 
cannot meet the external demand signal. In this event, the emergency supply rate, 
ER, can supply that commodity directly to the consumer. The emergency supply 
enhances the restorative capacity of the system. Thus, it is expected that resilience 
costs for this system would decrease, relative to the base system, indicating greater 
resilience. 

• The redundant stock (RS) system: This system is identical to the base system except 
that it has multiple locations for stock production instead of one location. In this 
paper, the system consists of four identical locations. The inherent redundancy 
enhances the absorptive capacity of the system. Thus, it is expected that resilience 
costs for this system are expected to decrease, relative to the base system, indicating 
greater resilience. 

• The redundant stock, emergency inventory (RSEI) system: This system has multiple 
(four) stock production locations and an emergency supply rate. The inherent 
redundancy and emergency supply enhance the absorptive and restorative capacities 
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of the system. Thus, it is expected that resilience costs for this system are the least 
for all the systems, indicating this system is the most resilient. 

Equation (22) is generalised to all the systems in the following manner. Let k1i denote the 
proportionality constant between the ith stock, Si, and its respective loss rate LRi. 
Parameter k2i denotes the fractional contribution of the ith stock to C, and SATi denotes the 
stock adjustment time for the ith stock. Then, 

( )0 1

1

( ) ( ) ( ) ( )

( ) ( )

dX t A X t A X t td B ER t
dt

N t td S t− ∗

= + − +

+ +
 (25) 

where 

• X = [S1 S2 … SM C]T is the state vector. 

• A0 is the (M + 1) by (M + 1) matrix defined as 

1 1

0

11 21 12 22 1 2

0 0
0

0
0

M M

M M

A

k k k k k k

α β

α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

 

where 1 1
2,  ( ) .i i i i iSAT k k tdα β− −= − − =  

• A1 is the (M + 1) by (M + 1) matrix defined as 

1

1

0 0

0 0
0 0 0

M
A

β

β

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

…

…
…

 

• B is the (M + 1) dimensional vector defined as [0 … 0b]T where b = 0 for the base 
and RS systems, and b = 1 for the EI and RSEI systems. 

• N is a time-dependent disturbance vector of length (M + 1). The last vector entry 
must be 0 since the consumption rate is not directly impacted by the disturbance. 

• S∗ is a time-dependent vector of length (M + 1). The ith vector entry is the desired 
stock for the ith stock, and the last vector entry is 0. 

• The measured output, y, for the system is C and is calculated according to 

[ ]( ) ( ) ( )0 ... 0 1y t X t C t= =  (26) 

4.2 The optimal resilience problem 

For these systems, the following questions are considered: 
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• Given the dynamics of the systems described in (25), what ER function optimises 
recovery by minimising the following resilience cost equation? 

( )
[ ]

[ ]

[ ]

[ ]

2

0

2

0

2

0

2

0

( ) ( )
(0), (0),

( )

( )
.

( )

dtC t D t
J S C ER

dtD t

R dtER t

dtD t

∞

∞

∞

∞

−
=

+

∫
∫

∫
∫

 (27) 

In (27), D(t) represents an exogenous demand signal and R is a positive, scalar 
constant that balances the cost of the SI with the recovery effort ER(t). Note that (27) 
has the same form as the cost function in the LQR tracking cost function in (11). 

• What are the resilience costs under this optimal recovery function? 

4.3 Methodology 

To perform the resilience analysis, we use the LQR optimal feedback control approach 
described in Section 3. This approach is well-suited to this particular system since the 
model is linear. The presence of the delay term, C(t – td), results in an infinite 
dimensional state. Hence, in order to perform simulation, the system must be 
approximated and discretised. The averaging scheme described in Banks and Burns 
(1978), Gibson (1983), and Kappel (1991) is used to do so. This approach is selected 
since feedback control approximations developed with the averaging scheme converge 
(in norm) to the optimal control for the infinite dimensional system (Kappel, 1991; 
Rosen, 1991). Kappel (1991) describes in detail how to develop the matrices required for 
the LQR methodology. Empirical testing indicated that relatively low order (N ≈ 8) 
approximations sufficiently represent the solution. 

