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ABSTRACT 

Critical infrastructure resilience has become a national priority for the U.S. Department of Homeland 
Security. Rapid and efficient restoration of service in damaged transportation networks is a key area of 
focus. The intent of this paper is to formulate a bi-level optimization model for network recovery and to 
demonstrate a solution approach for that optimization model. The lower-level problem involves solving 
for network flows, while the upper-level problem identifies the optimal recovery modes and sequences, 
using tools from the literature on multi-mode project scheduling problems. Application and advantages of 
this method are demonstrated through two examples. 
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1 INTRODUCTION AND BACKGROUND  
Until recently, critical infrastructure protection (CIP) focused on physical protection and asset hardening 
(e.g., Reagan 1982; Clinton 1998; Bush 2002, 2003). However, a recent shift includes resilience ̶ the 
ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions 
(Obama 2013). The transportation infrastructure sector was one of the first sectors to incorporate 
resilience into its sector-specific plan when the Transportation Security Administration (TSA) made 
“Enhance the resilience of the transportation system” one of its top three priorities (TSA 2007). 

This paper provides an approach for considering the role of recovery decisions in network resilience. 
Recovery is certainly not the only factor that determines resilience, but it is an important element of 
strategies to increase resilience. The approach described herein uses a project-oriented perspective to 
recover from the effects of a network disruption: that is, a set of repair tasks must be scheduled in an 
optimal way. Each of those tasks requires resources and time. Despite the obvious connections to the 
substantial literature on project scheduling, a primary difference of recovery work is that completion of a 
subset of tasks has value because partial operation of the network may be restored. In contrast, project 
scheduling generally focuses on minimization of makespan, which is time to completion of the entire 
project. This difference in focus leads to important differences in how schedules are evaluated. 

Another difference between standard project scheduling and recovery scheduling is that optimization of 
recovery task scheduling evaluates the state of the system at a given time, requiring computation of 
network flows. Frequently, the flows are the result of a different optimization by network users. Thus, 
objective function evaluations require solution of another optimization. This bi-level optimization 
structure connects the work described here to prior work on optimization models for network design, in 
particular dynamic models in which the state of the system evolves over time. This work builds on crucial 
ideas from that literature, but the structure of time periods, tasks, etc. in the current context is 
considerably different from the multi-period network design models. 

Section 2 of the paper discusses the general issues of measuring system resilience and describes recent 
related work. A specific mechanism for measurement of system resilience in the current context is also 
proposed. Section 3 provides the description of the model and a solution methodology, and Section 4 
illustrates how it performs in some small-scale test cases. Section 5 draws conclusions and discusses 
implications for further research. 
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2 RESILIENCE, SYSTEM IMPACT, AND RECOVERY FROM DISRUPTIONS 

Holling (1973) provided the first systems-level definition of resilience. Over the past four decades, many 
alternative definitions were proposed for infrastructure and economic systems analysis (e.g., see Fiksel 
2003; Rose and Liao 2005; Tierney and Bruneau 2007; Park et al. 2013; Obama 2013). All these 
definitions include aspects of a system withstanding disturbances, adapting to the disruption, and 
recovering from the state of reduced performance. 

Much recent research has been conducted to ascertain systemic features and attributes that characterize 
resilience. Bruneau et al. (2003) assert that resilience consists of “4 Rs”: robustness, redundancy, 
resourcefulness, and rapidity. They further assert that resilience encompasses four dimensions: technical, 
organizational, social, and economic. Madni (2009) proposes a set of qualitative design methods 
(heuristics) for resilience, including redundancy, reorganization, adaptation, and other features.  Park et 
al. (2013) assert eight resilient design strategies including diversity, adaptability, cohesion, and other 
features. Katina and Hester (2013) focus system defensive properties such as deterrence, detection, delay, 
and response to characterize resilience of critical infrastructure systems. Resilience attribute analysis is 
still an active area of research as no consensus has been reached on fundamental system attributes that 
determine resilience.      

Various metrics have been proposed for resilience measurement. Attribute-focused metrics typically 
consist of indices that rely on subjective assessments (e.g., Sempier et al. 2010; Fisher and Norman 2010) 
or data-based indicators (e.g., Cutter et al. 2010) that quantify system attributes that are asserted to 
contribute to resilience.  Alternatively, performance-based methods (e.g., Bruneau et al. 2003; Chang and 
Shinozuka 2004; Rose 2007) propose metrics that measure the consequences of infrastructure disruptions 
and the impact that system attributes have on mitigating those consequences. Instead of quantifying 
system attributes to assess the indirect impact they have on an infrastructure’s ability to deliver critical 
goods and/or services, performance-based metrics directly measure outputs of the infrastructure system 
during the recovery period. . Most resilience metrics for transportation networks are categorized as 
performance-based methods as they focus on impacts to flows across the network during recovery 
activities. 

While many system features can contribute to resilience, system recovery and its role in infrastructure 
network resilience has attracted much previous attention. Important examples across a range of 
infrastructure types include Xu et al.’s (2007) work on electric power restoration, Clausen et al.’s (2010) 
work on airline system recovery, Luna et al.’s (2011) work on water distribution networks, and Wang et 
al.’s (2011) work for internet protocol (IP) networks. These efforts represent a variety of approaches and 
criteria, as well as a range of different network types. 

The recent work by Bocchini and Frangopol (2012), Chen and Miller-Hooks (2012), and Henry and 
Ramirez-Marquez (2012) provided three different perspectives on resilience and recovery in 
transportation networks. All three approaches draw upon a common concept underlying many resilience 
analysis approaches, as illustrated generically in Figure 1.  
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Figure 1: Generic concept of disruption and recovery. Note that the length of the recovery period and 

impact on performance depends upon the disruption and network context. 

Some system performance measure, F, has a nominal value (i.e., under normal operating conditions) F0. 
The system operates at this level until suffering a disruption at time t0. The disruption generally causes a 
deterioration in system performance to some level Fmin at time t1. Recovery commences, affecting and 
likely improving network performance. Frequently, multiple options exist for sequencing recovery 
activities, and network performance is ultimately a function of recovery decisions (Figure 2). These 
decisions can include sequencing of repairs, selection of different repair modes that can hasten or slow 
restoration of network components, and resource allocation that can enable simultaneous repair of 
multiple links. Ultimately, system performance achieves a targeted level of performance (often taken to 
be F0) at a later time t2, and recovery is then considered complete.  

