Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Jack Hare, on behalf of the MARZ collaboration
jdhare@mit.edu
This work is supported by the NSF through an EAGER award.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Talk outline

• What is magnetic reconnection?
 • What is radiatively cooled magnetic reconnection?
 • How do we study it in the laboratory?
 • Results from simulations for experimental design
 • Results from the first MARZ shot on Z
 • Outlook for future MARZ shots
Magnetic Reconnection

Current sheet

B

B

jdhare@mit.edu, ZFSW 2022
Magnetic Reconnection

Prediction: 1000 yrs. Reality: 10 minutes!

Current sheet
Talk outline

• What is magnetic reconnection?
• What is radiatively cooled magnetic reconnection?
• How do we study it in the laboratory?
• Results from simulations for experimental design
• Results from the first MARZ shot on Z
• Outlook for future MARZ shots
1. Cooling is a significant loss mechanism ($\tau_{cool} \ll \tau_A$):
 • Modifies partition of magnetic energy between electrons, ions, kinetic
 • Leads to cooling instabilities, radiative collapse

2. Radiation: key (only?) observational signature in remote environments:
 • Where and when are X-rays produced - localized bursts?
 • How does this couple to the reconnection process? (Plasmoids: localized cooling)

Radiative Cooling Instabilities in Reconnection

Layer radiates

Layer compresses

- Layer ohmically heated
- Radiation/compression loop: runaway process

\[T, p_{th} \text{ drop} \]

\[n_e, P_{rad} \text{ rise} \]
Talk outline

• What is magnetic reconnection?
• What is radiatively cooled magnetic reconnection?
• How do we study it in the laboratory?
• Results from simulations for experimental design
• Results from the first MARZ shot on Z
• Outlook for future MARZ shots
• Experiments require:
 • High n_e for high P_{rad}
 • Plenty of $B^2/2\mu_0$ to dissipate
 • Sufficient t_{drive} to see dynamics
• Cooling from Brems + Lines (not synchrotron or inverse Compton!)
 • Cooling rate material dependent
Pulsed-power-driven Magnetic Reconnection

Current

B

V

jdhare@mit.edu, ZFSW 2022
Exploding wire arrays in parallel:

- Sustained flows ($\tau_{drive} \sim 10 \tau_A$)
- Quasi-2D geometry
- Collisional ($\delta \gg \lambda_{mfp}$)
- Inflows: $p_{th} \sim p_B \sim p_{kin}$
- No guide field

MAGPIE: 1.4 MA, 250 ns rise time

Z Machine: 20 MA, 300 ns rise time

$$n \propto I^2, P_{rad} \propto n^2 \propto I^4$$

Z’s unique capability: strongly radiatively cooled reconnection
Radiatively Cooled Reconnection on MAGPIE

Aluminum Wires
Super Alfvénic, Radiatively cooled

Early time $T_i = 300$ eV

Late time $T_i = 40$ eV

16 x 30 um Al wires per array
16 mm diameter, 16 mm tall

Work by L. Suttle: Suttle et al. PRL 2016
• What is magnetic reconnection?
• What is radiatively cooled magnetic reconnection?
• How do we study it in the laboratory?
• Results from simulations for experimental design
• Results from the first MARZ shot on Z
• Outlook for future MARZ shots
GORGON MHD simulations

GORGON (J. Chittenden, Imperial): 3D Eulerian resistive MHD code with several radiation loss models and separate ion and electron energy equations

Wires:
- 150 Al wires
- 75 µm diameter

Arrays:
- 40 mm diameter
- 20 mm gap

• 2D sims: 50 µm resolution, 180x90 mm. 16 hrs, 256 cores
• Recombination loss: \[P_{\text{rad}} = M_{\text{rad}} C_r n_e T_e^{1/2} (Z^2 n_i E_{\infty}^{Z-1} / T_e), \] with \(M_{\text{rad}} \approx 3 \)

jdhare@mit.edu, ZFSW 2022
Plasmoids and Collapse

- Flows collide at mid-plane
- Plasmoids move within layer
- Inflow density rises with current
- Radiative cooling rises with density
- Thermal pressure removed: layer collapses

250 ns

280 ns

400 ns

Plasmoids

Collapsed Layer

Collapse

\[
\begin{array}{c}
\text{Current [MA]} \\
\hline
0 & 5 & 10 & 15 & 20 & 25 \\
0 & 100 & 200 & 300 & 400 & 500 & 600 \\
\end{array}
\]
Plasmoids and Collapse

Lundquist number:

\[S = \frac{L V_A}{\mu_0 \eta} \]

Reconnection rate \(\sim \frac{1}{\sqrt{S}} \)