4.4 Analysis 

Table 1 lists the system parameter values that were implemented for the resilience 
analysis. 
Table 1 System parameters 

Parameter/system Base EI RS RSEI 

k1i .5 .5 .5 .5 
k2i .25 .25 .25 .25 
SATi 8 8 8 8 
td 1 1 1 1 
R .01 .01 .01 .01 

Equations (28) to (30) define the history functions (i.e., functions S(t) and C(t) evaluated 
over the interval [–td, 0)) and S∗. Selection of these parameters results in identical 
dynamics for the stocks of all systems for undisrupted conditions. 
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[ ]( ) , [ 1, 0),3 .5sin(4 )iS t t it= ∈ − ∀+  (28) 

( ) 0, [ 1, 0),C t t= ∈ −  (29) 

[ ]( ) , .3 .5sin(4 )iS t it∗ = ∀+  (30) 

Figures 2 and 3 show the dynamics of the supply-consumption system for undisrupted 
conditions. The nominal consumption function represents the demand function, D, that is 
tracked by C. 

Figure 2 Nominal stock dynamics (see online version for colours) 

 

Figure 3 Nominal consumption dynamics (see online version for colours) 
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Figures 4 and 5 display the dynamics for the base system when imposing the disruption 
N(t) defined by 

1, 1 1.2,
( )

0, otherwise
t

N t
− ≤ ≤⎧

= ⎨
⎩

 (31) 

to the acquisition rate. In the RS and RSEI systems, this disruption affects a single stock. 

Figure 4 Disrupted case: directly affected stocks (see online version for colours) 

 

Figure 5 Disrupted case: indirectly affected stocks (see online version for colours) 
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Figure 6 Close-up of disrupted case: directly affected stocks (see online version for colours) 

 

Figure 7 Close-up of disrupted case: indirectly affected stocks (see online version for colours) 

 

As seen in Figure 4, stock levels for all disrupted stocks drop sharply as soon as the 
disruption occurs, and eventually return to near undisrupted performance levels by t = 8. 
Stock levels are similar for all disrupted stocks. However, systems with emergency 
supply rates, EI and RSEI, have the highest stock levels after the disruption, followed by 
stocks for the RS and then the base system, as seen in Figures 6 and 7. Undisrupted stock 
levels for the RSEI system exceed their counterparts for the EI system. This relative 
increase is caused by the use of the emergency supply inventory. When the ESR function 
initiates at t = 1, consumption levels for RSEI system exceed those of the EI system. 
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Since the SARs are a function of the average consumption rate, RSEI SARs increase 
relative to the EI rates, leading to increased RSEI stock levels. 

Consumption dynamics for all systems are shown in Figure 8. Again, the systems 
with emergency supply inventories, EI and RSEI, track the target demand most closely, 
followed by the RS and base systems. Since the base and RS systems do not have 
emergency inventories, they have no means for overcoming the initial disruption. The RS 
system is not as severely affected as the base system since only one of the four stocks 
(25%) are affected, instead of 100% in the base system. 

The optimal recovery functions, ER, for the EI and RSEI systems are shown in  
Figure 9. ER for the EI system exceeds its RSEI counterpart at all times after the 
disruption initiation; that is, the EI system requires a ‘greater’ recovery effort than does 
the RSEI system. This occurs since only 25% of the stocks are affected in the RSEI 
system, instead of 100% in the EI system. 

The SIs, TREs, and optimal resilience costs, as calculated with equation (27), are 
shown in Table 2. As expected, the base system has the largest SI value, an order of 
magnitude larger than the RS system, and two orders of magnitude larger than the EI and 
RSEI systems. Because the base and RS systems do not have a recovery mechanism (the 
EI), the TREs for those systems are 0. The SI values for the EI and RSEI systems are 
equal, but the TRE value for the EI system exceeds the RSEI value by an order of 
magnitude. This difference indicates that the EI system requires a greater recovery effort 
to maintain the same performance levels as the RSEI system and provides a quantitative 
demonstration that the redundancy within the RSEI system enhances system resilience. 
Consequently, optimal resilience costs, OR, are least for the RSEI system, followed by 
the EI system, then the RS system, and the base system. Hence, the RSEI is considered 
the most resilient system, followed by the EI system, then the RS system, and the base 
system. 