 
Figure 2: Recovery variation under different recovery strategies 

Henry and Ramirez-Marquez (2012) are primarily interested in constructing and evaluating different 
metrics for system resilience. They view resilience as the ratio of recovery to loss (at a given time, t), and 

form a measure min

0 min

( )
( )

F t F
R t

F F


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
 . This formulation is identical to Rose’s (2007) static resilience 

metric when Fmin is taken to be Rose’s worst-case quantity.  
 
Henry and Ramirez-Marquez (2012) apply this metric to a series of disruption scenarios that disable links 
in a transportation network in order to find restoration sequences that maximize recovery at a given time. 
To do so, the team makes three simplifying assumptions:  

1. Link repairs are assumed to be discrete tasks. 

Time, t
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2. Only a single link can be repaired at any given time. Hence, the optimization is purely a 
sequencing issue. Resource allocation for recovery activities is not a decision variable in the 
optimization. 

3. A single recovery mode is assumed for network repairs. Consequently, the time for repair for a 
single link is constant and not affected by decision variables in the optimization. 

Bocchini and Frangopol (2012) present a model of recovery planning for networks of highway bridges 
damaged in an earthquake. The model identifies bridge restoration activities that maximize resilience, 
minimize the time required to return the network to a targeted functionality level, and minimize the cost 
of restoration activities. The authors measure resilience with the following equation: 

2

1

2
2 1

( )
t

t

F t dt

Q
t t





 

where F, t1, and t2 are as defined in Figure 1 above.1 This formulation resembles Bruneau et al.’s (2003) 
resilience loss calculation with one significant difference. Rather than measuring the area between F0 and 
F(t), Bocchini and Frangopol (2012) measure the area between F(t)and 0 and then normalize over the 
recovery time period. The advantage of this approach is that an increase in Q2 implies an increase in 
resilience; Bruneau et al.’s formulation has the opposite result. 

Bocchini and Frangopol (2012) formulate a bi-level optimization structure, in which flows on the network 
are determined by a traffic assignment computation (solution to a lower-level optimization), and decisions 
on a recovery strategy are identified in an upper-level optimization. Bocchini and Frangopol model bridge 
capacity restoration as a continuous process associated with a rate of expenditure of funds. Decision 
variables for each bridge are the time to begin repairs and the rate of expenditure on that facility and are 
modeled as continuous variables. As funds are expended on a bridge, capacity is returned proportionately 
and partial capacity is available to the traffic flow computation. Although constraints are placed upon 
funding rates at individual facilities, the only constraint on the overall rate of expenditure is the sum of 
the maxima for each bridge. Total funds available over the planning horizon are constrained, but there is 
no limitation on the number of restoration efforts that can be active simultaneously. The result in their 
case study (involving a network of 38 bridges) is that most of the bridges have repairs starting 
immediately after the disruption (28 of 38 in one sample solution, and 32 of 38 in another). In light of 
likely limits on availability of required equipment and other resources, this may be unrealistic. 
 
Chen and Miller-Hooks (2012) focus on intermodal freight transportation networks and formulate a 
problem of finding a strategy for maximizing the proportion of original demand that can be 
accommodated at a given time after a disruption, subject to an overall budget constraint for restoration 
activities. Restoration is achieved by completion of a set of discrete recovery activities. Completion of 
those recovery activities results in a discrete change in link capacity, but each activity is represented as a 
single task. Each task has a cost and duration, but the only resource constraint is a limit on total recovery 
budget. 
 
Chen and Miller-Hooks (2012) assume explicitly that recovery of all damaged network links begins 
simultaneously immediately after the disruption. Their optimization model is aimed at selecting the set of 
recovery activities (which may include multiple options for each damaged link, with different effects on 

                                                 
 
1 Bocchini and Frangopol (2012) assume t0 = t1, i.e., the degradation is effectively instantaneous. This assumption is 

reasonable given the short period of time required for earthquake damage to be realized when compared to 
recovery periods. 
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restored capacity), so that the total amount of demand met within a given time is maximized. Timing of 
recovery activities and operational costs are not considered.  

From the description of these three approaches, a number of key technical differences can be seen. These 
differences are important not only because they affect the problem formulation but also because they 
impact numerical solution of the optimization. The following section introduces a new, more general 
model for evaluating how recovery action decisions affect the restoration and resilience optimization in 
transportation networks. As previously noted, network recovery is one of many aspects that affects the 
resilience of transportation networks. However, the following discussion focuses on how previous 
research on transportation network recovery can be generalized under this framework. 
 

3 A NEW RESILIENCE MODEL FOR TRANSPORTATION NETWORKS 

3.1 GENERAL FORMULATION 

Vugrin et al. (2010) developed a resilience framework that simultaneously considers restoration of system 
performance and the resource expenditures required to do so. Under this framework, the two key 
quantities calculated are systemic impact (SI) – the cumulative impact of decreased system performance 
following a disruption – and total recovery effort (TRE) – the cumulative resources expended in recovery 
activities. As illustrated in Figure 2, recovery decisions and actions affect both of these quantities.   

Vugrin et al. integrate these quantities in a composite resilience measure:2 

Z SI TRE        (1) 

where  is a weighting factor that serves for both unit conversion and relative weighting between SI and 
TRE in overall evaluation. In any particular application, SI itself may be composed of several different 
measures of system performance (with relative weights), and those weights together with the factor  
serve to normalize Z to some useful scale. The framework was applied to continuous, dynamic systems 
(Vugrin and Camphouse 2011) and agent-based models (Vugrin et al. 2010). The following section 
describes calculation of SI and TRE when the framework is applied to transportation networks. 

3.2 CALCULATION OF SYSTEMIC IMPACT AND TOTAL RECOVERY EFFORT FOR TRANSPORTATION 
NETWORKS 

The application context of interest here is transportation networks composed of discrete nodes and links. 
Disruptions create damage to nodes and/or links in the network. Damage is modeled as a reduction in the 
capacity of the links.3 Capacity reductions cause some flows across the network to be diverted to other 
facilities or perhaps to be blocked entirely. Flow diversions may increase congestion in other parts of the 
network and generally increase costs.  In some cases not all flows can be accommodated, which creates 
additional systemic impact. 

