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Abstract
Galerkin and Petrov–Galerkin projection-based reduced-order models (ROMs) of transient partial differential equations are 
typically obtained by performing a dimension reduction and projection process that is defined at either the spatially continu-
ous or spatially discrete level. In both cases, it is common to add stabilization to the resulting ROM to increase the stability 
and accuracy of the method; the addition of stabilization is particularly common for convection-dominated systems when the 
ROM is under-resolved. While continuous and discrete approaches can be equivalent in certain settings, a plethora of different 
techniques have emerged for each approach. However, to the best of our knowledge, a thorough comparison of these tech-
niques is currently missing. In this work, we take a first, foundational step and provide an in-depth review of seven commonly 
used residual-based ROM stabilization strategies within the setting of finite element method (FEM) discretizations using 
the convection-dominated convection–diffusion–reaction (CDR) equation, an established testbed for stabilization methods. 
We present the formulations in a unified setting, highlight connections between the strategies, and numerically assess the 
strategies. In the spatially continuous case, we examine the Galerkin, streamline upwind Petrov–Galerkin (SUPG), Galerkin/
least-squares (GLS), and adjoint (ADJ) stabilization methods. For the GLS and ADJ methods, we examine formulations con-
structed from both the “discretize-then-stabilize” technique and the space–time technique. In the spatially discrete case, we 
examine the Galerkin, least-squares Petrov–Galerkin (LSPG), and adjoint Petrov–Galerkin (APG) methods. We summarize 
existing analyses for these methods and provide numerical experiments, comparing competing methods for the first time in 
the literature and assessing the impact of stabilization parameters and time step sizes. Our numerical experiments demonstrate 
that residual-based stabilized methods developed via continuous and discrete processes yield substantial improvements over 
standard Galerkin methods when the underlying FEM model is under-resolved. We find that SUPG, space–time GLS, and 
space–time ADJ are the best continuous stabilization techniques considered. For discrete ROMs, we find that APG is more 
accurate than LSPG at the expense of a smaller region of stability with respect to the stabilization parameter. The combina-
tion of an APG ROM constructed on top of a SUPG FEM is the overall best performing method. The review, discussion, 
and numerical inter-comparison of the seven stabilizations strategies using the CDR equations serves as a stepping stone 
toward a comprehensive investigation and further development of stabilization methods for more challenging problems.

1  Introduction

Despite advances in high-performance computing, numeri-
cally solving parameterized partial differential equations 
(PDEs) remains computationally expensive for systems dis-
playing a wide range of spatio-temporal scales. This high 
cost can be prohibitive, particularly for many-query prob-
lems (e.g., optimization, uncertainty quantification) in which 
case many evaluations of the forward model are required. 
A variety of techniques have thus been developed to gener-
ate approximations to many PDEs of interest at a reduced 
computational cost [17, 67, 113, 115, 124]. Galerkin and 
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Petrov–Galerkin (PG)-type reduced-order models are one 
such promising technique and are the focus of the present 
work. We will refer to the latter class of methods as PG 
ROMs. Broadly speaking, PG ROMs operate by (1) restrict-
ing the state to belong to a low-dimensional trial space, and 
(2) computing an approximation to the weak form of the 
PDE given the low-dimensional trial space and an additional 
test space; this step can be analogously viewed as restricting 
the residual to be orthogonal to the test space. To enhance 
the stability and accuracy of the ROM, the test space often 
differs from the trial space (i.e., a Petrov–Galerkin scheme) 
and/or additional stabilization terms are added to the gov-
erning equations.

Over the past decades, PG ROMs have been implemented 
in numerous codes with varying discretization techniques to 
provide model reduction capabilities for a variety of prob-
lems. This diverse set of applications has led, by necessity, 
to varying ROM formulations that are suited to different 
applications of interest. In particular, two distinct types of 
ROMs have emerged: PG ROMs that define a trial space 
and Petrov–Galerkin projection scheme at the spatially-con-
tinuous level, and PG ROMs that define a trial space and 
Petrov–Galerkin projection scheme at the spatially-discrete 
level. In this work, we refer to these approaches as continu-
ous ROMs and discrete ROMs, respectively.1

In continuous ROMs, the state variables are approximated 
at the spatially-continuous level in a low-dimensional func-
tion space, and generalized coordinates associated with 
the state representation are then obtained by computing 
an approximate solution to the weak form of the PDE by 
employing low-dimensional trial and test function spaces. 
Continuous ROMs are most often employed within the 
context of weighted residual methods (e.g., finite element 
methods, spectral methods), and examples of continuous 
ROMs can be found in [11, 12, 18, 27, 79, 125, 136, 138, 
139, 163, 165, 166, 169, 177] (and many other works). We 
do note that several pieces of work have examined exten-
sions to finite volume methods [108, 156]. Discrete ROMs, 
on the other hand, are typically described at the dynamical 
system level and work directly with the spatially-discrete 
system emerging after discretization of the differential oper-
ators present in the PDE2. Discrete ROMs approximate the 

discretized state variables within a low-dimensional Euclid-
ean vector space, and the generalized coordinates associated 
with the state representation are then obtained by defining 
a (Petrov–)Galerkin scheme using a discrete (e.g., Euclid-
ean) inner product and the discrete residual. Discrete ROMs 
have received significant attention for model reduction of 
finite difference and finite volume discretizations as well as 
for model reduction of large-scale application codes where 
underlying information about the discretization (e.g., mass 
matrices) are difficult or impossible to access. Examples of 
discrete ROMs can be found in [1, 24–26, 29, 31, 32, 37, 
99–101, 172].

We note that, in certain settings (e.g., finite elements), it 
is straightforward to obtain the discrete form of the ROM 
equations obtained via continuous projection. As a result, 
provided proper selection of inner products at the discrete 
level, it is well-known that there is direct equivalence 
between continuous and discrete ROMs [122, 167]. Thus, 
some discrete ROM formulations are equivalent to their con-
tinuous ROM counterparts. We emphasize, however, that 
the same duality does not exist for all discretizations. As 
a result, for the most part, discrete and continuous ROMs 
have each developed independently, each branch propos-
ing strategies that do not find a straightforward counterpart 
in the other branch. To our knowledge, comparisons of the 
continuous and discrete ROMs are relatively scarce (see, 
however, [85] for a notable exception). It is one of the main 
goals of this paper to (i) discuss and investigate representa-
tive continuous and discrete ROMs in the context of stabili-
zation, and (ii) outline the similarities and differences among 
those stabilizations.

Just like standard discretization techniques, both con-
tinuous ROMs and discrete ROMs oftentimes require sta-
bilization to maintain stability and accuracy; it is well-
known that Galerkin projection, in which the trial space 
is the same as the test space, often lacks robustness in the 
presence of sharp, under-resolved gradients. One appeal-
ing and widely employed class of stabization techniques 
is known as residual-based stabilization. In this class of 
approaches, an additional residual-based term is added to 
the weak form of the PDE. Certain types of residual-based 
stabilization approaches can be written as Petrov–Galer-
kin schemes and some can correspond to residual mini-
mization statements (e.g., least-squares Petrov–Galer-
kin). While residual-based stabilization techniques have 
been developed for both continuous ROMs and discrete 
ROMs, the approaches do not overlap due to the funda-
mentally different setting of the ROM formulations. Thus, 

1  We note that, in the transient case considered herein, reduced-order 
models are typically formulated by reducing the spatial dimension of 
the model and leveraging standard time-marching schemes for tempo-
ral discretization. We restrict our attention to this setting, but note that 
several pieces of work have examined the construction of space–time 
ROMs [15, 37, 42, 119, 163, 177], in which case the same thematic 
similarities of discrete vs. continuous are present.
2  For transient PDEs, discrete ROMs can be formulated at either the 
ordinary differential equation (ODE) level (i.e., after spatial discre-
tization) or the ordinary difference equation (OΔ E level) (i.e., after 

spatial and temporal discretization); Ref. [29] examines commuta-
tivity of the time-discretization step for Galerkin and least-squares 
Petrov Galerkin ROM formulations.

Footnote 2 (continued)
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while there is a duality between continuous ROMs and 
discrete ROMs in, e.g., finite elements, the same cannot 
necessarily be said about stabilized continuous ROMs 
and discrete ROMs. As a result, a plethora of different 
stabilization schemes are deployed across the two set-
tings. For discrete ROMs, stabilized ROM formulations 
include, but are not limited to: least-squares formulations 
from LeGresley, Alonso, Bui-Tanh, Willcox, and Ghat-
tas [24–26, 99–101]; the “least-squares Petrov–Galerkin 
(LSPG)” and “Gauss–Newton with Approximated Ten-
sors (GNAT)” approaches of Carlberg, Farhat, and oth-
ers [28–30, 32]; the “Adjoint Petrov–Galerkin” approach 
explored by Parish, Wentland, and Duraisamy [121, 172]; 
and the “model-form preserving least-squares with vari-
able transformation” approach of Huang et al. [71]. For 
continuous ROMs, stabilization strategies include, but 
are certainly not limited to: “streamline upwind Petrov-
Galerkin (SUPG)” approaches of Bergmann and Iollo 
[18], Rozza and Pacciarini [118], Iliescu and John [52], 
Azaiez, Chacon Rebollo, and Rubino [8], and Novo and 
John [82]; “variational multiscale” approaches developed 
by Bergmann and Iollo [18], Iliescu, Wang, and Mou [78, 
79, 114], Codina and Baiges [10], and Rozza and Stabile 
[157]; “eddy viscosity” approaches of Iliescu and Wang 
[170] and Noack [117]; “minimal subspace rotation” meth-
ods of Balajewicz, Tezaur and Dowell [11, 12]; energy- 
and entropy-stable formulations of Rowley, Kalashnikova 
and Barone, and Serre et al. based on carefully-constructed 
inner products [85–88, 138, 148]; “filter based regulariza-
tions” developed by Iliescu and Wells [171], Ballarin, and 
Strazzullo [147, 158], and Quaini, Girfoglio, and Rozza 
[53, 54]; energy- and entropy-stable methods of Yano 
[178] and Chen [34] that build on stability of the under-
lying discontinuous-Galerkin and finite-volume methods 
based on upwinded fluxes; and “local projection stabiliza-
tion” of Rubino and Novo [116, 141].

A side-by-side review and assessment of stabilization 
schemes developed for continuous ROMs and discrete 
ROMs does not exist in the literature. Such a review is 
needed to assess the overlap, advantages, disadvantages, 
and comparative performance of the various strategies. 
While a comparison between such a wide range of meth-
ods is daunting, particularly because the methods are often 
developed for different spatial and temporal discretizations 
(e.g., finite element and finite volume, and explicit and 
implicit time stepping) with different end-goals in mind, 
and may perform better in some scenarios (e.g., for mod-
erate and high Reynolds numbers), a side-by-side com-
parison of the different approaches could be tremendously 
useful for practitioners. Furthermore, there is an interplay 
between stabilization schemes that are added to the full-
order model (FOM) and those added to the ROM that is 
not well explored. For example, should an LSPG ROM be 

constructed for a stabilized finite element method (FEM)? 
This interplay can interact with the ROM stabilization and 
further motivates a detailed examination of the various 
methods.

As a first, foundational step in a wider comparison of 
ROM stabilizations, this work provides a review of seven 
commonly used residual-based stabilization techniques 
developed for both continuous and discrete ROMs in a uni-
fied setting and assesses their performance to help fill this 
gap. To ensure a fair comparison, we use the same spatial 
discretization, i.e., the FEM, for all the stabilizations. As a 
test problem for our numerical investigation, we choose the 
convection–diffusion–reaction (CDR) equation. One reason 
for choosing the CDR equation is that it is widely used as a 
testbed for the development of stabilized methods for clas-
sical discretizations, e.g., the finite element and finite dif-
ference methods (see the research monograph [135], which 
summarizes numerous stabilization methods and assesses 
their performance for the CDR equation). We emphasize 
that, although the CDR equation is linear, it exemplifies sta-
bility challenges that are relevant for convection-dominated 
flow problems, such as the Navier–Stokes equations (NSE). 
For example, for the CDR equation in the convection-dom-
inated regime (i.e., when the diffusion coefficient is signifi-
cantly smaller than the magnitude of the convection field) 
and the under-resolved regime (i.e., when the number of 
degrees of freedom is not large enough to capture the com-
plex dynamics), standard Galerkin ROMs can yield inac-
curate results, generally in the form of spurious numerical 
oscillations. Thus, in the convection-dominated and under-
resolved regimes of the CDR equations, ROMs generally 
require stabilization. Another reason for choosing the CDR 
equation as a test problem for our numerical investigation 
is that it allows us to isolate the impact of the stabilization 
schemes from other discretization choices, e.g., velocity-
pressure coupling [67], hyperreduction [67], discretization 
of the nonlinearity [80], dimensional consistency and scalar 
vs. vector POD [120, 137, 138].

In this paper, we outline the development of seven contin-
uous and discrete ROMs, establish commonalities between 
these approaches, and present several numerical examples 
assessing their performance. Lastly, we examine the sensi-
tivity of the various stabilization approaches with respect 
to their stabilization parameters and the time step size. We 
note that this sensitivity is well-known to impact accuracy 
and robustness of classical numerical discretizations. In this 
paper, we show that this is the case for ROMs, too.