Figure 8 Disrupted consumption dynamics (see online version for colours) 
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Figure 9 Optimal emergency supply rates (see online version for colours) 

 

Table 2 Resilience costs 

System Base EI RS RSEI 

SI 1.4e-0 2.0e-2 1.0e-1 2.0e-2 
TRE 0.0e-0 7.1e-2 0.0e-0 7.6e-3 

2( )D t dt∫  24.5 24.5 24.5 24.5 

OR 5.7e-2 8.4e-4 4.0e-3 8.1e-4 
Rank 4 2 3 1 

If one wanted to enhance the base system to improve its resilience to this type of 
disruption, one should first consider the addition of emergency supply inventory. This 
addition made the single largest improvement for decreasing resilience costs and SIs. 
Furthermore, maintaining additional inventory is likely a cheaper overall investment than 
building three new facilities for stock production. Additional resilience enhancement 
could be added by increasing system redundancy, but one would likely need to perform a 
cost-benefit analysis to determine if the small improvement to overall resilience costs is 
worth the investment necessary to create the redundancy. 

It should be noted that resilience measurement approaches such as those developed by 
Rose and Bruneau et al., that measure only SI and do not consider the TRE, would 
consider the RSEI and EI systems to be equally resilient. Table 3 shows the resilience 
loss and resilience calculations using the methods proposed by Bruneau et al. (2003), and 
Rose and Liao (2005), respectively. In these approaches, the additional redundancy in the 
RSEI system adds no additional resilience benefit relative to the EI system that only has 
EI available to it. This conclusion is counterintuitive since only 25% of the stocks are 
affected in the RSEI system, instead of 100% in the EI system. This example 
demonstrates the importance of the TRE term in quantitative resilience analysis, and the 
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increased ability of Vugrin et al.’s (2010) approach to discern between varying levels of 
resilience. 
Table 3 Alternative resilience calculations 

System Base EI RS RSEI 

Resilience loss (Bruneau et al., 2003) 8.0e-1 1.3e-1 2.1e-1 1.3e-1 
Rank 4 1 3 1 
Static resilience (Rose and Liao, 2005) 0.0e-0 7.9e-1 7.3e-1 7.9e-1 
Rank 4 1 3 1 
Dynamic resilience (Rose and Liao, 2005) 0.0e-0 2.6e-0 2.2e-0 2.6e-0 
Rank 4 1 3 1 

5 Summary and future work 

This paper presents a quantitative framework for critical infrastructure resilience 
assessment. This framework has the unique capability to explicitly include recovery 
processes and the consumption of resources during those processes. The importance of 
this capability is demonstrated in the numerical example presented in this paper. Using an 
approach that includes the TRE term, one concludes that the RSEI system is the most 
resilient of the four systems studied. The combination of RS systems with the EI 
enhances the absorptive and restorative capacities of the system and results in the lowest 
costs. This quantitative analysis confirms what one intuitively knows and demonstrates 
this approach’s increased capability, relative to alternative resilience assessment 
techniques, to discern between varying levels of resilience. 

The development of quantitative resilience methods still requires much work to be 
done, including: 

• Investigate the use of more generally applicable optimisation methods to use for 
resilience analysis: Any optimal control problem can be posed as a more general 
optimisation problem. The use of optimal feedback control algorithms can make 
solution of these problems more efficient, but the application of these methods 
requires linearity of the system. When it is not possible or preferable to apply or 
develop a non-linear control method, non-linear optimisation methods can be 
utilised. It would be worthwhile to investigate the use of non-linear optimisation 
techniques for resilience analysis methods. 

• Explicitly include recovery resource constraints in numerical optimisation methods: 
Emergency responders and infrastructure managers frequently face a common 
dilemma: how does one utilise limited resources when repairing and restoring 
infrastructure systems following a disruptive event? Though the LQR control 
problem includes a penalty in its objective function for increased use of control 
input, i.e., resources expended in recovery processes, it does not explicitly include 
resource constraints. If constraints exist, one can tune the LQR problem by varying 
the R term in the objective function so that the optimal recovery strategy meets the 
constraint. However, the tuning process is inexact and can be time consuming. Many 
optimisation approaches, such as linear and non-linear programming, consider these 
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constraints. Therefore, the use of those numerical solution techniques should be 
investigated in the context of quantitative resilience assessment. 

• Integrate order reduction into resilience assessment simulations: Real infrastructure 
systems can have a large number of components and can be fairly complex, so 
simulation of these systems for resilience assessment can be computationally 
intensive. Reduced-order modelling is often used to reduce the dimension of 
dynamical systems in order to lessen the burden of computation (Antoulas, 2005; 
Holmes et al., 1996). Inclusion of reduced order modelling can facilitate predictive 
resilience assessment and should be investigated for this purpose. 
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