In this analysis, consider the network to contain a set of links indexed by i. At time t, the capacity of link i 

is Ki(t). Under normal operations, the collection of link capacities is denoted as 0
iK . At time t = 0, a 

                                                 
 
2 Vugrin et al. (2010) divide Z by a normalization constant, but that factor is omitted in this discussion because this 

simplification is equivalent for optimization.  
3 If node capacities are important in a specific application problem, they can be converted to equivalent link 

capacities by introducing additional links and nodes into the network. 
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disruption reduces some of the link capacities, and the initial post-event state is defined by a set of link 

capacities, Ki(0), where for damaged links Ki(0) < 0
iK . 

Traffic on the network moves from origin nodes to destination nodes, and the volume in period t for 
origin-destination pair rs is denoted qrs(t). In a disrupted state, the network may have insufficient capacity 
to carry all the origin-destination traffic, and the volume of travel from r to s that cannot be 
accommodated at time t is denoted ers(t). Movement of origin-destination flows across the network 
induces a set of link flows, xi(t), and some total cost for link i, denoted as Hi[xi(t)]. This cost may reflect 
travel time, distance, fuel consumption, or other factors. In the nominal (non-disrupted) state, the network 

flows are 0 ( )ix t and the total cost on link i is 0 0( ) ( )i i iH t H x t    . 

This analysis is based on a set of discrete time periods, indexed by t = 1,…,T, where T is the length of the 
planning horizon. The systemic impact is then defined as the increase in total cost, including both 
increases in total costs for flows on links and penalty costs ( rs ) for demand that cannot be 

accommodated. 

  0

1

( ) ( ) ( )
T

i i i rs rs
t i rs

SI H x t H t e t


     
       (2) 

The use of cost as a performance measure for SI means that the degraded performance implies an 
increase, rather than a decrease in the performance measure as illustrated in Figure 1, and the computation 
of the area between the nominal and degraded performance is above the nominal line rather than below it, 
but this does not alter the basic concept. 

Measurement of TRE is related to the scheduling of repair tasks on damaged links in the network. These 
repair tasks have duration, require specific resources, and may be scheduled to begin in specific time 
periods during the planning horizon. At the completion of specified milestones in the repair effort, a 
specified increment of capacity is returned to function on link i. Repair to restore capacity on a damaged 
link may be represented as a single overall task, or as a project network with a collection of related tasks 
and milestones. 

Repair tasks require resources of one or more types; in general, tasks may be scheduled in one of a set of 
possible modes. Repair task j on link i, scheduled in mode m and initiated in period t, is assumed to imply: 

 A lag duration of ijm  periods before the task is completed; 

 Resource requirement k
ijmr  for resource k in each period that the task is active; and 

 An associated total cost ijmC  (which may be a net present value if discounting is necessary in a 

given situation). 

The set of modes available may not be uniform across all tasks and the set of tasks required for different 
links may also vary, but to avoid notation that is excessively cumbersome, use the ijm subscripting to 
imply using mode m selected from the set available for task j and a task relevant to recovery on link i. 

The central variables in the recovery optimization model are: 

1

0ijmt

if task j on link i is initiated in mode m in period t
u

otherwise


 


 

Then 

ijm ijmt
i j m t

TRE C u      (3) 
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Taken together, eqs. 1-3 define the objective, Z, to be minimized in the model designed to find an optimal 
recovery plan. This objective includes both the impact (SI) and recovery effort (TRE) elements of 
resilience and reflects the perspective of recovery planning as a challenge of scheduling repair tasks to 
restore damaged capacity in the transportation network. The following section defines the full model in 
detail. 

3.3 OPTIMIZATION MODEL FORMULATION 

To make the model statement as compact as possible, eqs. 1-3 are combined into the objective in eq. 4. 

  0

1

( ) ( ) ( )
T

i i i rs rs ijm ijmt
t i rs i j m

Min Z H x t H t e t C u 


 
    

 
      (4) 

The decision variables in this minimization, ijmtu , are subject to several constraints. They also must be 

connected explicitly to the network flows, xi(t), the cost functions, Hi, and the unmet demand, ers(t). The 
authors discuss first the constraints on the ijmtu  variables, and then their connections to the other model 

elements. 

Task j for link i can be performed in only one selected mode and will not be scheduled more than once. In 
some cases, it may not be scheduled at all, so 

1 ,ijmt
m t

u i j        (5) 

Tasks j and l for link i may have precedence constraints (e.g., j must be completed before l can begin). 
These constraints are written as follows: 

 ilmt ijm ijmt
t m t m

t u t u         (6) 

In some cases, a mode for a task may allow it to be interrupted (i.e., complete part of it, stop, and 
complete the remainder later). In cases where the repair to a link is considered one aggregate task, 
completion of the first part may restore partial capacity. In this case, the aggregate task can be broken into 
two sub-tasks with a precedence constraint and a milestone is associated with completion of the first task. 

In general, link repairs require some physical resources in limited supply, and availability of these 
resources may constrain recovery scheduling. These resource constraints are applied in the form: 

1

,
ijm

t
k

ijm ijm kt
i j m t

r u R k t
   

       (7) 

where Rkt is the available amount of resource k in period t.  

 

Other constraints on repair task scheduling may be appropriate in specific applications, but eqs. 5-7 
represent the general types of constraints that are likely to be most common. 

The scheduling of repair tasks affects flows and impacts in the network through the provision of link 
capacity. As a result of completion of specified tasks j  (i.e., achievement of milestones) for link i, the 

capacity of link i in period t is augmented by ij . The available capacity on link i in period t is written as: 



8 

1

( ) (0)
ij mt

i i ij ij m
j

K t K u


 





 

         (8) 

The link capacities generally are important for determining flow patterns in the network, which ultimately 
affect eq. 1. 