The novel contributions of the present work are as 
follows. 

1.	 We give the first side-by-side presentation of several 
common residual-based-stabilized ROMs developed 
through discrete and continuous projection.
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2.	 We build on Refs. [85, 88] to introduce a taxonomy for 
these various reduced-order modeling approaches. As 
will be seen in this manuscript, a “Galerkin” approach 
may entail different ROMs to different communities.

3.	 We provide the first summary of existing analyses for the 
various ROMs considered.

4.	 We present the first numerical comparison of discretely 
stabilized ROMs to continuously stabilized ROMs, 
including ranking 16 different stabilized ROM formu-
lations in terms of the L2(Ω) and H1(Ω) error for various 
basis dimensions in two CDR problem.

5.	 We present the first study of the Galerkin/least-squares 
and adjoint stabilization methods applied to projection-
based ROMs.

6.	 We provide a comprehensive study on the impact of the 
stabilization parameter, � , and time step, Δt , for all sta-
bilized ROMs considered. This is the first such study 
that has been undertaken for the SUPG, GLS, and ADJ 
stabilization ROM methods.

The layout of this manuscript is as follows. In Sect. 2, 
we provide a brief review of stabilization techniques in 
Petrov–Galerkin-based model reduction. In Sect. 3, we out-
line the CDR equation, the Galerkin FEM, and stabilized 
FEM formulations for this equation. In Sects. 4 and 5, we 
outline ROMs constructed through continuous and dis-
crete projection, respectively. Alternate ROM stabilization 
approaches that do not fall into either of these two categories 
are summarized in Appendix 1. Section 6 summarizes the 
available theoretical support for the various methods. Sec-
tion 7 presents numerical experiments, and Sect. 8 provides 
conclusions.

2 � Summary of Residual‑Based Stabilization 
in Petrov–Galerkin Model Reduction

The Galerkin method, where the trial and test space coin-
cide, is the standard approach for constructing a ROM. 
Galerkin projection yields optimal results in a given energy 
norm for symmetric coercive systems.3 It is well-known, 
however, that for convection-dominated systems Galerkin 
projection often lacks robustness in the presence of sharp, 
under-resolved gradients. As a result, a wide variety of sta-
bilization techniques have been developed to increase the 
ROM stability and accuracy for both continuous and discrete 
ROMs. While this work focuses on residual-based stabiliza-
tion techniques, we briefly mention other approaches that 

include, but are not limited to: stabilizing inner products that 
guarantee a non-increasing energy [14, 87, 88, 138, 148] or 
non-decreasing entropy [34, 86]; stabilizing subspace rota-
tions that account for truncated modes a priori [11, 12]; 
eigenvalue reassignment methods that calculate a stabi-
lizing correction to a given linear [89] or nonlinear [133] 
ROM that is found to be unstable after it is constructed; 
structure preserving methods that guarantee that the ROM 
satisfy physical constraints [16, 31, 33, 35, 47, 59, 97]; spa-
tial filtering-based stabilization methods [62, 77, 90, 158, 
171] that filter out unphysical high-frequency content; inf-
sup stabilization methods that enforce the inf-sup condition 
in the incompressible Stokes and Navier–Stokes equations 
[18, 27, 45]; and closure modeling approaches [3, 18, 145, 
168–170] that add additional “closure” terms to the ROM 
so-as to account for the impact of truncated modes. A more 
in depth review of these methods in provided in Appendix 1 
for the interested reader.

In the present work, we focus our review on what are 
referred to as “residual-based” stabilization techniques. 
Within the finite element community, various residual-based 
techniques have been proposed in an effort to develop robust 
numerical methods for non-symmetric, non-coercive, and 
under-resolved problems. These methods, which include sta-
bilized finite elements [22, 23, 49, 75] (e.g., SUPG, Galer-
kin/least-squares (GLS)) and variational multiscale methods 
[74],4 are typically formulated by adding terms involving a 
sum of element-wise integrals to the Galerkin method. These 
terms typically comprise the product of a test function (that 
does not belong to the trial space) with the residual of the 
governing equations, and thus the stabilized formulations 
can be written as Petrov–Galerkin projections.

These “residual-based” methods have proven to be 
quite successful, yielding, for example, robust solutions 
for the convection–diffusion equation, incompressible 
Navier–Stokes equations, and compressible Navier–Stokes 
equations [23, 50, 72, 75, 84, 160]. We note that, in the 
context of VMS methods, a body of work additionally exists 
that examines the addition of phenomenologically-inspired 
terms to the weighted residual form (e.g., eddy viscosity 
methods); we do not consider these approaches here and 
restrict our attention to residual-based methods. The exten-
sion of residual-based approaches to ROMs obtained via 
continuous projection is straightforward as they operate in 
a similar variational setting. As a result, various works have 
examined the formulation of stabilized ROMs via classical 
finite element stabilization techniques [4, 9, 18, 52, 94, 118, 
136, 154, 155].

Another class of stabilized model reduction methods that 
is important to highlight is continuous minimum-residual 

3  Throughout this work, we define a coercive system as a system 
whose bilinear form a(⋅, ⋅) satisfies the condition a(v, v) ≥ 𝛼‖v‖2

⋆
 for 

all v in a function space V endowed with the norm ‖ ⋅ ‖
⋆
 . The condi-

tion is referred to as “strong coercivity” in some literature.
4  It is noted that these methods are not mutually orthogonal, for 
example VMS methods can recover several stabilized methods.
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methods (or least-squares methods) [109, 136]. These 
methods compute solutions within the trial space that mini-
mize the residual of the governing PDE in the least-squares 
sense. Minimum-residual methods can be interpreted as 
Petrov–Galerkin methods, where the (parameter-dependent) 
test space is defined to be the one that maximizes the inf-
sup stability constant, and hence the method is guaranteed 
to be stable. We also note a related double greedy algorithm 
[44], which constructs a fixed test space for a Petrov–Galer-
kin formulation that approximately maximizes the inf-sup 
constant for all parameter values in a greedy fashion. While 
minimum-residual methods are robust and display com-
monalities with discrete stabilization approaches, we do not 
consider them here.

The extension of classic stabilization techniques to dis-
crete ROMs is less straightforward. This is a consequence of 
the fact that discrete ROMs start from the spatially discrete 
level, and, as such, do not generally operate in the same vari-
ational setting as their continuous counterparts. As a result, 
various stabilization techniques have been developed for dis-
crete ROMs. One class of particularly popular stabilization 
techniques are discrete residual minimization approaches 
[24–26, 28–30, 32, 99–101]. These approaches compute a 
solution within the trial space that minimizes the discrete 
FOM residual. In the time-varying case, which we consider 
here, this residual minimization process is typically formu-
lated by sequentially minimizing the time-discrete residual 
arising at each time instance on a discrete time grid.5 This 
formulation is commonly referred to as the least-squares 

Petrov–Galerkin (LSPG) approach [29, 32], and can be 
written as a Petrov–Galerkin projection of the FOM O Δ E 
(i.e., the FOM ODE after temporal discretization). In finite 
element language, LSPG most closely resembles a discrete 
least squares principle. We refer to Grimberg et al. [58] for 
an overview of LSPG within the context of stabilization. 
The adjoint–Petrov Galerkin (APG) method [121] is an 
additional discrete model reduction approach that falls into 
the class of residual-based methods. In APG, the variational 
multiscale method is applied at the discrete level to decom-
pose the Euclidean state-space into coarse and fine-scale 
components. The impact of the fine scales on the coarse 
scales is then accounted for by virtue of a residual-based 
stabilization term that is derived from the Mori–Zwanzig 
formalism [38]. APG differs from FEM stabilization tech-
niques in that the residual is defined at the level of the FOM 
ODE (i.e., after spatial discretization).

Figure  1 provides a schematic of the various ROM 
approaches just discussed within the context of finite element 
discretizations. Continuous ROMs (methods I and II in Fig. 1) 
rely on the definition of a weak form and a ROM trial space, 
while discrete ROMs (methods III, IV, V, and VI in Fig. 1) 
rely on the definition of a “full-order” FEM system and a dis-
crete ROM trial space. As noted earlier, in certain settings 
(e.g., FEM), continuous and discrete ROMs can be equivalent 
[122, 167] (green arrows in Fig. 1), but this same duality does 
not exist, e.g., for for finite volume methods. As a result, the 
development and study of ROM methodologies has effectively 
forked into bodies of work that start at the spatially continu-
ous level, and bodies of work that start at the spatially discrete 
level. This fact is not well-documented in the community. To 
the best of the authors’ knowledge it is most clearly outlined 
in Refs. [85, 88].

PDEGalerkin weak form Stabilized weak form

Galerkin FEM

(III) Galerkin ROM
(discrete projection)

(IV) Discretely stabilized 
(LSPG/APG) ROM
(discrete projection)

FEM trial space FEM trial space

(II) Stabilized (SUPG, 
GLS, ADJ) ROM

(continuous projection)

Stabilized (SUPG, GLS, 
ADJ) FEM

(V) Stabilized (SUPG, GLS, ADJ) & 
discretely stabilized (LSPG/APG) ROM

(discrete projection)

ROM trial space

(I) Galerkin ROM
(continuous projection)

ROM trial space

Discrete ROM trial space Discrete ROM trial space

(VI) Stabilized (SUPG, 
GLS, ADJ) ROM

(discrete projection)

Restriction operation Reduced-order modelFull-order FEM model

Color code

Formulations are 
equivalent provided 
ROM bases are 
equivalent

Formulations are 
equivalent provided 
ROM bases are 
equivalent

Fig. 1   Schematic of the various processes for constructing reduced-order models. Blocks in green comprise full-order models, blocks in red 
comprise restriction (projection) processes, and blocks in blue comprise reduced-order models

5  We note that recent work has examined windowed least-squares 
minimization [119] and space–time residual minimization [37]. These 
approaches have better stability properties than LSPG, but here we 
restrict our focus to the standard LSPG approach, for simplicity.
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3 � Finite Element Discretizations 
for the Convection–Diffusion–Reaction 
Equation

We consider the demonstrative example of the CDR equation. 
We emphasize that the concepts presented here generalize to 
other systems, including nonlinear equations; the CDR equa-
tion serves as a useful benchmark, as described in the preced-
ing sections. The CDR equation is given by

where u∗ ∶ [0, T] × Ω → ℝ is the state implicitly defined 
as the solution to Eq. (1), Ω ⊂ ℝ

d is the physical domain, 
Ω is its closure, Γ is the domain boundary, T ∈ ℝ

>0 is the 
final time, 𝜖 ∈ ℝ

>0 is the diffusion coefficient, b ∈ ℝ
d are 

the convection coefficients, � ∈ ℝ
≥0 is the reaction coeffi-

cient, u0 ∶ Ω → ℝ is the initial condition, and f ∈ L2(Ω) 
is a forcing term. In what follows, we use the notation 
u∗(t) ≡ u∗(t, ⋅) ∶ Ω → ℝ . We consider homogeneous Dir-
ichlet boundary conditions, for simplicity. We refer to [127] 
for more details on the CDR equation and its mathematical 
setting.

We consider the standard weighted residual for-
mulation of  (1) in space, which reads as follows: find 
u ∈ C1((0, T];L2(Ω)) ∩ L2((0, T];H1

0
(Ω)) such that ∀t ∈ (0, T]

and satisfies the initial condition u(0) = u0 ∈ L2(Ω) , where 
m ∶ (v,w) ↦ ∫

Ω
v(x)w(x)dx is the L2(Ω) inner product, and 

H
1
0
(Ω) is the standard Sobolev space of functions that have 

square-integrable weak first derivatives and vanish on Γ in a 
weak sense. The problem (2) is well-posed; see, e.g., [127]. 
For notational simplicity, we introduce the bilinear form

To transcribe (2) into a discrete problem, we need to intro-
duce spatial and temporal discretizations. In this work, we 
consider, for simplicity and without loss of generality, the 
implicit Euler method for temporal discretization and a 
FEM for the spatial discretization; the concepts presented 
here can be extended to other time stepping schemes. We 
introduce without loss of generality a uniform partition of 
the time domain [0, T] into Nt + 1 time instances tn = nΔt , 
n = 0,… ,Nt , with Δt = T∕Nt . Application of the implicit 
Euler method yields the series of strong form stationary 
PDEs for �n

∗

(
≈ u∗(t

n)
)
 , n = 1,… ,Nt,

(1)

�u∗

�t
− �Δu∗ + b ⋅ ∇u∗ + �u∗ = f in (0, T] × Ω,

u∗(0, x) = u0(x), x ∈ Ω,

u∗(t, x) = 0, x ∈ Γ, t ∈ (0, T],

(2)
m
(

�, ut(t)
)

+ m(�∇�,∇u(t)) + m(�, b ⋅ ∇u(t))
+ m(�, �u(t)) = m(�, f ), ∀� ∈ 1

0 (Ω),

BG ∶ (𝗏, 𝗎) ↦ m(�∇𝗏,∇𝗎) + m(𝗏, b ⋅ ∇𝗎) + m(𝗏, �𝗎).

with �0
∗
= u0 and �n

∗
= 0 on Γ , n = 1,… ,Nt . The weak form 

then yields the associated series of stationary problems: find 
�
n(≈ �

n
∗
) ∈ H

1
0
(Ω) , n = 1,… ,Nt , such that

with initial condition �0 = u0.
For spatial discretization, let Vh ⊂ H

1
0
(Ω) and Wh ⊂ H

1
0
(Ω) 

denote conforming trial and test spaces, respectively, obtained 
via a finite element discretization of Ω into Nel non-overlapping 
elements Ωk , k = 1,… ,Nel . The spatially discrete counterpart 
of (4) reads: find �n

h
∈ Vh , n = 1,… ,Nt , such that

with (approximate) initial condition �n
h
= u0,h , where u0,h is, 

e.g., the L2(Ω) projection of u0 onto Vh.