Plasmoids and Collapse

<table>
<thead>
<tr>
<th>Time</th>
<th>Plasmoids</th>
<th>Collapsed Layer</th>
<th>Collapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 ns</td>
<td>[\text{ arrows}]</td>
<td>[\text{ yellow line}]</td>
<td>[\text{ red arrow}]</td>
</tr>
<tr>
<td>280 ns</td>
<td>[\text{ arrows}]</td>
<td>[\text{ yellow line}]</td>
<td>[\text{ red arrow}]</td>
</tr>
<tr>
<td>400 ns</td>
<td>[\text{ arrows}]</td>
<td>[\text{ yellow line}]</td>
<td>[\text{ red arrow}]</td>
</tr>
</tbody>
</table>
Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow

At layer, $P_B = P_{th}$

a) Pressure balance at 250 ns

$M_A = 1$, $\beta_{th} = 1$, $M_S = 1$

$P_{th} = n_e T_e + n_i T_i$, $P_{kin} = \rho V_x^2/2$

$P_B = B_y^2/2\mu_0$, P_{tot}
Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow
At layer, $P_B = P_{th}$

Post-collapse: fast diffusion in cold, resistive plasma removes flux pile-up

![Graph showing pressure balance at 250 ns and 400 ns](image)

- $M_A = 1$
- $\beta_{th} = 1$
- $M_S = 1$

Equations:
- $P_{th} = n_e T_e + n_i T_i$
- $P_{kin} = \rho V_x^2 / 2$
- $P_B = B_y^2 / 2 \mu_0$
- P_{tot}
Plasmoids in the Reconnection Layer

Note: Exaggerated aspect ratio

Plasmoids:
- Carry a lot of current
Plasmoids in the Reconnection Layer

Plasmoids:
- Carry a lot of current
- Are hot, with low η

Note: Exaggerated aspect ratio
Plasmoids in the Reconnection Layer

Plasmoids:
• Carry a lot of current
• Are hot, with low η
• Are dense
Plasmoids in the Reconnection Layer

Plasmoids:
- Carry a lot of current
- Are hot, with low η
- Are dense
- Radiate strongly

Note: Exaggerated aspect ratio
Al K-shell disappears after collapse

XP2: predictive capability for X-ray diagnostics
We used XP2 to help design XIDAR, a new diagnostic for Z

Based on linear AXUV Si diode array for MAGPIE by Jack Halliday

On Z, UPAC (Q. Looker): self-contained, 32-pixel linear diode array with 0.25 mm resolution.

Inflow resolved

Outflow resolved
• What is magnetic reconnection?
• What is radiatively cooled magnetic reconnection?
• How to we study it in the laboratory?
• Results from simulations for experimental design
• Results from the first MARZ shot on Z
• Outlook for future MARZ shots
Load Hardware for first MARZ shot

Thank you to Carlos Aragon, Roger Harmon, Josh Gonzalez, and Leo Molina!

jdhare@mit.edu, ZFSW 2022
Load Hardware for first MARZ shot

Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!

jdhare@mit.edu, ZFSW 2022
Load Hardware for first MARZ shot

Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!

jdhare@mit.edu, ZFSW 2022
Load Hardware installation

Wire weights

Wire Arrays

B-dot probe array

Current probes

Weeks to build, a microsecond to destroy!

jdhare@mit.edu, ZFSW 2022
Load Hardware Post Shot

Minimal debris, good for future diagnostics!

jdhare@mit.edu, ZFSW 2022
Diagnostics for First MARZ Shot

Diagnostics on MARZ

- **X-Ray Radiation**
 - X-Ray Imaging
 - Filtered X-Ray diodes
 - X-Ray Diodes
 - Silicon Multi-diode head
 - X-Ray Spectrum

- **Current & Magnetic Field**
 - Load Current
 - PDV & VISAR (Velocimetry)
 - IDTLs / Dual-polarity inductive probes
 - Advected Magnetic Field
 - B-dot probe array

- **Optical Radiation**
 - Gated Self-Emission (8 frame)
 - Streaked Visible Spectroscopy (SVS)

Reconnection Diagnostics

- **Side / Along rec. layer**
 - Gated MLM+MCP
 - 2 x UXI-Icarus Pinhole
 - XIDAR-UPAC (diode-array)
 - FOA Pinhole Camera

- **Top-down**
 - X-Ray Spectrum

Current & Magnetic Field

- **Load Current**
- **IDTLs / Dual-polarity inductive probes**
- **Advected Magnetic Field**
- **B-dot probe array**

Optical Radiation

- **Gated Self-Emission (8 frame)**
- **Streaked Visible Spectroscopy (SVS)**

Bow Shock Diagnostics

- **Side / Front and behind shock**
- **XRS3 time-integrated (Al K-shell)**
- **TREX time-gated spectrometer (broadband)**
MARZ1 delivered 10 MA to each wire array

PDV: Return on 14/16 channels.

VISAR: Return on 13/24 channels.