3.4 NUMERICAL SOLUTION 

The upper problem in the recovery optimization resembles a multimode project scheduling problem. The 
multimode resource-constrained project scheduling problem (MRCPSP) is a challenging optimization 
problem that received considerable attention from a variety of researchers. Finding exact solutions to the 
MRCPSP is computationally intense, but several types of heuristics proved capable of finding good (but 
not necessarily optimal) solutions and are scalable to realistic problem instances. Mori and Tseng (1997), 
Ozdamar (1999), Hartmann (2001), and Alcaraz et al. (2003) proposed various forms of genetic 
algorithms. Kolisch and Drexl (1996) explored ideas of local neighborhood search for finding good 
solutions, and Tseng and Chan (2009) combined genetic algorithm ideas with local search to create a two-
phase algorithm. Other recent work by Jarboui et al. (2008) and Chen et al. (2010) explored using particle 
swarm and ant colony optimization approaches, and Damak et al. (2009) tried a differential evolution 
approach. 
 
Algorithms for the MRCPSP are generally based on a criterion of minimizing the time to project 
completion (often called makespan). This criterion is important because evaluation of the objective 
function is trivial, in that the algorithm simply tallies the completion time of the final task. Consequently, 
the algorithms can afford to evaluate the objective function a large number of times without incurring 
much computational penalty. For the recovery model described in Section 3.3 above, evaluation of the 
objective function for the upper-level problem involves solution of several lower-level optimization 
problems to construct network flows at different times. Evaluation of this objective function is much more 
computationally expensive; thus, a solution method that recognizes this challenge must be constructed. 
 
Simulated annealing is a useful class of meta-heuristics applied to the MRCPSP (e.g., Boctor 1996, 
Bouleimen and Lecocq 1997, and Jozefowska et al. 2001). Boctor’s approach is particularly well-suited 
for the recovery optimization problem. A core idea of Boctor’s approach to the project scheduling 
problem is that a potential solution can be described as an ordered list, or sequence, of tasks. The 
sequence implies a schedule, which can be constructed relatively easily. In the multimode case, the 
sequence also contains mode selection for each task (which implies its duration and resource 
requirements). Sequences can also be checked easily for validity (i.e., no task can appear in the sequence 
before any of its required predecessors or after any of its successors). 
 
A second key idea in Boctor’s approach is that a neighboring solution (for the simulated annealing search 
process) can be constructed by shifting the position of one task in the sequence to another valid position. 
In Boctor’s original work, the existence of multiple modes for execution of individual tasks was handled 
during the serial scheduling rule implementation. As each task is considered, possible beginning and 
ending times for each mode are determined; the mode that leads to earliest task completion is selected. 
Boctor mentions that other rules for selecting modes could be substituted. The authors developed two key 
modifications that improve the efficiency of the search method significantly. 
 
The first is that the solution process can memorize the SI values for specific capacity conditions. Different 
recovery sequences produce the capacity changes at different times, but timing differences of these 
capacity changes does not necessarily affect travel times, unmet demand, and other factors that contribute 
to SI values. By identifying the changes that affect capacity , it is possible to calculate SI quantities for 
those changes and to store those values. Using this approach, the optimization routine can call the stored 
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value rather than re-evaluating the objective function. This process can reduce computational 
requirements substantially in both simple and complex networks. Bocchini and Frangopol (2012) 
recognized this general concept in their solution algorithm. They observed in later stages of their search 
process that approximately two-thirds of the required solutions are simply retrieved from previously 
stored results and do not need to be recomputed.  
 
A second important computational element for the simulated annealing process is that because capacity 
changes on links occur at discrete times, it is quite easy to characterize solutions that are dominated. That 
is, if the order of link capacity restorations is the same in potential solution a as it is in potential solution 
b, but in solution a none of the changes occur later than in b, and at least one change occurs earlier, 
solution a will dominate solution b in the calculation of SI. In this case, if the SI for solution a was 
already computed, calculations for solution b are unnecessary. The algorithm can discard solution b and 
proceed to another candidate solution. The addition of the memorization and dominance features are 
effective at reducing the computational burden of the optimization process, as will be shown in later 
sections. 

3.5 COMPARISON TO OTHER METHODOLOGIES 

The modeling assumptions, problem formulation, and solution method described above differ 
significantly from the previous efforts of Henry and Ramirez-Marquez (2012), Bocchini and Frangopol 
(2012), and Chen and Miller-Hooks (2012). Henry and Ramirez-Marquez (2012) discuss the idea of 
allocating resources to enable network recovery in an optimal way, but limit their consideration to 
situations in which links are repaired strictly in sequence (one link at a time). Their concern is with a 
sequence that maximizes the degree of recovery at a given time. Their approach is one special case of the 
optimization problem formulated in 3.3. 

The Bocchini and Frangopol (2012) analysis has several common elements with the optimization problem 
formulated here, as well as some important differences. They use a similar bi-level structure, in which 
flows on the network in any particular state are determined by a traffic assignment computation (solution 
to a lower-level optimization), and decisions on a recovery strategy are in an upper-level optimization. 
They also consider similar measures of systemic impact and recovery cost. A major difference is the 
characterization of recovery actions. This leads to a very different formulation of the upper-level problem. 

Bocchini and Frangopol (2012) model capacity restoration as a continuous process associated with a rate 
of expenditure of funds, rather than treating restoration as a sequence of discrete tasks. They include a 
global constraint on fund availability across the entire planning horizon, but they do not consider time-
dependent resource availability. Consequently, there is no limit on the number of tasks that can be 
conducted simultaneously. 

Chen and Miller-Hooks (2012) consider a set of discrete recovery activities and completion of those 
recovery activities results in a discrete change in link capacity. However, each activity is represented as a 
single task. Each task (recovery option) has a cost and duration, but no other requirements for constrained 
resources. Similar to the Bocchini and Frangopol approach, the only resource constraint is a limit on total 
recovery budget. 