3.1 � Galerkin Approach

The standard Galerkin approach is obtained by setting 
Wh = Vh in (5). We introduce the basis {�i}Ni=1 for Vh , which 
yields the following FOM basis vector ∀x ∈ Ω:

The time-discrete state at time-instance tn is described with 
these basis functions as �n

h
(x) = �(x)an

h
 , where an

h
∈ ℝ

N , 
n = 0,… ,Nt . We refer to an

h
 as the FEM coefficients. The 

Galerkin method yields the O Δ E system to be solved for an
h
 , 

n = 1,… ,Nt,

where

In the above, M ∈ �
N  with Mij ≡ m

(
�i, �j

)
 is the FEM 

mass matrix, B ∈ ℝ
N×N with Bij ≡ BG(�i, �j) is a dynamics 

matrix resulting from the bilinear form, and f ∈ ℝ
N with 

fi ≡ m
(
�i, f

)
 is the discrete forcing; we denote the space of 

N × N symmetric positive definite matrices by �N . We refer 
to (7) as the Galerkin FOM O ΔE.

Remark 3.1  Obtaining the discrete problem (7) requires eval-
uating the inner products in the system (5). In general, evalu-
ating these inner products requires introducing a quadrature 

(3)
�
n
∗
− �

n−1
∗

Δt
− �Δ�n

∗
+ b ⋅ ∇�n

∗
+ ��

n
∗
= f

(4)

m

(

�,
�
n − �

n−1

Δt

)

+ BG(�, �
n) = m(�, f ), ∀� ∈ H

1
0
(Ω),

(5)

m

(

�,
�
n
h
− �

n−1
h

Δt

)

+ BG(�, �
n
h
) = m(�, f ), ∀� ∈ Wh,

(6)�(x) ≡
[
�1(x) ⋯ �N(x)

]
.

(7)rG(a
n
h
;an−1

h
) = 0,

rG ∶ (w;z) ↦ M
[
w − z

Δt

]

+ Bw − f.
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rule. We note that for linear problems (and problems dis-
playing polynomial nonlinearities) with piecewise polyno-
mial forcing operators, the inner products can be evaluated 
exactly with an appropriate quadrature rule, e.g., Gaussian 
quadrature.

3.2 � Residual‑Based Stabilization

The Galerkin approach is known to perform well for sym-
metric positive definite systems, in which case the Galerkin 
method comprises a minimization principle in a system-spe-
cific energy norm. In the presence of sharp, under-resolved 
gradients, however, it is well-known that the Galerkin 
approach can lack robustness. In the present context, this 
poor performance is most pronounced for large grid Peclet 
numbers (i.e., Peh ∶= ||b||2h∕𝜖 ≫ 1 , where h is a measure 
of the element size and || ⋅ ||2 is the Euclidian norm). We 
note that large grid Peclet numbers occur, e.g., for coarse 
meshes (i.e., in the under-resolved regime), small diffusion 
coefficients, or a combination of both. In this regime, the 
skew-symmetric convection operator dominates the symmet-
ric diffusion operator. Figure 2 demonstrates this by showing 
finite element solutions to the CDR equation obtained using 
the Galerkin FEM as well as a stabilized FEM. The Galerkin 
approach is seen to yield large oscillations near the boundary 
of the computational domain, while the stabilized approach 
suppresses these oscillations and yields accurate solutions.6

To improve the performance of the numerical method 
in such regimes, it is common to introduce stabilization 
to smooth the numerical solution. Various stabilization 
techniques exist, including flux limiters, artificial viscos-
ity, etc. In the finite element community, residual-based 

stabilization is a popular stabilization technique. Residual-
based FEMs, which include the likes of the SUPG [22, 23, 
73], GLS [75], and adjoint [49, 50, 74] (ADJ) (also known as 
unusual or subgrid-scale) stabilization methods, are typically 
formulated by adding terms involving a sum of element-
wise integrals to the Galerkin method. These terms usually 
comprise the product of a test function with the residual of 
the governing equations. These approaches have been suc-
cessful in providing robust methodologies for a variety of 
systems, including the CDR, incompressible Navier–Stokes, 
and compressible Navier–Stokes equations [23, 50, 72, 75, 
84, 135, 160].

For transient systems, like the CDR equation described 
in this work, stabilized methods are typically employed in 
one of two ways.

•	 Space–time discretizations. Space–time finite ele-
ments are employed in both time and space. The tem-
poral dimension is then viewed as an additional spatial 
dimension, and standard stabilization approaches can be 
applied. This is the approach that was first employed for 
stabilized and variational multiscale methods of unsteady 
problems [76, 149].

•	 Discretize-then-stabilize. The PDE is first discretized in 
time, and then a stabilized method is applied to the time-
discrete, spatially-continuous system. This approach is 
popular as it can be more computationally efficient than 
space–time discretizations and is compatible with numer-
ous time marching schemes [41].

In this work, we explore both approaches.
A stabilized form of (4) can be written generally as: find 

�
n ∈ Vh , n = 1,… ,Nt , such that
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(a) Galerkin FEM
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Fig. 2   Finite element solutions to the CDR equation, with the setup described in Sect. 7.2, at t = 5

6  We note that one negative consequence of stabilized methods is 
that the convergence rates for the methods are often lower than the 
unstabilized FEM.
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where mel ∶ (u, v) ↦
∑Nel

K=1
∫
Ωk

u(x)v(x)dx denotes the sum 
of element-wise L2(Ω) inner products, � ∶ Ω → ℝ is a grid-
d e p e n d e n t  s t a b i l i z a t i o n  p a r a m e t e r , 
R ∶

(
𝗎
n, 𝗎n−1

)
→

𝗎
n−𝗎n−1

Δt
+ L𝗎n − f  is the strong form resid-

ual operator, L ∶ 𝗎
n
↦ −�Δ𝗎n + b ⋅ ∇𝗎n + �𝗎

n , and Q is a 
linear stabilization operator that is scheme dependent. Note 
that 

[

L�n +
�
n−�n−1

Δt
− f

]

 yields the strong form of the time-
discrete residual. For notational simplicity, we denote the 
bilinear form associated with the stabilized formulations as

Remark 3.2  We note that the stabilized form (8) is consistent 
with respect to the continuous equations (1) semi-discretized 
in time using an implicit Euler scheme. That is, if one sub-
stitutes in the exact solution, 𝗎n ← 𝗎

n
∗
 , the additional stabili-

zation terms in (8) vanish. We discuss consistency in more 
detail in Sect. 6.1.

Some of the most popular types of stabilization methods 
are SUPG [22, 73], GLS [75], and ADJ [66]. If a discretize-
then-stabilize approach is taken, the operator Q takes the 
form

where the subscript “DS” denotes “discretize-then-stablize”, 
and L∗ ∶ 𝗏 ↦ −�Δ𝗏 − b ⋅ ∇𝗏 + �𝗏 denotes the adjoint of L . 
For the space–time approach, we note that the implicit Euler 
method is equivalent to a space–time method with p = 0 
discontinuous Galerkin (DG) finite elements in time, and in 
this setting the space–time stabilization approach results in 
the operator Q taking the form

(8)

m
(

�, �
n − �n−1

Δt

)

+ G(�, �n) + mel
(

�, �
(

�n, �n−1
))

= m(�, f ), ∀� ∈ h,

BS ∶ (𝗏, 𝗎) ↦ BG(𝗏, 𝗎) + mel

(

Q𝗏, �
(

L𝗎 +
𝗎

Δt

))

.

(9)QDS−SUPG ∶ 𝗏 ↦
1

2

(
L𝗏 − L

∗
𝗏
)
∶= b ⋅ ∇𝗏,

(10)

QDS−GLS ∶ 𝗏 ↦
𝗏

Δt
+ L𝗏 ∶=

𝗏

Δt
− �Δ𝗏 + b ⋅ ∇𝗏 + �𝗏,

(11)

QDS−ADJ ∶ 𝗏 ↦ −
𝗏

Δt
− L

∗
𝗏 ∶= −

𝗏

Δt
+ �Δ𝗏 + b ⋅ ∇𝗏 − �𝗏,

(12)QST−SUPG ≡ QDS−SUPG,

(13)QST−GLS ∶ 𝗏 ↦ L𝗏 ∶= −�Δ𝗏 + b ⋅ ∇𝗏 + �𝗏,

(14)QST−ADJ ∶ 𝗏 ↦ −L∗
𝗏 ∶= �Δ𝗏 + b ⋅ ∇𝗏 − �𝗏,

where the subscript “ST” denotes space–time.

Remark 3.3  We emphasize that, in this work, for space–time 
stabilization methods with the implicit Euler method, we 
employ the full residual operator R in the right slot of the 
stabilization term as in (8). In Refs. [39, 75], the authors 
do not include the 

(
�
n − �

n−1
)
∕Δt term for p = 0 DG. We 

include this term for consistency at the time-discrete level. In 
our numerical experiments, we observed this term to make 
very little difference.

Employing a finite element discretization in space and 
leveraging the basis vector (6) yields the stabilized O Δ E 
system to be solved for an

h
 , n = 1,… ,Nt,

The discrete residual of the stabilized discretization is given 
by

with Qij = mel

(

Q�i, �
(

L�j +
�j

Δt

))

 , fSi = mel

(
Q�i, �f

)
, and 

MSij
= mel

(
Q�i, ��j

)
.

3.3 � Selection and Scaling of the Stabilization 
Parameter, �

The stabilized form (8) requires specification of the stabiliza-
tion parameter � . The a priori selection of suitable stabilization 
parameters has been a topic of much research; see, for example, 
[41, 66, 70] and references therein. Traditionally, the stabiliza-
tion constants are obtained through asymptotic scaling argu-
ments [70], and depend on, e.g., the grid size, the diffusion coef-
ficient and, for transient problems, the time step.

While existing definitions and scalings of the stabilization 
constant are well established and have been used successfully 
in a myriad of applications (see, e.g., the review in [135]), there 
are some outstanding challenges. Relevant to the current work 
is that classical definitions of the stabilization parameters are 
subject to several issues when deployed on transient problems. 
First and foremost, in addition to depending on the spatial grid 
resolution, classical definitions of � depend on the time step. 
These definitions become poorly behaved in both the low time 
step and steady-state regimes. As an example, one common 
definition of � is [70]

where Gij =
��k

�xi

��k

�xj
 and C ∈ ℝ

+ is a positive constant. Here, 
��

�x
 is the inverse Jacobian of the element mapping between 

(15)rS(a
n
h
;an−1

h
) = 0.

rS ∶ (w;z) ↦ rG(w;z) +Qw − fS −MS

z

Δt
,

(16)� =

(
4

Δt2
+ b ⋅Gb + C�2G ∶ G

)−1∕2

,
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the parametric and physical domains, i.e., the grid metrics, 
and we note that in one dimension G ∝

1

h2
 , where h is the 

element size. This type of definition enables, e.g., O(h2) 
scaling in the low Peclet number limit which helps maintain 
optimal convergence rates. As highlighted in Ref. [70], the 
definition (16) is not robust in the small time step limit. As 
Δt → 0 , the 4∕Δt2 term dominates and the formulation 
reverts to a Galerkin method, which is known to lack robust-
ness. We highlight that a very similar issue exists for the 
LSPG approach discussed later in this manuscript.

For all numerical experiments considered in the work, we 
present results for numerous values of � and as such do not 
restrict ourselves to a particular definition, but rather explore 
the sensitivity of the various methods to this parameter.

3.4 � Sensitivity to the Time Step, 1t

In addition to depending on the stabilization parameter � , 
it is well-known that stabilized formulations depend on 
the time step Δt . Stability analyses have demonstrated, for 
example, that stabilized formulations may become unstable 
at low CFL numbers [20]. This sensitivity to the time step 
can be understood intuitively for GLS and ADJ stabiliza-
tion, where changing the time step size changes the nature 
of the stabilization operator Q . Thus, changing the time step 
modifies both the error incurred due to temporal discretiza-
tion and the properties of the stabilized scheme. As will be 
seen later in the manuscript, the LSPG approach suffers from 
similar issues. Thus, in our numerical examples, we perform 
a thorough investigation of the sensitivity of the results with 
respect to the time step, Δt.