500 m/s velocities are consistent with pre-shot modeling for 10 MA.
MARZ1 delivered 10 MA to each wire array

Azimuthal asymmetry in current on arrays: indicative of current flowing in reconnection layer?
Magnetic Probe Measurements: Plasma Flow

Two probes vertically stacked (1 cm separation)

Thank you to Gabe Shipley and Derek Lamppa!
Magnetic Probe Measurements: Plasma Flow

Thank you to Gabe Shipley and Derek Lamppa!
Bow shock around B-dot probe: Plasma Flow

T-probe
(14 mm from wires)

jdhare@mit.edu, ZFSW 2022
Bow shock around B-dot probe: Plasma Flow
• Four fibers: 6 mm spot size at inductive probe radial locations

Thank you to Sonal Patel and Dan Scoglietti!
Streaked Visible Spectroscopy

- Long time record, spatially localized, broadband spectroscopy
- Use Al II & Al III lines to measure n_e and T_e

Thank you to Sonal Patel and Dan Scoglietti!

Pre-shot SEGOI image of SVS 2
1.6 keV X-rays: plasma likely > 100 eV

Thank you to Eric Harding, Andy Maurer, and Stephanie Hansen!
X-ray Spectra are a Rich Source of information

Lots of information on temperature, density (and velocity?) in spectral lines

Intensity (arb. units)

Energy [eV]
Lineout of He-alpha region from $z = -12.81$ mm ($\Delta z = 6$ mm)

Overlay of experiment from $z = -12.81$ mm (red) with optically thick, unshifted SCRAM spectrum with rough best-fit conditions (black; $\tau \sim 15$)

Sat/IC ratio \rightarrow temperature
res/IC ratio \rightarrow $\tau \sim \Delta Y_{\text{LOS}} \times$ density

Experimental spectrum has signatures of opacity broadening (Heα resonance broader than and less intense than Heα IC)

jdhare@mit.edu, ZFSW 2022
• Radiated power rises after current start, drops before current peak
• X-ray spectra appears softer than simulated: more shots in later this year
What didn’t work well

- Most X-ray cameras (gated, time integrated) and diodes (XIDAR, filtered) returned no signal
- Most diagnostics functioned nominally, so red indicates lack of data
- Conclusion: Layer less bright predicted by simulations

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Data return</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDTLs</td>
<td>4/4 channels</td>
</tr>
<tr>
<td>PDV</td>
<td>14/16 channels</td>
</tr>
<tr>
<td>VISAR</td>
<td>13/24 channels</td>
</tr>
<tr>
<td>Inductive probes</td>
<td>13/15 channels</td>
</tr>
<tr>
<td>SVS</td>
<td>3/4 systems</td>
</tr>
<tr>
<td>SEGOI</td>
<td>Bow shock observed</td>
</tr>
<tr>
<td>LOS 170 diodes</td>
<td>~1/6 diodes</td>
</tr>
<tr>
<td>MLM</td>
<td></td>
</tr>
<tr>
<td>XRS3</td>
<td>AI K-shell observed</td>
</tr>
<tr>
<td>TREX</td>
<td></td>
</tr>
<tr>
<td>TADPoles (2x)</td>
<td></td>
</tr>
<tr>
<td>FOA diodes</td>
<td></td>
</tr>
<tr>
<td>FOA PHC (UXI, 2x)</td>
<td></td>
</tr>
<tr>
<td>FOA PHC (IP)</td>
<td></td>
</tr>
<tr>
<td>FOA XIDAR (UPAC)</td>
<td>Image on IP?</td>
</tr>
</tbody>
</table>
Talk outline

• What is magnetic reconnection?
• What is radiatively cooled magnetic reconnection?
• How to we study it in the laboratory?
• Results from simulations for experimental design
• Results from the first MARZ shot on Z
• Outlook for future MARZ shots
Future work on MARZ

Two more MARZ shots later this year:

1. Improve diagnostics of the reconnection layer
2. Diagnose the outflows from the reconnection layer

Goal: Form a complete picture for publication
Future work on MARZ

Two more MARZ shots later this year:
1. Improve diagnostics of the reconnection layer
2. Diagnose the outflows from the reconnection layer

Goal: Form a complete picture for publication

MARZ renewal for CY23-24:
1. New load designs to boost density, magnetic field
2. Change wire material to alter cooling rate
3. Investigate effect of pulse rise-time

Goal: Understand effect of cooling on reconnection

jdhare@mit.edu, ZFSW 2022
Future work on MARZ

New simulation tools:
- Radiation transport in GORGON (Jerry Chittenden)
- Advanced X-ray post-processing such as Doppler shift (Aidan Crilly)

New diagnostics:
- Laser imaging (David Yager-Elorriaga)
- Thomson scattering (Jacob Banasek)
- X-pinch backlighting (Matt Gomez)
- Fe L-shell spectroscopy (Patricia Cho)
- UV spectroscopy, fiber coupled (Mark Johnston)
Conclusions

- Strong radiative cooling important in extreme astrophysical environments:
 - Key signature of reconnection; modifies energy partition; leads to collapse
- HED pulsed-power experiments can reach strong radiative cooling regime
- 2D MHD simulations show rich physics: plasmoid formation, layer collapse
- 3D MHD simulations with radiation transport coming online
- Preliminary experimental results from the Z machine show viability of platform for radiatively cooled reconnection studies: more shots later this year!