4 ILLUSTRATIVE EXAMPLES 

This section considers two different network examples to illustrate application of this new resilience 
formulation. The first example, drawn from Henry and Ramirez-Marquez (2012), includes a simple 
maximum flow network. This example demonstrates that the Henry and Ramirez-Marquez approach is a 
special case of the formulation presented in this paper. The second (more complicated) example considers 
a congested traffic flow network.  
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4.1 EXAMPLE 1: A MAXIMUM FLOW NETWORK 

4.1.1 PROBLEM FORMULATION 

Consider the network shown in Figure 3 with link capacities in Table 1. Assume the objective is 
to maximize flow from node 1 to 7. Link flows are determined by solving a maximum flow 
problem, given the state of the link capacities. The link flow costs (Hi[xi(t)] in eq. 4 of the 
optimization problem in Section 3.3 are irrelevant and are assumed to  be zero. Optimization 
occurs through the usual method of introducing a return link, 7-1, with unlimited capacity, and 
maximizing the flow 71x , subject to the link capacities and flow conservation at all nodes. The 

flow problem at time t can be written as: 

max   71( )x t         (9) 

s.t. ( ) ( ) 0 1,...,7
n n

i i
i I i O

x t x t n
 

         (10) 

 0 ( ) ( )i ix t K t i         (11) 

The sets In and On in eq. 10 are the inbound and outbound links at node n, respectively. In the 
nominal (undisrupted) case, the maximum flow is 14 units. The SI measure is the reduction in 
flow, 17 71( ) 14 ( )e t x t  , for the single origin-destination pair of interest. 

 

 

Figure 3: Maximum flow network for Example 1 

Table 1: Network capacities for Example 1 

Link  Capacity  Link  Capacity 

1‐2  5  3‐5  4 

1‐3  7  3‐6  5 

1‐4  4  4‐6  4 

2‐3  1  5‐7  9 

2‐5  3  6‐5  1 

3‐4  2  6‐7  6 
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A disruption scenario defined by Henry and Ramirez-Marquez (2012) is used for analysis: 

1. The event (at time 0) reduces the capacity of links 1-2, 1-3, 1-4, 2-3, and 3-4 to 0.  

2. A single-mode repair action mode is available for each damaged link. Table 2 lists durations and 
costs for these actions. 

 
3. Resource constraints prevent repair of multiple links simultaneously. 

4. Full capacity for a link is restored only after completion of the repair. Restoration of partial link 
capacity does not occur.  

Table 2: Repair characteristics for Example 1 

Damaged 
Link 

Repair Duration: �i  
(periods) 

Repair Cost: 
Ci 

1‐2  20  20,000 

1‐3  50  50,000 

1‐4  40  40,000 

2‐3  20  20,000 

3‐4  10  10,000 

Because there is only one mode for each of the repair tasks and the link repairs are specified as a 
single task for each link, the task scheduling variables for the links that have been damaged 
(denoted as set L) can be simplified to uit, and each task i L  has a cost Ci and a duration i. For 

i L , define (0) 0iK   and 0
i iK  , for i L , 0( )i iK t K . The repair tasks do not have any 

precedence constraints for scheduling, but only one task can be active at any given time. The link 
repair task durations are all multiples of 10, so an aggregated time period t  equal to 10 of the 
original time periods can be used to reduce the number of variables and constraints in the model. 

Assuming the weight 17 1   and that  is specified, the overall problem can be written as:   

min *
7114 ( ) i it

t i L

x t C u 
 

    
        (12) 

s.t. 1it
t

u i L


         (13) 

 
1

1
i

t

i
i L t

u t
 



   

        (14) 

0

1

( ) ,
it

i i iK t K u i L t





  




       (15) 

  0,1 ,itu i L t         (16) 

where 71( )x t  is the solution of the maximum flow problem specified in eqs. 9-11.  
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4.1.2 SOLUTION 

Solution of the optimization problem (12)-(16) is straightforward, and the resulting optimal repair 
sequence is illustrated in Figure 4.4 Under this sequence, flow drops to 0 immediately after the disruption 
because node 1 is completely separated from node 7. Repairs begin immediately on link 1-2, and they are 
completed after 20 periods, restoring maximum flows to 3 units. Link 1-3 repairs follow, requiring 50 
time periods, and maximum flows reach 10 units. Repair of link 1-4 requires another 40 periods, and 
maximum flows are returned to their nominal level (14) after 110 periods. Links 2-3 and 3-4 are not 
repaired. The total SI measure is 990 units of flow lost during the recovery. Repair costs are110,000. If 
the analysts assign 0.001  , the final value of the objective function is 990 + 110 = 1100. 

 
Figure 4: Optimal repair sequencing. The SI quantity is the white area between the nominal maximum 

flow and the disrupted maximum flows.  

Although analytical solution of (12)-(16) is trivial, analysts can also solve it numerically with the 
simulated annealing approach described in section 2. In this simple example, the algorithm has little 
computational advantage. However, the method correctly identifies the optimal solution, confirming the 
accuracy of the approach on a simple example. The following example, which is considerably more 
complicated, will provide more information about algorithm performance. 

Henry and Ramirez-Marquez (2012) discuss that system performance (SI in this case) is affected by 
changing the repair sequence; however, they do not address the optimization directly. In doing so, they 
reach a sub-optimal solution when they assume all roads must be repaired. As shown above, when the 
objective function considers the costs of link repairs, the optimal solution does not include repairing all 
damaged network links. Hence, this example shows the importance that a general model formulation and 

                                                 
 

4 Given that only a single task can be completed at a time, precedence constraints do not exist, and only a single 
repair mode is available, task sequencing translates directly into a scheduling solution with no additional effort. 
Because five links need to be repaired, only 5!=120 distinct possible sequences exist. Furthermore, because links 
2-3 and 3-4 have zero flow in the nominal maximum flow solution, repairing these links does not affect the SI 
measure (but does add to the cost of recovery). Thus, they will be ignored in the optimal solution, and only repair 
sequencing for links 1-2, 1-3 and 1-4 matters. Hence, 3!=6 sequences are considered for optimization, and the 
solution can easily be constructed by enumeration. 
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solution strategy include the possibility that the network may not need to be returned exactly to its pre-
disruption state.  
Additionally, this example is a case where the bi-level nature of the problem can be collapsed 
into a single optimization. In these instances, finding a global optimal solution becomes much 
easier. For this example, the objective function of the upper-level problem is monotonic in the 
value of the lower-level objective (i.e., the variable 71x ). Under these conditions, the two levels 

can be combined (Bard 1984; Bialas and Karwan 1984), and the recovery problem can be solved 
as a single optimization. In larger instances of problems for which a similar relationship between 
the upper-level and lower-level problems can be demonstrated, the ability to treat the problem as 
a single overall optimization can allow demonstration of a globally optimal solution even though 
the solution space is much too large to be enumerated. 