4 � Continuous Projection Reduced‑Order 
Models

We now develop ROMs of the CDR system via continuous 
projection. Continuous ROMs generate approximate solu-
tions �n

r
(≈ �

n) within a low-dimensional spatial trial space 
�
n
r
∈ Vr ⊂ Vh ⊂ H

1
0
(Ω) , and have been studied in a number 

of references including [11, 12, 14, 52, 79, 85, 88, 138, 
169, 170]. Various techniques exist for constructing this 
trial space, and here we consider proper orthogonal decom-
position (POD) [19]. To construct the trial space through 
POD, we assume access to an ensemble of snapshots at time 
instances tn , n = 0,… ,Nt.7 We collect these snapshots into 
the matrix

The POD method seeks to find an X -orthonormal basis of 
rank R ≪ N (where N is the size of the FOM from which the 
reduced basis is built) that minimizes the projection error

where �j ∶ Ω → ℝ , j = 1,… ,R , are ROM basis functions 
and X  denotes inner product type (e.g., H1(Ω) , L2(Ω) , 
weighted L2(Ω) [14]). The minimization problem (17) can 
be solved via the eigenvalue problem

where [K
�
]ij = m

(
[S

�h
]i, [S�h ]j

)

X
∈ �

Ns×Ns , and E
�
 and �

�
 are 

the matrices associated with the eigenvectors and eigenval-
ues, respectively. Assuming the snapshot matrix is full rank, 
it can be shown that the minimizer of the problem (17) is

For each x ∈ Ω , we evaluate these basis functions at x and 
assemble the ROM basis vector �(x) ≡

[
�1(x) ⋯ �R(x)

]
 

with �(x) ∈ ℝ
1×R . We then set Vr ≡ span{�1,… ,�R} . We 

additionally note that, as Vr ⊂ Vh , it directly follows that the 
ROM basis vectors can be described with a linear combina-
tion of the FOM basis vectors, i.e., �(x) = �(x)C , where 
C ∈ ℝ

N×R is a coefficient matrix.

4.1 � Galerkin Reduced‑Order Models

The Galerkin ROM achieved after time discretization is: find 
�
n
r
∈ Vr , n = 1,… ,Nt , such that

Leveraging the ROM basis vector � , the Galerkin ROM 
can be cast as the sequence of O Δ Es to be solved for x̂n , 
n = 1,… ,Nt,

where x̂n ∈ ℝ
R are the ROM “generalized coordinates” such 

that the approximate state is defined as �n
r
= �x̂

n , and the 
residual operator is given by

S
�h
=
[
�
0
⋯ �

Nt

]
.

(17)minimize
{�i}

R
i=1

,�i∈Vh

Nt∑

n=0

|
|
|
|
|
|

|
|
|
|
|
|

�
n −

R∑

j=1

m
(
�
n,�j

)

X
�j

|
|
|
|
|
|

|
|
|
|
|
|

2

X

,

K
�
E
�
= E

�
�

�
,

(18)� = S
�h
E
�

√

�
−1
�
.

(19)

m

(

�,
�nr − �n−1r

Δt

)

+ m
(

�∇�,∇�nr
)

+ m
(

�, b ⋅ ∇�nr
)

+ m
(

�, ��nr
)

= m(�, f ), ∀� ∈ r.

(20)rG−r(x̂
n;x̂n−1) = 0,

rG−r ∶ (w;z) ↦ Mr

[
w − z

Δt

]

+ Brw − fr,7  In practice, snapshots are often collected at only a subset of the 
time steps. Additionally, snapshots can be collected for a variety of 
parameter values, in the case of a parametrized PDE.
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w i t h  Br ∈ ℝ
R×R  ,  Brij

≡ BG(�i,�j)  ,  Mr ∈ ℝ
R×R  , 

Mrij
≡ m

(
�i,�j

)
 , and fr ∈ ℝ

R , fri ≡ m
(
�i, f

)
 . The Galerkin 

ROM formulation (19) corresponds to method I in Fig. 1.

4.2 � Residual‑Based Stabilized Reduced‑Order 
Models

Analogously to the FEM case, the Galerkin ROM can 
lack robustness in the presence of sharp, under-resolved 
gradients. In the present context, such a situation may 
arise when the diffusion constant is small (relatively to 
b ) and not enough ROM basis vectors are employed to 
capture the behavior of the solution of interest. A stabi-
lized ROM formulation can be written generally as: find 
�
n
r
∈ Vr , n = 1,… ,Nt , such that

where Q can be any of the forms given in Eqs. (9)–(14). 
We consider the SUPG, GLSDS , ADJDS , GLSST , and ADJST 
ROMs as defined by the operators in Eqs. (9)–(14). Leverag-
ing the ROM basis vectors yields the stabilized O Δ E system 
to be solved for x̂n , n = 1,… ,Nt,

The discrete residual of the stabilized discretization is given 
by

w i t h  Qrij = mel

(

Q�i, �
(

L�j +
�j

Δt

))

∈ ℝ
R×R   , 

fS−r i = mel

(
Q�i, �f

)
∈ ℝ

R   ,  a n d 
MS−r ij = mel

(
Q�i, ��j

)
∈ ℝ

R×R . The stabilized ROM for-
mulations (21) correspond to method II in Fig. 1.

In the literature, SUPG ROMs have been considered 
in [18, 52, 82, 94, 111, 118, 179, 180], amongst others. 
To the best of our knowledge, ROMs based on GLSDS , 
ADJDS , GLSST , and ADJST are novel.

4.3 � Selection and Scaling of the Stabilization 
Parameter, �

Like in the standard FEM, the stabilized ROM form (21) 
requires specification of the stabilization parameter � . A 
priori selection of this parameter in the context of ROMs is 
not as well explored as in the standard FEM case. It remains 
unclear, for instance, if the stabilization parameter should take 
on a different value for the ROM as opposed to the full-order 

(21)

m

(

�,
�
n
r
− �

n−1
r

Δt

)

+ m
(
�∇�,∇�n

r

)
+ m

(
�, b ⋅ ∇�n

r

)
+ m

(
�, ��n

r

)

+ mel

(
Q�, �R

(
�
n
r
, �n−1

r

))
= m(�, f ), ∀� ∈ Vr

(22)rS−r(x̂
n;x̂n−1) = 0.

rS−r ∶ (w;z) ↦ rG−r(w;z) +Qrw −MS−r

z

Δt
− fS−r ,

FEM discretization. While selecting a different value of � for 
the ROM as the one used in the FOM would lead to a lack of 
consistency between the ROM and the FOM, it may nonethe-
less improve the stability and accuracy of the ROM. To the 
best of the authors knowledge, [52], which explores the selec-
tion of the stabilization parameter in the context of the SUPG 
approach, is the only present study that examines the selection 
of � within the ROM context. Specifically, [52] employs the 
same strategy as that used in standard FEM: a SUPG-ROM 
error bound is first proved, and � is chosen to minimize this 
bound. However, since the ROM space is a subspace of the 
FEM space, two types of inverse inequalities are used to prove 
the SUPG-ROM bound: a standard FEM inverse inequality, and 
a ROM inverse inequality [95]. These two inverse inequalities 
yield two SUPG-ROM error bounds, which in turn yield two 
� scalings: a standard FEM scaling in which � depends on the 
FEM mesh size, and a new ROM scaling in which � depends 
on the ROM parameters (e.g., the ROM dimension, the POD 
basis functions, and the corresponding eigenvalues). We note 
that other approaches leveraging residual-based stabilization for 
ROMs (see, e.g., [118]) use standard definitions of � inherited 
from the FEM community in which case � depends on the FEM 
discretization (as opposed to the resolution of the ROM basis).

5 � Discrete Projection Reduced‑Order 
Models

ROMs developed through continuous projection operate in 
a weighted residual setting defined at the spatially-contin-
uous level. ROMs developed through discrete projection, 
however, perform model reduction at either the level of the 
FOM ODE or FOM O Δ E; Ref. [29] shows that these two 
approaches are equivalent for the Galerkin method. In this 
work, we restrict our discussion to discrete projection-based 
ROMs developed at the O Δ E level.

Discrete projection ROMs approximate the degrees 
of freedom associated with the spatial discretization in a 
low-dimensional (vector) trial space, an

r
(≈ an

h
) ∈ Vr ⊆ ℝ

N , 
n = 0,… ,Nt , where Vr is the discrete ROM trial subspace. 
We again employ POD to construct this space. Towards this 
end, on the vector space ℝN we first define the P-weighted 
inner product md(⋅, ⋅)P ∶ (U,V) ↦ UTPV , where P ∈ �

N is 
a symmetric-positive definite weighting matrix. The asso-
ciated P-weighted norm is ‖x‖2

P
= xTPx . Next, we assume 

access to an ensemble of snapshots of the FEM coefficients 
at time instances tn , n = 0,… ,Nt . We then seek a P-ortho-
normal basis of rank R that minimizes the projection error

(23)minimize
�∈ℝN×R, �TP�=I

Nt�

n=0

‖an
h
−��

TPan
h
‖2
P
.
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The solution to the minimization problem  (23) can be 
obtained via an eigenvalue problem or via the generalized 
singular value decomposition; we present the former here. 
We denote the snapshots of FEM coefficients as

We note that S
�h
= �Sah . Defining the time correlation matrix 

as Kah
= md

(
Sah , Sah

)

P
, we can leverage the eigenvalue 

problem

to obtain the POD bases. The solution to the minimization 
problem (23) can be shown to be

where ER

ah
 and �R

ah
 comprise the first R columns of Eah

 and 
the first R columns and rows of �ah

 , respectively.

Remark 5.1  Setting Pij ← m
(
𝗏i, 𝗏j

)

X
 , we can express the cor-

relation matrix as

which recovers the correlation matrix used in continuous 
projection ROMs. Further, as S

�h
= �Sah , we can express 

Eq. (18) as �(x) = �(x)SahE�

√

�
−1
�

 and we see that

We emphasize that this result is well-documented in the 
community, see, e.g., [122, 167].

5.1 � Galerkin Reduced‑Order Model

The Galerkin ROM developed through discrete projec-
tion is obtained by (i) making the substitution an

h
← �x̂

n , 
n = 0,… ,Nt , and (ii) restricting the residual of the FOM 
O Δ E to be W-orthogonal to the vector trial space Vr . Here 
x̂
n
∈ ℝ

R , n = 0,… ,Nt are the ROM generalized coordi-
nates and W ∈ �

N is a weighting matrix inducing the inner 
product md(⋅, ⋅)W ∶ (U,V) ↦ UTWV with the associated W
-weighted norm ‖x‖2

W
= xTWx ; W may or may not be the 

same as P . It is critical to note that the Galerkin ROM devel-
oped via discrete projection can be developed for any FOM 
O Δ E; e.g., the FOM O Δ E could associate with the Galerkin 

Sah ≡
[

a0
h
⋯ a

Nt

h

]

∈ ℝ
N×Nt+1.

Kah
Eah

= Eah
�ah

� = SahE
R

ah

√

[�
R
ah
]−1,

Kah
tij = m

(
[S

�h
]i, [S�h ]j

)

X
,

�(x) = �(x)�.

FOM O ΔE (7), or it could associate with the stabilized FOM 
O ΔE (15).

We denote the residual of a generic FOM O ΔE8 as

Examples of this residual are r = rG for association with the 
Galerkin FOM O ΔE (7) and r = rS for association with the 
stabilized FOM O ΔE (15). The Galerkin ROM obtained via 
discrete projection yields the O Δ E system to be solved for 
x̂
n , n = 1,… ,Nt,

where the residual of the discretely projected Galerkin ROM 
is given by

The discrete Galerkin ROM formulation (24) corresponds to 
methods III and VI in Fig. 1, depending on the underlying 
FEM model.

Remark 5.2  Setting Pij ← m
(
𝗏i, 𝗏j

)

X
 in optimization prob-

lem (23), and W ← I , r ← rG in problem (24), the Galer-
kin ROM obtained via discrete projection (24) recovers the 
Galerkin ROM obtained via continuous projection (20).

Remark 5.3  Analogously to Remark  5.2, setting 
Pij ← m

(
𝗏i, 𝗏j

)

X
 in optimization problem (23), and W ← I , 

r ← rS in problem (24), the Galerkin ROM obtained via dis-
crete projection (24) recovers the stabilized ROM obtained 
via continuous projection (22).

5.2 � Least‑Squares Petrov–Galerkin Reduced‑Order 
Model

Similar to the continuous Galerkin ROM, the discrete Galer-
kin ROM has been observed to yield inaccurate or unstable 
solutions in a variety of settings and thus various stabiliza-
tion approaches have been developed for discrete ROMs. 
The LSPG approach comprises one particularly popular 
stabilization approach for discrete ROMs [24, 26, 29, 30]. 
LSPG operates by computing a sequence of solutions x̂n , 
n = 1,… ,Nt , that satisfy the minimization problem

where r is again the residual of the FOM O Δ E. The optimi-
zation problem (25) can be solved via the first-order optimal-
ity conditions, which yield the sequence of algebraic equa-
tions for x̂n, n = 1,… ,Nt,

r ∶ (w;z) ↦ r(w;z).

(24)rG−DROM(x̂
n;x̂n−1) = 0,

rG−DROM ∶ (w;z) ↦ md(�, r(�w;�z))W.