 

4.2 EXAMPLE 2: A CONGESTED TRAFFIC FLOW NETWORK 

4.2.1 PROBLEM FORMULATION 

Figure 5 illustrates a congested traffic flow network with 17 origin-destination pairs with varying 
demands. Links are assigned capacities (Ki) and travel time (delay) functions,  ( ), ( )i i id x t K t , to 

relate time to flow and capacity available in period t. All parameter values for this network are 
provided in Appendix A. 

 

 

Figure 5: Network for Example 2. Double‐headed arrows between nodes links indicate a pair of links 
between the same nodes, one in each direction. 

  

1

4

2

3 9

8

7

6

5



14 

Link flows xi are assumed to represent a deterministic user equilibrium, in which individual users choose 
paths through the network to minimize their own travel time. At time t, when the link capacities are Ki(t), 
this flow pattern is the solution of an optimization problem: 

 min      
( )

0

, ( )
ix t

i i i i rs rs
i rs

d w K t dw e       (18) 

s.t. ( ) ( )i ip p
p

x t f t i       (19) 

 ( ) ( ) ( )rs
p p rs rs

p

f t e t q t rs        (20) 

0 ( ) ( )i ix t K t        (21) 

( ) 0pf t         (22) 

where 
( )rsq t  = units of desired flow from origin r to destination s in period t 

( )rse t  = units of unmet demand from origin r to destination s in period t 

rs   = unit cost of unmet demand from origin r to destination s 

( )pf t  = flow on path p for period t 

ip        = 1  if path p crosses link i;  0  if not 
rs
p   = 1  if path p connects origin r to destination s;  0  if not. 

 
As with Example 1, the analytical team poses (18) – (22) under the recovery optimization formulation 
described in Section 3.3. The team simulates the disruption and recovery process with the following 
assumptions: 

1. The disruption (at time 0) reduces the capacities of links 3-7, 7-3, 7-8, and 8-7 to 0. 
  

2. For each pair of directional links, repair is represented by an eight-task activity-on-arc project 
network with precedence requirements (Figure 6).  

 
3. Restoration of full capacity to a pair of directional links occurs at the milestone indicated by node 

F (i.e., completion of all eight tasks). Forty percent of capacity restoration (for both directions) is 
achieved at the milestone represented by node C. 
 

4. Tasks require varying amounts of two resources, each of which is available in limited quantity. 
For the first 10 periods after the disruption, 4 units of each resource are available. After the tenth 
period, additional resources can be acquired and the availability increases to 6 units of each 
resource. These resources must be shared between the two repair efforts. 

 
5. The precedence structure of the repair projects for both pairs of links is the same, but the task 

durations, resource requirements, and costs are different for the two sites. Table 3 indicates the 
task characteristics for the two projects. In each project, tasks 5 and 6 can be performed in one of 
two possible modes, with different durations, resource requirements, and costs. For later 
notational convenience, each of the link-task-mode (ijm) combinations in Table 3 has been 
assigned an index. This makes the formal statement of the recovery optimization problem easier. 
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Figure 6: Link restoration project tasks and precedence for each pair of disrupted links  

(between nodes 3 and 7 and between nodes 7 and 8) 

Table 3: Recovery project characteristics for Example 2 

Index  Links 
Task 

Number 
Mode 

Duration 
(periods) 

Cost 
Resource Requirements (units) 

Resource 1  Resource 2 

1 

3‐7 and 
7‐3 

1  1  4  80  2  0 

2  2  1  4  320  2  3 

3  3  1  6  300  1  2 

4  4  1  3  90  1  1 

5  5  1  4  160  2  1 

6  5  2  2  180  3  2 

7  6  1  7  420  2  2 

8  6  2  4  480  4  4 

9  7  1  4  200  3  1 

10  8  1  3  30  1  0 

11 

7‐8 and 
8‐7 

1  1  3  60  2  0 

12  2  1  4  240  2  2 

13  3  1  4  200  1  2 

14  4  1  2  60  1  1 

15  5  1  3  180  2  2 

16  5  2  2  200  4  3 

17  6  1  5  300  2  2 

18  6  2  3  360  4  4 

19  7  1  3  150  3  1 

20  8  1  2  20  1  0 

 

This example is far more complex than Example 1. Example 2 illustrates several of the difficult resource 
allocation issues that may be faced in recovery planning for transportation (or other infrastructure) 
networks. In particular, this example includes: 

 More complicated precedence requirements on repair tasks 

 Repairs that affect multiple directional links simultaneously 

 Multiple modes for some of the tasks 
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 Intermediate milestones at which partial capacity is restored 

 Multiple resources that are constrained and used in different quantities by the various tasks and 
modes 

 Varying resource availability over the planning horizon. 

This example also illustrates a more complex connection between the network flow determination and the 
evaluation of SI than is present in Example 1. 
 
Because the full statement of the recovery optimization for Example 2 is relatively long, it is presented as 
Appendix B. It should be noted for this optimization, the cost function Hi[xi(t)] (in eq. 4) is the total travel 

time for all users of link i: i.e.,    ( ) ( ) ( ), ( )i i i i i iH x t x t d x t K t . The demands in Appendix A are 

assumed to be constant, so ( )rsq t  may be simplified to rsq . 

4.2.2 SOLUTION 

For undisrupted conditions, all demand is met with the total vehicle-hours of travel equal to 8068. Table 4 
lists the equilibrium link volumes. Note that the total volume on links between nodes 3 and 7 (~3200) is 
much larger than that on links between modes 7 and 8 (~700). This difference is important in determining 
the optimal recovery sequence. 

Table 4: Equilibrium link volumes for nominal case in Example 2 

Link  Volume  Link  Volume  Link  Volume 

1‐4  0  4‐2  1860  6‐8  1202 

1‐5  622  4‐3  118  7‐3  1682 

1‐6  1838  4‐5  1761  7‐5  453 

2‐3  0  5‐1  196  7‐6  1139 

2‐4  830  5‐4  1978  7‐8  428 

3‐2  0  5‐6  1955  8‐6  137 

3‐4  931  5‐7  428  8‐7  283 

3‐7  1539  6‐1  1704  8‐9  340 

3‐9  850  6‐5  1721  9‐3  560 

4‐1  0  6‐7  1112  9‐8  80 

 

Immediately following the disruption, 195 units of demand are unmet and network flows result in 12,019 
vehicle-hours of travel. When the analysts assign 10rs   for all origin-destination pairs, the contribution 

to SI while this initial condition persists is 12,019 – 8068 + 10 (195) = 5901 per period. 
 
This example illustrates the efficiency of the modifications this team introduced to Boctor’s (1996) 
simulated annealing method. In this example, only nine different combinations of capacity conditions 
affect the SI calculation: 

 No capacity on the disrupted links, 

 Forty percent capacity on links 3-7 and 7-3 and zero capacity on links 7-8 and 8-7, 

 Forty percent capacity on 7-8 and 8-7 and zero capacity on links 3-7 and 7-3, 
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 Forty percent capacity on all disrupted links, 

 Forty percent capacity on links 3-7 and 7-3 and 100% capacity on links 7-8 and 8-7, 

 Forty percent capacity on 7-8 and 8-7 and 100% capacity on links 3-7 and 7-3, 

 One hundred percent capacity on links 3-7 and 7-3 and zero capacity on links 7-8 and 8-7, 

 One hundred percent capacity on 7-8 and 8-7 and zero capacity on links 3-7 and 7-3, and 

 One hundred percent capacity on all disrupted links, 
 
The SI computations for different sequences are related to when the shifts in capacity occur, but that 
calculation is very simple. Hence, adding the memorization capability to the simulated annealing process 
radically decreases computational time for this example. The following recovery solution sequences 
illustrate how the dominance modification further reduces computations. 
 
The analysts summarize 3 recovery solution sequences using task indices from Table 3. Each solution has 
16 elements (8 per node linked to node 7) and includes choices of 5 or 6, 7 or 8, 15 or 16, and 17 or 18, to 
reflect the choice of mode on the tasks that have multiple modes available. For purposes of the current 
discussion, it is useful to focus on three particular sequences: 
 

1.     [2  11  14  1  13  3  6  4  16  12  19  8  17  9  10  20] 

2.     [1  2  4  6  13  11  3  14  16  9  12  8  17  10  19  20] 

3.     [1  2  6  7  4  3  9  11  16  10  12  17  13  14  19  20]. 

Sequence 1 is the solution generated by a standard resource-constrained multimode scheduling procedure 
that minimizes the completion time for all tasks. The total time to completion is 23 periods. Forty percent 
of capacity is restored to links 7-3 and 3-7 at time 10; 40% of capacity is restored to links 7-8 and 8-7 at 
time 16; and all repairs and capacity restoration (for both sets of links) are completed at time 23 (Figure 
7).  SI is 78,738. Repair costs using the chosen modes are 2910. Analysts set 10   for the TRE weight, 
so the total objective value (eq. 1) for this solution is 107,838.  

Table 4: Equilibrium link volumes for nominal case in Example 2 

Link  Volume  Link  Volume  Link  Volume 

1‐4  0  4‐2  1860  6‐8  1202 

1‐5  622  4‐3  118  7‐3  1682 

1‐6  1838  4‐5  1761  7‐5  453 

2‐3  0  5‐1  196  7‐6  1139 

2‐4  830  5‐4  1978  7‐8  428 

3‐2  0  5‐6  1955  8‐6  137 

3‐4  931  5‐7  428  8‐7  283 

3‐7  1539  6‐1  1704  8‐9  340 

3‐9  850  6‐5  1721  9‐3  560 

4‐1  0  6‐7  1112  9‐8  80 
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Figure 7: Restoration for Repair Sequence 1. Systemic impact is represented by the shaded grey area.  

Sequence 2 is a different solution with completion time of 23 periods (Figure 8). From the perspective of 
a normal resource-constrained project scheduler, this sequence is an alternate optimal solution. Sequence 
2 implies a different schedule of tasks than sequence 1 and completes the partial repair of links 3-7 and 7-
3 at time 6, rather than at time 10. The choices of modes for the multimode tasks are the same as in 
sequence 1, and the milestones for this sequence remain in the same order. SI is 61,538, so the overall 
objective function value is 90,638. 

 

Figure 8: Restoration for Repair Sequence 2. Systemic impact is represented by the shaded grey area. 

The second sequence illustrates two important points. First, it illustrates the dominance concept discussed 
earlier. The order of the milestones in sequence 2 is the same as in sequence 1, but in sequence 2 one of 
those milestones (40% restoration of capacity for links 3-7 and 7-3) occurs earlier and none occur later; 
thus sequence 2 dominates sequence 1. Second, although sequences 1 and 2 appear equally desirable to a 
regular project scheduler, the SI quantities differ and thus the solutions are quite different for purposes of 
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evaluating recovery after a network disruption. This difference illustrates the motivation for considering 
alternatives to traditional project scheduling approaches and developing the model formulation and 
solution method described in this paper. 
 
Sequence 3 is the solution determined for optimizing the recovery process.5 Although the overall recovery 
period is longer (25 periods), the SI value (53,654) is significantly less than the SI values for sequences 1 
and 2 (Figure 9). Sequence (3) differs from the previous sequences in that it prioritizes complete capacity 
restoration for links 3-7 and 7-3 over partial capacity restoration of the other links. This strategy is 
effective for recovery optimization because the prioritized links are high volume links, so their prioritized 
restoration more rapidly decreases the cost of unmet demand and operations, resulting in a decreased SI. 
Under this sequence, the TRE value is 28,500, so the objective function value is 82,154. Thus, this 
solution achieves a reduction in both SI and TRE relative to the first two sequences, although it takes 
longer to complete. Because the overall duration is longer, this solution would not be considered optimal 
by traditional project scheduling procedures.  

 

Figure 9: Restoration for Repair Sequence 3. Systemic Impact is represented by the shaded grey area. 

 

5 CONCLUSION 
 
This paper introduces an optimization approach for identifying optimal recovery responses that maximize 
resilience for disrupted transportation networks. This work expands upon previous efforts by generalizing 
the optimization solution methodology to consider resource- constrained collections of recovery tasks.  