(25)x̂
n
= argmin

ŷ∈ℝR

||r(�ŷ;�x̂
n−1

)||2
W
,

8  For simplicity of presentation, we assume the FOM O Δ E to depend 
only on the state at the current time instance and previous time 
instance, as would be the case with an implicit Euler temporal discre-
tization.
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where �r
�y

 is the Jacobian of the residual r(⋅, ⋅) with respect to 
the first argument. In the case r ← rG , the optimality condi-
tions become

We see that LSPG takes the form of a Petrov–Galerkin ROM 
and hence we classify it as a residual-based method. The 
LSPG ROM formulation (25) corresponds to methods IV 
and V in Fig. 1, depending on the underlying FEM.

Remark 5.4  (LSPG can correspond to a continuous minimi-
zation principle.) Setting r ← rG and W ← M−1 in optimi-
zation problem (25), LSPG corresponds to the continuous 
minimization principle for �n

r
 , n = 1,… ,Nt,

where

and

LSPG computes the solution �n
r
 within the ROM trial space 

Vr that minimizes the L2(Ω)-norm of the time-discrete, spa-
tially continuous residual projected onto the finite element 
trial space Vh . The full derivation for this equivalence is 
presented in Appendix 2.

Remark 5.5  For the case r ← rS , it is not clear if LSPG cor-
responds to an underlying residual minimization principle 
defined at the continuous level.

5.2.1 � Selection of the Time Step, 1t

While LSPG does not contain a stabilization parameter, its 
performance depends on the time step and time integra-
tion scheme [29]. This is due to the fact that changing the 
time step (i) modifies the error incurred due to temporal 
discretization and (ii) modifies the LSPG minimization prob-
lem (i.e., the time-discrete residual changes). As a result, 
LSPG yields best results at an intermediary time step [29]. 
LSPG lacks robustness for too small a time step (in the limit 
Δt → 0 LSPG recovers the Galerkin approach [29]) and too 

md

(
𝜕r

𝜕y
(�x̂

n
)�, r(�x̂

n;�x̂
n−1

)

)

W

= 0,

md

(
M�

Δt
+ B�, rG(�x̂n;�x̂n−1)

)

W
= 0.

(26)�
n
r
= argmin

�∈Vr
∫
Ω

(

�
∥

G
(�;�n−1

r
)

)2

dx,

𝖱
∥

G
∶ (𝗐;𝗓) ↦ 𝗏M−1m

(
𝗏,𝖱cdr(𝗐;𝗓)

)

𝖱cdr ∶ (𝗐;𝗓) ↦
𝗐 − 𝗓

Δt
− �∇2

𝗐 + b ⋅ ∇𝗐 + �𝗐 − f .

large a time step. Minimal work has examined the a priori 
selection of an appropriate time step.

5.3 � Adjoint Petrov–Galerkin reduced‑Order Model

The final residual-based stabilization technique considered 
in this work is the APG method [121]. APG is a VMS-based 
approach for constructing discrete ROMs, and is derived 
from a time-continuous ODE setting. APG is derived via a 
multiscale decomposition of ℝN into a coarse-scale, resolved 
trial space Vr and a fine-scale, unresolved trial space, V′

r
 

such that ℝN = Vr ⊕ V�

r
 . The impact of fine scales on the 

coarse-scale dynamics is then accounted for by virtue of 
the Mori–Zwanzig formalism and the variational multiscale 
method [121]. Setting P ← M in (23), associating with the 
Galerkin FOM O ΔE (7), and using the implicit Euler method 
for time-discretization, APG yields the sequence of O ΔE’s 
to be solved for x̂1,… , x̂Nt,

The APG residual is given by

where �� = M−1
−��

T  , 𝔸� ∶ ℝ
N
→ V�

r
 , and 𝜏APG ∈ ℝ

>0 
is a stabilization parameter. The full derivation for APG is 
provided in Appendix 3.

Remark 5.6  The APG approach displays conceptual similari-
ties with adjoint stabilization and the (quasi-static) orthogo-
nal subscales (OSS) approach from the variational multi-
scale method [10, 40, 130]; see Ref. [121] for details. There 
is no clear direct equivalence between these approaches, 
however. This is a result of APG being formulated at the 
discrete level, while adjoint stabilization and orthogonal 
subscales are formulated at the continuous level.

Like LSPG, APG could also associate with a stabilized 
FOM. Some of the stabilized FEM formulations considered 
in this work, however, are developed at the time-discrete level 
(e.g., ADJDS and GLSDS ). As APG is derived from a time-
continuous setting, it is not straightforward to construct an 
APG ROM of all stabilized formulations, and we only consider 
the SUPG, GLSST , and ADJST FEM models. We note that this 
is due to the fact that the test functions in these formulations do 
not contain terms of the form v

Δt
 . The APG ROM associating 

with one of these stabilized FEM models is obtained by set-
ting P ← M in (23), associating with the stabilized FEM O Δ
E (7) with Q ← QDS−SUPG,QST−GLS , or QST−ADJ , and using 
the implicit Euler method for time-discretization. This process 
yields the sequence of O ΔE’s to be solved for x̂1,… , x̂Nt,

(27)rAPG(x̂
n;x̂n−1) = 0.

rAPG ∶ (w;z) ↦
((

I − �APG[�
�]T

[
B
]T
)

�, rG(�w;�z)
)

I
,
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where

The APG ROM formulation (27) corresponds to method IV 
Fig. 1, while the APG ROM formulation (28) corresponds 
to method V in Fig. 1.

5.4 � Summary of Remarks for Discrete ROMs

A summary of the remarks provided in this section is as 
follows:

•	 The discrete POD basis recovers the continuous POD 
basis. The POD bases obtained through discrete projection 
recover the POD bases obtained through continuous pro-
jection under the conditions Pij ← m

(
𝗏i, 𝗏j

)

X
 in optimiza-

tion problem (23).
•	 The discrete Galerkin ROM recovers the continuous 

Galerkin ROM. The discrete Galerkin ROM recovers the 
continuous Galerkin ROM under the conditions W ← I 
in problem (24), Pij ← m

(
𝗏i, 𝗏j

)

X
 in optimization prob-

lem (23), and r ← rG in problem (24).
•	 The discrete Galerkin ROM recovers stabilized ROMs. 

The discrete Galerkin ROM recovers the stabilized con-
tinuous ROM under the conditions W ← I in problem (24), 
Pij ← m

(
𝗏i, 𝗏j

)

X
 in optimization problem (23), and r ← rS 

in problem (24).
•	 LSPG mimics a continuous L2(Ω) minimization prin-

ciple. LSPG mimics a continuous L2(Ω) minimization 
principle under the conditions r ← rG and W ← M−1 in 
optimization problem (25).

•	 APG displays similarities to adjoint stabilization. Simi-
lar to APG, ADJ can also be derived from the variational 
multiscale method. For transient systems ADJ results in a 
set of equations that are conceptually similar to APG, but 
without the appearance of an orthogonal projector. We note 
that FEM approaches for orthogonal subscales do exist, 
e.g., [10, 40, 130], and APG also displays similarities with 
these approaches.

6 � Brief Survey of Numerical Analysis 
of Residual‑Based ROM Stabilizations

In this section, we summarize the numerical analysis results 
that are currently available for the residual-based ROM sta-
bilizations presented above. Specifically, we discuss the 
consistency, stability, and error bounds for these methods. 
We emphasize that this is just a brief summary of the exist-
ing results and reflects only our own view on the topic. 

(28)rAPG−S(x̂
n;x̂n−1) = 0,

rAPG−S ∶ (w;z) ↦
((
I − �APG[�

�]T [B +Q]
T
)
�, rS(�w;�z)

)

I
.

Furthermore, we note that these definitions are not neces-
sarily agreed upon.

6.1 � Consistency

We start by considering consistency. For ROMs, two types 
of consistency can be considered, and for concreteness we 
use the following terminology:

•	 Type 1: (Time-discrete) PDE consistency. The ROM 
weak form holds when evaluated at the PDE solution, 
𝗎
n
r
← 𝗎

n
∗
 , assuming �n

∗
∈ H

2(Ω) . We note that Type 1 con-
sistency is only relevant for continuous ROMs, as dis-
crete ROMs have no notion of the underlying PDE. We 
also note that Type 1 consistency is the consistency con-
cept used for classical numerical methods (e.g., FEM).

•	 Type 2: FOM consistency: The ROM weak form holds 
when evaluated at the FOM solution from which it is 
constructed. For continuous ROMs, this condition states 
that the weak form holds under the substitution 𝗎n

r
← 𝗎

n
h
 . 

Analogously for discrete ROMs, the “discrete weak 
form” holds under the substitution an

r
← an

h
.

Remark 6.1  (Model Consistency) A ROM is model consist-
ent if the same stabilization method is used in the FOM and 
ROM. We note that, when the same parameters are used in 
the FOM and ROM (i.e., we have parameter FOM-ROM 
consistency [158]), model consistency is a special class of 
Type 2 consistency. In [118] (see also [52]), the authors have 
argued both numerically and theoretically (in particular, see 
Section 3.3 and Proposition 3.1 in [118]) that using the same 
type of stabilization (i.e., SUPG) in the FOM and ROM 
yields more accurate ROM results. More recently, model 
consistency for the evolve-filter-relax ROM [158] (which is 
a spatial filtering-based stabilization, such as those described 
in Appendix 1) was shown to increase the ROM accuracy.

6.1.1 � Continuous Residual‑Based ROM Stabilizations

Continuous Galerkin ROMs. The continuous Galerkin ROM 
is Type 1 and Type 2 consistent. Type 1 consistency follows 
directly from setting � = � in the weak form (4), where we 
have leveraged Vr ⊂ H

1
0
(Ω) . Analogously, Type 2 consist-

ency is shown from setting � = � in the weak form (5). We 
note that, assuming a consistent FOM, Type 2 consistency 
automatically implies Type 1 consistency. This allows for a 
priori convergence analyses of continuous Galerkin ROMs 
with respect to the FOM solution as well as the solution to 
the governing continuous PDEs, as discussed in Refs. [67, 
87, 139]. We emphasize that, in order to maintain Type 2 
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consistency for a continuous Galerkin ROM, it is impor-
tant to employ the same spatial and temporal discretization 
method in building the ROM as the one employed in build-
ing the FOM.

Continuous stabilized ROMs. Like continuous Galerkin 
ROMs, the SUPG, GLSDS , and ADJDS stabilized ROMs 
(developed through both the discretize-then-stabilize and 
space–time formulations) are Type 1 and Type 2 consistent. 
These stabilized formulations display Type 1 consistency 
as the stabilization term vanishes when evaluated about the 
PDE solution; the term vanishes as the residual evaluates 
to zero for the PDE solution (assuming the solution is suf-
ficiently regular). Type 2 consistency follows directly from 
setting � = � in the stabilized weak form (8), where we have 
leveraged Vr ⊂ Vh.

6.1.2 � Discrete Residual‑Based ROM Stabilizations

Discrete Galerkin ROMs. The discrete Galerkin ROM dis-
plays Type 2 consistency with the FEM model from which it 
is constructed. We show this by first setting an

h
 , n = 1,… ,Nt 

to be the FOM solution obtained from the Galerkin FOM (7). 
Making the substitution an

r
← an

h
 , n = 0,… ,Nt , it is straight-

forward to see that Eq. (24) is satisfied under the condi-
tions r ← rG as rG(anh, a

n−1
h

) = 0 , n = 1,… ,Nt . Analogously, 
let an

h
 , n = 1,… ,Nt be the FOM solution obtained from a 

stabilized FOM  (15). Making the substitution an
r
← an

h
 , 

n = 0,… ,Nt , it is again straightforward to see that (24) is 
satisfied under the conditions r ← rS as rS(anh, a

n−1
h

) = 0 , 
n = 1,… ,Nt.

Discrete Stabilized ROMs. Like the discrete Galerkin 
ROM, discrete stabilized ROMs display Type 2 consistency 
with the FEM model from which they are constructed. As 
both LSPG and APG can be written as a Petrov–Galerkin 
method, Type 2 consistency follows from the same argu-
ments as the discrete Galerkin ROM.

Remark 6.2  The residual-based stabilizations examined here 
all display Type 2 consistency,9 and all continuous ROMs 
display Type 1 consistency. We emphasize that, while all 
methods considered here are consistent within the setting 
described above, this does not hold for all stabilized meth-
ods. Stabilization approaches based on, for example, eddy 
viscosity approaches [78] typically do not display Type 1 
consistency.

6.2 � Stability

Stability properties of the ROM depend on the type of pro-
jection, and are a driving factor in the ROM development. 

Here, we highlight the stabilization properties of the various 
ROMs considered. For concreteness, we restrict our discus-
sion to stability within the context of the CDR equation.

6.2.1 � Continuous ROMs

For continuous ROMs, we define a stable formulation as one 
whose spatial bilinear form is strongly coercive. For continu-
ous ROMs, coercivity is defined by

for some C ∈ ℝ
>0 . In the above, B denotes a bilinear form, 

and ‖ ⋅ ‖2
Y
 denotes a norm associated with the formulation.

Remark 6.3  If the spatial bilinear form is strongly coercive, 
then the fully discrete bilinear form associated with an 
implicit Euler discretization in time is also strongly coercive.

Coercivity of the spatial bilinear form guarantees bound-
edness of the solution, i.e., for finite n and some 𝛽 > 0,

where f n is the data at the nth time step.

Remark 6.4  Stability vs. accuracy. Before proceeding, we 
make the important point that a stable ROM does not neces-
sarily imply an accurate ROM, and, often times, terminolo-
gies between instabilities and inaccuracies are mixed. As 
an example, for the CDR equation, the constants C and � 
in (29) and (30) depend on the diffusion parameter, � . It can 
be shown that the continuous Galerkin ROM has � → ∞ as 
� → 0 . Thus, for small � values, the stability constant � can 
be very large. As a result, although the standard Galerkin 
ROM may be formally stable (in the sense of (30)), it can 
be extremely inaccurate and display spurious oscillations. 
These spurious oscillations are often viewed as instabili-
ties. We emphasize that this is not just a theoretical issue. 
In practical ROM computations of convection-dominated 
systems (i.e., when � is very small), the standard Galerkin 
ROM approximation—while mathematically stable—can 
indeed display large, spurious numerical oscillations (just 
as in the FEM setting [135]). Although these oscillations are 
often referred to as instabilities, we emphasize here that they 
are large, but bounded (by the large stability constant �).

With this in mind, we now outline stability properties of 
the various formulations in the sense of the definition (29).

•	 Continuous Galerkin ROM. Coercivity of the con-
tinuous Galerkin FEM model has been demonstrated in 
numerous contexts (see, for example, Ref. [159]), and it 

(29)B(�, �) ≥ C‖�‖2
Y

(30)‖�n‖Y ≤ �‖f n‖Y ,

9  Formally, these methods are Type 2 consistent only if the same sta-
bilization parameters and time steps are used in the FOM and ROM.
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is straightforward to show that the continuous Galerkin 
FEM model is stable in the sense 

 where ‖�‖2
G
= �‖�‖2

L2(Ω)
+ �‖∇�‖2

L2(Ω)
 . We emphasize 

that this coercivity property guarantees boundedness of 
the solution. For instance, under a suitable time-step 
restriction, the Galerkin method with a �-scheme for tem-
poral discretization can be equipped with the stability 
bound 

 for a constant C that depends only on Ω . See, e.g., Prop-
osition 12.2.1 in [127]. In the limit of � → 0 , the stability 
statement (31) loses control over the gradient. Hence, the 
Galerkin method is stable, but not robust in the limit of 
� → 0 . The stability of the continuous Galerkin ROM 
follows along the same lines as that for the continuous 
Galerkin FEM model [95, Theorem 5].

•	 Continuous SUPG ROM. Coercivity of the SUPG FEM 
model has additionally been demonstrated in various 
contexts (see again Ref. [159, pg. 494], or Refs. [52, 83]). 
Coercivity of the SUPG FEM model depends on inverse 
estimates, and it is fairly straightforward to show that for 
some � ∈ [0, �∗

SUPG
] , where �∗

SUPG
 is a grid and parameter 

dependent upper threshold on � , the continuous SUPG 
FEM model is stable in the sense 

 where ‖�‖2SUPG = �‖�‖2
L2(Ω)

+ �‖∇�‖2
L2(Ω)

+ �
∑Nel

k=1 ‖b ⋅ ∇�‖2
L2(Ωk)

 . 
We note that, in the limit that � → 0 , the stability state-
ment (32) maintains control over the gradient of the state 
in the streamline direction. Thus, the SUPG method is 
stable and robust in the limit of � → 0 . As a result, we do 
not expect the accuracy of the method to deteriorate for 
small � . We additionally note that ‖�‖SUPG ≥ ‖�‖G , so 
that SUPG is more dissipative than Galerkin. The stabil-
ity of the continuous SUPG ROM follows along the same 
lines as that for the continuous SUPG FEM model (see, 
e.g., [52, Lemma 3.3]).

•	 Continuous GLSDS ROM. Stability of GLS is given in 
Ref. [75] in the steady case. Coercivity is straightforward 
to demonstrate as GLS adds a symmetric non-negative 
term to the bilinear form. As GLSDS is equivalent to the 
steady case but with a modified source term, the analysis 
in Ref. [75] is directly applicable and results in the stabil-
ity statement 

(31)BG(�, �) ≥ C‖�‖2
G
,

‖�n
h
‖L2(Ω) ≤ ‖u0,h‖L2(Ω) + C

�
tn

�
max
t∈[0,T]

‖f (t)‖L2(Ω)

(32)BS(�, �) ≥ C‖�‖2
SUPG

,

(33)BS(�, �) ≥ C‖�‖2
GLS

,

 w h e r e 
‖�‖2GLS = �‖�‖2

L2 (Ω)
+ �‖∇�‖2

L2 (Ω)
+ �

∑Nel
k=1 ‖b ⋅ ∇� +

(

� + 1
Δt

)

� − �Δ�‖2
L2 (Ωk )

 . We 
note that GLSDS is stable for non-negative values of � . 
Like SUPG, the stability statement (33) maintains control 
over the gradient of the state in the streamwise direction 
in the limit � → 0 . Thus, GLS is stable and robust in the 
limit of � → 0 . We additionally note that ‖�‖2

GLS
 depends 

on the time step Δt . For very small time steps, the stabil-
ity statement (33) deteriorates. It is worth noting that 
some definitions of the � scale with Δt . The stability 
statement (33) is still not robust in this setting as all sta-
bilization terms drop other than the u∕Δt contribution, 
which provides no additional control over the gradient of 
the state. The stability of the continuous GLSDS ROM 
follows along the same lines as that for the continuous 
GLSDS FEM model.

•	 Continuous ADJDS ROM. Coercivity of the ADJ FEM 
model has been demonstrated for the steady convection 
diffusion reaction equation [48]. As ADJDS is equivalent 
to the steady case but with a modified forcing term, the 
stability statement presented in Ref. [48] applies. The 
stability statement is given as: for 0 ≤ � ≤ �

∗
ADJ

 , 

 where 
‖�‖2ADJ =

∑Nel
k=1

(

(

� + 1
Δt

)

�k‖�‖2L2 (Ωk )
+ ��k‖∇�‖2L2 (Ωk )

+ �‖b ⋅ ∇�‖2
L2 (Ωk )

)

 
with �k being a constant that depends on the mesh, 
parameters, and inverse estimates. We again observe 
more robust behavior in the limit of � → 0 as well as a 
dependence on the time step Δt . We again expect poor 
behavior in the limit of Δt → 0 as coercivity is dominated 
by the 1

Δt
 term. We further note the ADJDS ROM is subject 

to the same issues as the GLSDS ROM for the case where 
the stabilization constant scales with Δt . The stability of 
the continuous ADJDS ROM follows along the same lines 
as that for the continuous ADJDS FEM model.

•	 Continuous GLSST ROM. Coercivity of the GLSST 
FEM model was demonstrated in one of the original ref-
erences on GLS [75] by virtue of the formulation adding 
a symmetric term. We note that, here, we include the 
(
�
n − �

n−1
)
∕Δt term in the definition of our residual to 

retain consistency for the p = 0 DG trial space, and as a 
result the analysis in [75] does not directly extend to the 
current case.10 We also note that the space–time formula-
tion was advocated in the original reference [75].

•	 Continuous ADJST ROM. Coercivity of the ADJST 
FEM model applied to the unsteady convection–diffu-
sion–reaction equation has not been demonstrated to the 
best of our knowledge.

(34)BS(�, �) ≥ C‖�‖2
ADJ

,

10  We found that this term makes little difference in practice.
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6.2.2 � Discrete ROMs

We now consider stability of the various discrete ROMs dis-
cussed above. For the following analysis, we introduce the 
following notation for a generic discrete ROM as

where E ∈ ℝ
R×R is a “mass matrix” (e.g., E = �

TM� for the 
discrete Galerkin ROM of the Galerkin FEM), G ∈ ℝ

R×R is a 
“dynamics” matrix, fn ∈ ℝ

R is a forcing vector, and x̂n ∈ ℝ
R 

are the reduced coordinates. We define a stable discrete 
ROM as one whose “mass” matrix E is symmetric positive 
definite and whose dynamics matrix G is positive definite, 
i.e.,

We emphasize that this is analogous to coercivity in finite 
dimensional spaces since (35) ensures positive definiteness 
in any weighted �2 norm.

To proceed, it is first helpful to note that the continuous 
Galerkin FEM model (7) results in the system

where A = m
(
�i, b ⋅ ∇�j

)
 is the convection matrix, 

D = m
(
∇�i,∇�j

)
 the symmetric positive definite diffusion 

matrix, and M = m
(
�i, �j

)
 the symmetric positive defi-

nite mass matrix. We note that vTAv = 0 , vTDv > 0 , and 
vTMv > 0 ∀v ∈ ℝ

N⧵{0} . For notational simplicity, we 
define B = A + �D + �M.

•	 Discrete Galerkin ROM with W = I . As the discrete 
Galerkin ROM of the continuous Galerkin FEM model 
with W = I is equivalent to the continuous Galerkin 
ROM, stability is implied. It is further straightforward 
to show that vTBv > 0 ∀v ∈ ℝ

N⧵{0} at the discrete level 
directly. The Galerkin discrete ROM constructed from 
the Galerkin continuous ROM results in the dynamics 
matrix 

 It is straightforward to see that 

 where Dr = �
TD� . We note the above is simply the 

discrete equivalent to the inequality (31). We additionally 
note that �‖v‖2

Dr

+ �‖v‖2
Mr

 is the discrete statement of a 
weighted H1(Ω) norm that approaches a �-weighted dis-
crete L2(Ω) norm as � → 0.

E
x̂
n
− x̂

n−1

Δt
+Gx̂

n
= fn,

(35)vTGv > 0, ∀v ∈ ℝ
R ⧵ {0}.

M
an
h
− an−1

h

Δt
+ (A + �D + �M)an

h
= f,

GG = �
T (A + �D + �M)�.

vTGGv = 𝜖‖v‖2
Dr

+ 𝜎‖v‖2
Mr

> 0,

	   It is less straightforward to demonstrate that G is posi-
tive definite for the discrete Galerkin ROM constructed 
from a stabilized FEM model. However, as the discrete 
Galerkin ROM dynamics recover the continuous Galer-
kin ROM dynamics under the condition W ← I , these 
ROMs can be expected to obey the same stability proper-
ties as their continuous counterparts.

•	 Discrete LSPG ROMs. To the best of our knowledge, no 
result exists in the literature demonstrating stability of a 
discrete LSPG ROM constructed from a Galerkin FEM 
FOM in the sense of (35). Stability analyses for LSPG 
have been carried out in other contexts; for instance, 
Ref. [71] demonstrates that, for LTI systems, LSPG with 
orthonormal bases results in an asymptotically stable 
ROM if the underlying FOM is asymptotically stable.11

	   In the present context, one can show that a discrete 
LSPG ROM of the continuous Galerkin FEM model con-
structed in the inner product W ← M−1 results in a mass 
matrix E = �

TM� and a dynamics matrix 

 Since E = �
TM� is symmetric positive definite, the 

inequality vTBv > 0 ∀v ∈ ℝ
N⧵{0} holds for the continu-

ous Galerkin FEM, and vTBTM−1BvT > 0 ∀v ∈ ℝ
N ⧵ {0} 

due to BTM−1B being symmetric positive definite, stabil-
ity is implied.

	   From our analysis of the LSPG ROM applied to the 
Galerkin FEM model, it is straightforward to see that 
if the FOM has a symmetric positive definite mass 
matrix and a positive definite dynamics matrix, then the 
resulting LSPG ROM constructed in the inner product 
W = M−1 will be stable in the sense of (35).

•	 APG ROMs. The APG ROM is derived from a formu-
lation of the Mori–Zwanzig formalism, and a stability 
analysis has been undertaken for a model displaying a 
structural equivalence to APG in Ref. [65]. This analysis 
demonstrates that the so-called t-model (which is equiva-
lent to APG for � set to t) will be be dissipative when 
applied to a system that is energy conserving; this result 
directly implies a positive definite dynamics matrix. 
However, no result exists in the literature demonstrat-
ing stability of the APG ROM for systems that dissipate 
energy.

6.3 � Error Bounds

We now summarize existing numerical analyses that attempt 
to bound the ROM error for the CDR system. We note that 
a priori error bounds for POD-based methods are typically 

GLSPG = �
T
[
B + BT

]
� + Δt�TBTM−1B�.

11  No mass matrix was considered; it is known that treatment of the 
mass matrix can impact the performance of ROMs [6].



Residual‑Based Stabilized Reduced‑Order Models of the Transient Convection–Diffusion–Reaction…

limited to reproductive cases (unless some assumption is 
made on the solution manifold), while a posteriori error 
bounds are typically valid in both the reproductive and pre-
dictive regime.