                                                 
 
5 The authors cannot guarantee this solution is optimal because there is no readily available way to solve the 

optimization defined in Appendix B exactly. However, no attempts to improve upon it have been successful. 
Computation of this solution required about 135 seconds on a laptop computer. A strategy of finding an initial 
sequence using a standard resource-constrained scheduling algorithm (in this case, producing the solution labeled 
sequence 1 above) has been used, and the time required for that computation (3 seconds) is included in the total 
solution time. 
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This methodology was applied to two networks for comparison with previous methods. The first 
application to a simple maximum flow network demonstrates that the approach is a more general 
formulation of the Henry and Ramirez-Marquez (2012) approach. The second example involves a more 
complex congested traffic flow network and recovery task sequencing. This example demonstrates the 
limitations of using more traditional project scheduling methods for recovery optimization. Specifically, 
this example shows that minimization of time to complete recovery tasks is an inadequate measure for 
recovery optimization. Using the new method’s objective function that considers network flows, costs of 
unmet demand, and recovery costs can find superior recovery sequences that would be considered 
suboptimal with traditional project scheduling approaches. This more complex objective function 
increases computational time, so the authors introduced memorization and dominance modifications to 
Boctor’s (1996) simulated annealing method that reduce computational requirements. 
 
This research focuses on how the network responds and evolves after a disruptive event. The next logical 
research and development area is the integration of system redesign with recovery responses to improve 
resiliency. This issue is a tri-level optimization problem. At the lowest level is an optimization to find 
flows in the network, given a current state of links/nodes. The next level up is the optimization of 
sequencing/allocating recovery resources, necessary to quantify resiliency. A third level adds opportunity 
for system redesign, including optimization of reconfiguring, adding, and/or redesigning pieces of the 
network to improve the achievable resiliency. 
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Appendix A 
Data for Example 2 Network 

 

Each directional link has a capacity, Ki, and a travel time (delay) function of the form (Davidson, 1966): 
 

  0, 1 i
i i i i

i i

x
d x K d   J  

K x

 
   

     (A1) 

 
Where: 

 ,i i id x K   =  average travel time (delay) for a user when the flow is xi  
0
id   =  minimum travel time on link i 

J  =  delay parameter 

 
The parameters of the link delay functions for the Example 2 network are summarized in Table A-1. 
There are 17 origin-destination (O-D) pairs, with demand volumes as shown in Table A-2. 

Table A‐1: Link parameters 

Link 

Capacity, K 
(each 

direction 
separately) 

Minimum Travel 
Time (min) 

J Parameter 

1‐4 and 4‐1  1800  16.0  0.12 

1‐5 and 5‐1  2400  16.8  0.08 

1‐6 and 6‐1  2400  26.4  0.08 

2‐3 and 3‐2  1200  21.6  0.15 

2‐4 and 4‐2  2400  10.8  0.08 

3‐4 and 4‐3  2400  12.0  0.08 

3‐7 and 7‐3  2400  22.8  0.08 

3‐9 and 9‐3  1800  33.6  0.12 

4‐5 and 5‐4  2400  8.4  0.08 

5‐6 and 6‐5  2400  13.2  0.08 

5‐7 and 7‐5  1800  12.8  0.12 

6‐7 and 7‐6  1200  6.0  0.08 

6‐8 and 8‐6  2400  9.6  0.08 

7‐8 and 8‐7  600  9.6  0.15 

8‐9 and 9‐8  2400  4.8  0.08 
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Table A‐2: Origin‐destination pairs and volumes for Example 2 

Origin 
Node 

Destination 
Node 

Volume 

1  6  1520 

1  8  940 

2  6  830 

3  6  2070 

3  7  400 

3  9  850 

6  1  1670 

6  2  1500 

6  3  1230 

6  8  350 

6  9  340 

7  2  280 

7  3  460 

8  1  230 

8  3  110 

9  2  80 

9  3  560 

 

Because the network links have limited capacities and the delay functions are only defined for flows less 
than capacity, it is possible that no feasible flow pattern on the network links will satisfy all the O-D 
demands. For the network data summarized above, there is a feasible assignment of all traffic to the 
network, but in the case of disruptions that reduce or remove some link capacity, feasibility may be lost. 
The approach used here for that situation is to add an artificial link for each O-D pair directly connecting 
the origin to the destination at a travel time equal to four times the minimum travel time for that O-D pair. 
These links have unlimited capacity. Thus, if there is insufficient capacity on the actual network links to 
handle all demand and the equilibrium congested travel time increases by a factor of 4 for a given O-D 
pair, the remainder of demand for that pair uses the artificial link and is reported as unmet demand. 
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Appendix B 
Complete Formulation of the Optimization for Example 2 

 

Using the index h for the recovery task ijm combinations, as indicated in Table 2 in the main text, the 
recovery optimization problem for Example 2 can be stated as shown in eqs. B1-B40. In the objective 

function (B1), the constants 0
iH  that appear in the generic eq. 4 have been omitted because they do not 

affect the optimization. The task costs hC  in the objective function are the values shown in Table 2, and 

the delay functions are from eq. A1. Constraints (B3)-(B6) enforce the requirement that only one mode 
can be chosen for the tasks that have two possible modes. The precedence constraints for the tasks have 
been written in extensive form in eqs. B7-B34 to be as clear as possible about how these constraints are 
constructed when there are multiple modes for some tasks. 

To implement the increments to capacity at selected milestones, four dummy tasks are defined (h indices 
21-24). Each of these tasks has zero duration, zero cost, and uses no resources. Their purpose is to create 
the milestone as a task with an initiation that corresponds to completion of a set of predecessors and a 
completion that allows the capacity increment to be implemented. Task indices 21 and 22 correspond to 
the milestones at nodes C in the two project diagrams, and task indices 23 and 24 correspond to 
completion of the two projects. The link indices used in constraints (B36)-(B39) correspond to the indices 
of the directional links in Table A-2 of Appendix A. 
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To evaluate the objective function (B1), the values of ( )ix t  and ( )rse t  are the values that solve the 

optimization given in eqs. 18-22 in the main body of the paper. The problem specified by eqs. B1-B40 is 
the upper-level problem, which passes values of ( )iK t  to the lower-level problem in eqs. 18-22. The 

solution to the lower-level problem allows evaluation of the objective function in the upper-level 
problem. 
 