6.3.1 � Continuous ROMs

•	 Continuous Galerkin ROMs. As a continuous Galerkin 
ROM arises from the Galerkin approximation of the CDR 
equation in a POD (or reduced-basis method (RBM) 
) subspace, its a priori error bound can be derived by 
leveraging the FEM error analysis for parabolic PDEs 
[161] together with the approximability properties of the 
POD [95] or RBM [67, 126] space. For example, error 
bounds for the POD-Galerkin ROM constructed using 
continuous projection were derived for parabolic linear 
systems and certain nonlinear systems by Kunisch and 
Volkwein in Ref. [95]. In a follow-up paper, the authors 
derived error bounds for equations pertaining to fluid 
dynamics [96], e.g., the two-dimensional incompress-
ible Navier–Stokes equations. New error bounds were 
proved by Singler [152], who derived exact expressions 
for the POD data approximation errors considering four 
different POD projections and two different Hilbert space 
error norms. Error bounds for the RBM-Galerkin ROM 
constructed using continuous projection were derived 
for parabolic problems in [56, 57, 64], the convergence 
of POD-Greedy algorithm was analyzed in [63], and 
sharper error bounds using space-time formulations were 
obtained in [164, 177]. We emphasize that these Galerkin 
ROM error bounds for parabolic PDEs grow with the 
inverse of the coercivity constant, which scales with � for 
the CDR system. Hence, there is no guarantee that the 
continuous Galerkin ROMs will provide an approxima-
tion comparable to the best-fit approximation in the limit 
of � → 0.

	   It is worth noting that error bounds and convergence 
analyses exist for ROMs built using continuous Galer-
kin projection for PDEs other than the CDR equation, 
e.g., hyperbolic equations. In [87], for example, Kalash-
nikova and Barone derived a priori error estimates for 
an energy-stability-preserving ROM formulation devel-
oped in [14] for linearized compressible flow. These error 
bounds were derived by adapting techniques traditionally 
used in the numerical analysis of spectral approximations 
to PDEs [51] and employed a carefully constructed sta-
ble penalty-like implementation of the relevant boundary 
conditions in the ROM.

•	 Continuous SUPG ROMs. Error analysis of the SUPG 
ROM was undertaken recently in Ref. [82], where it was 
demonstrated that the SUPG ROM could be equipped 
with robust error estimates that do not deteriorate as 
� → 0 . These estimates bound the error between the 

SUPG ROM solution and a corresponding SUPG FEM 
solution. To obtain Δt-independent error bounds, the 
authors employed POD snapshots that included the time-
difference quotients [92, 95]; without these coefficients 
the resulting error bounds depend on Δt . In numerical 
experiments, however, it was observed that including 
the time-difference quotients did not lead to improved 
results, and thus the authors believe an important open 
question is the derivation of Δt-independent bounds 
for the case where the time-difference quotients are not 
included in the bases. Lastly, we note that Ref. [82] sup-
ports previous analysis of the SUPG ROM in [52].

•	 Other stabilized ROMs. To the best of our knowledge, 
no error analysis exists for the other stabilized ROMs 
considered here. We do note that error analyses have 
been done for the corresponding FEM formulations. We 
also note that error analysis exists for stabilized ROMs 
that are not residual-based, such as those outlined in 
Appendix 1 (see, e.g., Refs. [8, 21, 46, 78, 79, 129, 134, 
141, 176]).

6.3.2 � Discrete ROMs

•	 Discrete Galerkin ROM. Due to the equivalence 
between a discrete Galerkin ROM and its continuous 
counterpart, the error bounds derived for the continuous 
Galerkin ROM are applicable to the discrete Galerkin 
ROM constructed on top of their corresponding contin-
uous FEM system. Various authors have derived error 
bounds for the discrete Galerkin ROM in a more generic 
context. In Ref. [128], error bounds are derived for the 
discrete Galerkin ROM within the context of a linear and 
nonlinear dynamical system ẋ = f (x) . Analogously, Ref. 
[29] derives error bounds for the discrete Galerkin ROM 
for O Δ Es arriving from linear multistep and Runge–
Kutta time discretizations of ẋ = f (x) . In the general 
nonlinear case, these error bounds depend on difficult-
to-compute Lipschitz constants, grow exponentially in 
time, and lack sharpness. No error analysis of the discrete 
Galerkin ROM specialized to the CDR system exists to 
the best of our knowledge.

•	 LSPG ROMs. A priori and a posteriori upper error 
bounds for LSPG ROMs applied to generic time-discrete 
nonlinear dynamical systems are derived in Ref. [29]. 
These error bounds rely on the assumption of Lipschitz 
continuity of the nonlinear right-hand side velocity oper-
ator, which can be related to coercivity in the linear set-
ting. The bounds demonstrate that the upper error bound 
of the LSPG ROM grows exponentially with the number 
of time steps, and that this upper error bound can be 
bounded by the maximum residual over a given time step. 
Further, [29] shows that LSPG can be equipped with an 
a posteriori upper error bound lower than the Galerkin 
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ROM. The bounds presented in Ref. [29] are derived for 
the case where there is no mass matrix, and sharpness of 
the bounds is not addressed (thus, LSPG having a lower 
“upper bound” than Galerkin is not a robust statement 
of accuracy). Again, no error analysis of LSPG ROMs 
specialized to the CDR system exists to the best of our 
knowledge.

•	 APG ROMs. Ref. [121] derives a priori error bounds for 
the APG ROM for nonlinear dynamical systems and lin-
ear time-invariant dynamical systems. In the linear case, 
it is shown that, for sufficiently small � , the upper bound 
on the error in the APG ROM is lower than in the Galer-
kin ROM. Similar to LSPG, however, the bounds are 
presented for the case where there is no mass matrix and 
sharpness is additionally not addressed (again, APG hav-
ing a lower “upper bound” than Galerkin is not a robust 
statement of accuracy). Once again, no error analysis of 
APG ROMs specialized to the CDR system exists to the 
best of our knowledge.

6.4 � Selection and Scaling of the Stabilization 
Parameter, �

Lastly, we comment on analyses for selecting the ROM sta-
bilization parameter. In standard FEM, numerical analysis 
arguments are generally used to determine the scaling of the 
stabilization parameter, � , in residual-based stabilizations 
(see, e.g., the survey in [135]). The general approach used 
to determine the � scaling is to (i) prove error bounds for the 
stabilized method, and (ii) choose a � scaling with respect to 
the discretization parameters (e.g., the mesh size h and the 
time step Δt ) that ensures an optimal error bound.

For residual-based ROM stabilizations, one heuristic 
approach for choosing the stabilization parameter, � , is to 
use the same value as that used in the standard FEM (see, 
e.g., equation (13) in [118], equation (20) in [94], and equa-
tion (10) in [111]). We note that this approach is purely heu-
ristic and does not use the numerical analysis arguments 

generally employed for standard FEM residual-based stabi-
lized methods [135].

A fundamentally different approach, which utilizes numerical 
analysis arguments to determine the � scaling, was proposed in 
[52] for the SUPG-ROM. As explained in Section 3.5.1 in [52] 
(see also Sect. 4.3 of the present paper), since the ROM space is 
a subspace of the FEM space, two types of inverse estimates can 
be used to prove optimal error estimates for the SUPG-ROM: (i) 
a FEM inverse estimate, which yields the standard FEM scal-
ing in which � depends on the FEM mesh size, and (ii) a ROM 
inverse estimate [95], which yields a new ROM scaling in which 
� depends on the ROM parameters (e.g., the ROM dimension, 
the POD basis functions, and the corresponding eigenvalues). 
The preliminary numerical investigation in [52] suggests that the 
FEM � scaling yields more accurate results for large R values, 
but the ROM � scaling is competitive for low R values. Fur-
ther theoretical and numerical investigation is needed in order 
to determine optimal � scalings for residual-based stabilized 
ROMs.

7 � Numerical Experiments

7.1 � Overview

We now present several studies to numerically assess the 
various ROM formulations for the CDR equation (1). 
We first provide specifics on the setup of the numerical 
experiments.

Table 1   Summary of 
continuous ROMs investigated

Gal. SUPG GLSDS ADJDS GLSST ADJST

ROM O ΔE Eq. (20) Eq. (22) Eq. (22) Eq. (22) Eq. (22) Eq. (22)
Conditions N/A Q = QDS−SUPG Q = QDS−GLS Q = QDS−ADJ Q = QST−GLS Q = QST−ADJ

Table 2   Summary of LSPG 
ROMs investigated

G–LSPG SUPG–LSPG GLSDS–LSPG ADJDS–LSPG GLSST–LSPG ADJST–LSPG

ROM O ΔE Eq. (25) Eq. (25) Eq. (25) Eq. (25) Eq. (25) Eq. (25)
FOM O ΔE Eq. (7) Eq. (15) Eq. (15) Eq. (15) Eq. (15) Eq. (15)
Conditions N/A Q = QDS−SUPG Q = QDS−GLS Q = QDS−ADJ Q = QST−GLS Q = QST−ADJ

Inner product W = M
−1

W = M
−1

W = M
−1

W = M
−1

W = M
−1

W = M
−1

Table 3   Summary of APG ROMs investigated

G–APG SUPG–APG GLSST–APG ADJST–APG

ROM O ΔE Eq. (27) Eq. (28) Eq. (28) Eq. (28)
FOM O ΔE Eq. (7) Eq. (15) Eq. (15) Eq. (15)
Conditions N/A Q = QDS−SUPG Q = QST−GLS Q = QST−ADJ

Inner prod-
uct

W = I W = I W = I W = I
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7.1.1 � Investigated ROMs and Implementation Details

Table 1 details the continuous ROMs we investigate, while 
Tables 2 and 3 detail the LSPG and APG ROMs investi-
gated. For continuous ROMs, we investigate the Galerkin, 
SUPG, ADJ, and GLS ROMs, as detailed in Sect. 4.2. For 
ADJ and GLS, we investigate formulations developed both 
through the “discretize-then-stabilize” approach (DS) and 
the “space–time” approach (ST), as discussed in Sect. 3.2. 
For discrete ROMs, we examine (1) LSPG ROMs based 
on the Galerkin FEM, SUPG FEM, ADJDS FEM, ADJST 
FEM, GLSDS FEM, and GLSST FEM, and (2) APG ROMs 
based on the Galerkin FEM, SUPG FEM, GLSST FEM, 
and ADJST FEM. In what follows, we will abbreviate these 
discrete ROM formulations as “FEM type–discrete ROM 
type”, e.g., “SUPG–LSPG” denotes an LSPG ROM of the 
SUPG FEM. All in all, we consider 16 ROM formulations. 
All ROMs employ the implicit Euler method for temporal 
discretization. The numerical experiments are carried out in 
the FEniCS package [5, 104–106]. We emphasize that sta-
bilization is carried out both at the FEM level and the ROM 
level; this will be detailed in subsequent sections. Lastly, 
we additionally note that all experiments will focus only on 
reproductive ROMs.

7.1.2 � Metrics

We use as metrics the (discrete) time-integrated relative 
L2(Ω) error and the (discrete) time-integrated relative H1(Ω) 
error between the ROM solution and best-fit solution (i.e., 
the error between the ROM solution and the FOM solution 
projected onto the trial space). The time-integrated L2(Ω) 
relative error is defined as

where ℙL2(V) is the orthogonal L2(Ω) projector onto V . For 
ROMs, we measure the eL2

(
Vr

)
 error, which measures the 

error between the ROM solution and the FOM solution pro-
jected onto the ROM trial space. For FEM solutions, we 
similarly measure the eL2

(
Vh

)
 error. Analogously, the rela-

tive H1(Ω) error is defined as

where | ⋅ |H1(Ω) is the H1(Ω) semi-norm and ℙH
1 (V) is the 

orthogonal projector onto V in the H1(Ω) semi-norm. We 
note that, in our studies, we execute the ROMs for varying 

(36)eL2 (V) =

∑Nt

n=1
‖�n

r
− ℙL2(V)�

n
∗
‖2
L2(Ω)

∑Nt

n=1
‖ℙL2(V)�

n
∗
‖2
L2(Ω)

,

(37)eH1(V) =

∑Nt

n=1
��n

r
− ℙH

1(V)�n
∗
�2
H

1(Ω)

∑Nt

n=1
�ℙH

1(V)�n
∗
�2
H

1(Ω)

,

time step sizes,12 and as a result the ROM is executed on a 
different time grid than the high resolution FOM solution. 
We design our studies such that the ratio of the ROM time 
step to the high resolution time step is always a positive 
integer. The summations in Eqs. (36) and (37) are then per-
formed on the coarser ROM time grid.

7.1.3 � Construction of ROM Trial Space

To construct the ROM basis functions, we use the following 
two criteria: 

1.	 We consider a realistic setting for convection-dominated 
problems. To this end, we use an under-resolved FOM 
trial space, just as in the numerical simulation of realis-
tic, convection-dominated (e.g., turbulent) flows.

2.	 We ensure fairness of the numerical comparison. Specif-
ically, we require all the stabilized ROMs use the same 
ROM basis, which is generated without using stabiliza-
tion.

To satisfy the first criterion (i.e., a realistic, under-resolved 
regime), we examine cases where the underlying FEM 
requires stabilization (this is the relevant case for real-world 
applications), and, as such, examine the scenario where 
the FEM trial space is under-resolved such that our FEM 
requires stabilization to be accurate. The natural approach 
to generate the ROM trial space in this setting is to (i) solve 
a FOM, which comprises a stabilized FEM model, and 
(ii) leverage the solution data to construct the ROM trial 
space. The ROM is then executed with the same stabilized 
form used to generate the snapshots; this is the so-called 
“offline–online stabilization strategy” outlined in Ref. [4] 
(see also [158]), which comprises a form of model consist-
ency. This procedure, unfortunately, makes it difficult to 
ensure a fair comparison of the performance of different 
ROM stabilization techniques (i.e., to satisfy the second cri-
terion listed above). For example, if we generated the FOM 
solution with SUPG, then comparing SUPG ROM solutions 
to LSPG ROM solutions becomes unfair. As a result, we are 
not using this approach to construct the ROM basis for the 
stabilized ROMs used in our numerical investigation.

To circumvent this issue, we generate the ROM trial 
spaces by projecting “truth data” onto a FOM trial space. 
As the problems we analyze in this section do not have ana-
lytical solutions, we generate the truth data via a high fidelity 
Galerkin FEM model that uses a high resolution trial space 
[Vh]h−res . We generate ROM bases by projecting this truth 
data onto the (lower-dimensional) FOM trial space [Vh]fom in 
the L2(Ω) sense and, e.g., performing an SVD. We empha-
size that the high-fidelity Galerkin FEM model and the high 
resolution FEM trial space are used only for generating ref-
erence solutions and snapshots. At a high level, one may 12  This is done because the time step size impacts the stabilization.
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think of this approach of constructing the ROM basis as the 
setting where the truth data comes from experimental meas-
urements. We also note that a consequence of this approach 
is that none of our ROMs will be consistent with the high 
fidelity Galerkin FEM model that generated the truth data, 
meaning that adding ROM basis vectors will not necessarily 
result in a more accurate solution.

We emphasize that our strategy of generating the ROM 
basis, which is outlined in Algorithm 1 and depicted in 
Fig. 3, satisfies both criteria outlined at the beginning of this 
section. Specifically, the first criterion is satisfied since the 
snapshots are obtained from a realistic, under-resolved rep-
resentation of the truth, i.e., a high-resolution solution that is 
projected onto an under-resolved FOM trial space. The sec-
ond criterion is satisfied since all the stabilized ROMs use 
the same ROM basis. Furthermore, no stabilization method 
is used to generate snapshots used for basis construction, 
and, thus, none of the stabilized ROMs can claim an unfair 
advantage over the others. Thus, our strategy of generating 
the ROM basis ensures both a realistic and fair comparison 
of the stabilized ROMs.

Algorithm 1   Algorithm for generating high fidelity solutions and the ROM trial space

7.1.4 � Selection of Stabilization Parameters and Time Step

In addition to depending on the choice of inner product, 
all stabilized methods considered depend on the stabiliza-
tion parameter � , the time step Δt , or both. As discussed 
earlier, the a priori selection of � is an area that is receiv-
ing attention in both the FEM and ROM communities [52, 
70], and is still an outstanding issue for ROMs in particular. 
Further, while Δt is a discretization parameter, it impacts 
certain types of stabilization schemes because it shows up 
in the stabilization operator. Here we perform a grid sweep 
to explore this sensitivity. The grid sweep is obtained by 
executing ROM solves for (�,Δt) ∈ � × �t , where 

� = Δt = {10−4, 2.5 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 3 × 10−3,

4 × 10−3, 5 × 10−3, 6 × 10−3, 7 × 10−3, 8 × 10−3,

9 × 10−3, 10−2, 1.5 × 10−2, 2 × 10−2, 2.5 × 10−2,

3 × 10−2, 4 × 10−2, 5 × 10−2, 6 × 10−2, 8 × 10−2, 10−1,

2 × 10−1,×10−1, 4 × 10−1, 5 × 10−1

Fig. 3   Schematic depicting 
workflow for basis and ROM 
construction
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. We note that the SUPG–APG, GLSST–APG, and ADJST
–APG ROMs depend upon both the APG stabiliza-
tion parameter and the FEM stabilization parameter. As 
will be seen, these methods are well-behaved in the low 
time-step limit and as such we execute these methods for 
�APG, � ∈ � × � with a fixed time step Δt = 10−3 equal to the 
FOM time step. As will be detailed in the following section, 
we note that all ROMs and FOMs will be performed on the 
same spatial grid.

7.2 � Example 1: Boundary Layer

The first numerical experiment we consider is a tran-
sient version of the setup used by Codina in [39]. We 
solve Eq.  (1) with a final time T = 5 and a physical 
domain x ∈ Ω = (0, 1) × (0, 1) . We take the parame-
ters to be a slightly modified version of those used in by 
Codina in [39], where we set � = 10−3 , f = 1 , � = 1 , and 
b =

1

2

[
cos(�∕3) sin(�∕3)

]T  . The high-resolution trial 
space [Vh]h−res is obtained via a uniform triangulation of Ω 
into Nel = 2 × 1282 elements equipped with a C0(Ω) con-
tinuous discretization with polynomials of order p = 2 . 
The grid Peclet number is Peh = 1.953125 , where we used 
h = (128p)−1 . Analogously, the FOM trial space [Vh]fom 
is obtained via a uniform triangulation of Ω based on 32 
nodes in each direction into Nel = 2048 elements equipped 
with a C0(Ω) continuous discretization with polynomials of 
order p = 2 . The grid Peclet number is Peh = 7.8125 , where 
we used h = (32p)−1 . In both cases, the triangulations are 
obtained via a partition of Ω into uniform square cells. The 
triangles are then cut from bottom-left to top-right of each 
cell. The Galerkin method equipped with the high-resolution 
trial space is mesh-converged and accurate. The Galerkin 
method equipped with the FOM trial space yields inaccurate 
solutions; this error will be quantified later in this section 
and we consider this case as this is representative of practical 
problems. Lastly, the ROM trial space is obtained by execut-
ing Algorithm 1. Figure 4 presents the residual statistical 
energy as a function of basis dimension, where it is seen 
that the first five basis vectors capture over 99.999% of the 
statistical energy (in L2(Ω)).

7.2.1 � Coarse‑Grid FEM Results

We first present results of the various FEMs considered 
and re-emphasize that (1) these FEMs are executed on a 
coarse trial space such that the they require stabilization to 
be accurate and (2) the data from these FEMs are not used 
to construct the ROM trial subspace; instead, we employ 
high-fidelity data as described in Sect. 7.1.3. We present 
the FEM solutions to quantify the underlying FEM error 
of a given method on this coarse mesh. We re-emphasize 

that we examine the case where the FEM requires stabiliza-
tion as this is representative of practical problems. Figure 5 
presents the various FEM solutions at the final time, t = 5 , 
while Table 4 tabulates the solution errors and stabilization 
parameters employed in the simulations; these parameters 
were selected by executing the FEMs on the � × �t grid 
described above and extracting solutions with the lowest 
L2(Ω) error. The errors reported in Table 4 measure the 
(time integrated) difference between the FEM solutions and 
the “truth” solution projected onto the FEM trial space, as 
described in Sect. 7.1.2. We observe the following:

•	 The Galerkin, GLSDS , and ADJDS FEMs are the worst 
performing methods, and all result in solutions with large 
oscillations at the boundary.

•	 The SUPG, GLSST , and ADJST FEM provide the best 
solutions. These methods result in solution errors that 
are approximately an order of magnitude better than the 
Galerkin FEM and provide qualitatively accurate solu-
tions.

•	 The “space–time” GLSST and ADJST FEMs perform 
much better than the “discretize-then-stabilize” GLSDS 
and ADJDS FEMs.

7.2.2 � Reduced‑Order Model Results as a Function of Basis 
Dimension

We next examine the performance of the various ROMs as 
the dimension of the ROM basis is varied for 1 ≤ R ≤ 20 . 
For each basis dimension, we present results for optimal ( � , 
Δt ) as measured by the L2(Ω) error. Figure 6 shows the con-
vergence of the L2(Ω)-error and H1(Ω)-error as a function of 
RB size, while Fig. 7 shows the corresponding optimal sta-
bilization parameters and time steps. We emphasize that the 
measured error is defined as the discretely time-integrated 
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Fig. 4   Example 1, boundary layer. Residual statistical energy as a 
function of basis dimension
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error between the ROM solution and the FOM solution pro-
jected onto the ROM trial space, as described in Sect. 7.1.2. 
We make the following observations about the accuracy of 
the various ROMs.

•	 No method results in a monotonic decrease in error in 
both the L2(Ω) and H1(Ω) norms. This is, in part, a result 
of the fact that the ROMs are not consistent with the 
high resolution reference solution (see the discussion in 
Sect. 7.1.3).

•	 The Galerkin ROM performs poorly for all basis dimen-
sions.

•	 SUPG–APG, ADJST–APG, GLSST , and SUPG–LSPG are 
the best performing ROMs.

•	 GLSST and ADJST are consistently more accurate than 
SUPG.

•	 The “discretize-then-stabilize” ROMs outperform the 
Galerkin ROM, but are consistently worse than their 
space–time counterparts.

•	 LSPG ROMs outperform their continuous counterparts 
in all cases.

•	 APG ROMs outperform their continuous counterparts in 
all cases except for GLSST–APG.

•	 It is interesting to note that the G–APG and G–LSPG 
ROMs perform significantly better than the standard 
Galerkin ROM for large number of bases, even though 
these two methods formally converge to the Galerkin 
ROM in the limit of a full basis.

•	 While not always the case, a decrease in error in the 
L2(Ω) norm, in general, corresponds to a decrease in 
error in the H1(Ω) semi-norm.

•	 Comparing Fig. 6 to Table 4, it is interesting to observe 
that, while the same trends are observed, some ROMs 
are more accurate than their corresponding FEM models. 
This is again likely a result of the inconsistency between 
the ROMs and the high-resolution reference solution.

Examining Fig. 7, we make the following observations about 
the behavior of the stabilization parameters of the various 
ROMs.

•	 The optimal stabilization parameters for the SUPG, 
ADJST , GLSST , and APG ROMs are more or less constant 
for all reduced basis dimensions (with the exception of a 
few APG solutions at very small basis dimensions).

•	 The GLSDS , ADJDS , and LSPG-based ROMs are optimal 
for time step sizes larger than the FOM. In particular, the 
optimal time step for almost all LSPG ROMs occurs at 
an intermediate time step. This is well documented in the 
literature [29].

•	 It is difficult to decipher any pattern in the optimal stabili-
zation parameters for the LSPG-based ROMs. We expect 
that this is, in part, due to the complex interplay between 

the dependence of the time-step and stabilization param-
eters on the LSPG ROM performance.

Next, Fig. 8 presents solution profiles for the various 
ROMs at a reduced basis dimension of R = 5 , which cor-
responds to an energy criterion of �c = 0.99999 , and at opti-
mal values of � and Δt (and �APG ) for APG ROMs) for the 
final time instance, t = 5 . We observe that the projected truth 
solution displays a small oscillation at the boundary. This 
oscillation is a result of the FOM trial space [Vh]fom being 
unable to fully resolve the boundary layer. Next, we see that 
the Galerkin ROM results in inaccurate solutions with large-
scale oscillations. All stabilized ROMs are qualitatively 
accurate with minimal variation between their solutions.

7.2.3 � Sensitivity to Time Step and Stabilization Parameters

The performance of the stabilized methods can depend 
on both the stabilization parameter � and the time step Δt 
(and, for APG, the APG stabilization parameter �APG ). To 
quantify this sensitivity, Fig. 9 presents results for the con-
tinuous and LSPG ROM solutions obtained on the param-
eter grid (�,Δt) ∈ � × �t . Figure 10 presents results for 
the G–APG ROM solution obtained on the parameter grid 
(�APG,Δt) ∈ � × �t and the remaining APG ROM solutions 
(which depend on three parameters, Δt, �, and �APG ) obtained 
on the parameter grid (�, �APG) ∈ � × � with a fixed time step 
Δt = 10−3 . All ROM results are shown for a reduced basis 
dimension R = 5 . As a reference, Fig. 11 shows the same 
results, but for full-order finite element simulations executed 
on the FOM trial space. We observe the following.

•	 In the limit that � → 0 (or Δt → 0 for LSPG), all ROMs 
converge to the standard G-ROM with the exception of 
ADJDS . This ROM displays poor behavior in the low 
time-step limit when � ≈ Δt.

•	 The SUPG (Fig. 9b), GLSST (Fig. 9e), ADJST (Fig. 9f), 
and G–APG (Fig.  10a) ROMs again all display a 
similar dependence on the time step and stabilization 
parameter. Optimal results are obtained for an interme-
diate value of � , and the solutions all converge in the 
limit of Δt → 0.

•	 All LSPG ROMs (Fig. 9g-9f) yield optimal results at an 
intermediate time step, and are thus not robust in the low 
time-step limit [29].

•	 Errors in the GLSDS(Fig. 9c) and ADJDS (Fig. 9d) ROMs 
start to increase once the time step becomes small 
enough, and thus these ROMs are not robust in the low 
time-step limit.

•	 The Galerkin (Fig. 9a), SUPG (Fig. 9b), GLSST(Fig. 9e), 
and ADJST (Fig. 9f) ROMs display a similar dependence 
to the stabilization parameter and time step as their cor-
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responding FOMs (Fig. 11a–9f). The behaviors of the 
GLSDS and ADJDS ROMs display some qualitative simi-
larities with their corresponding FEM solutions, but in 
general are different.

•	 For APG ROMs built on top of a stabilized FEM model 
(Figs. 10b-10d), optimal results are obtained for either 
an intermediate value of �APG and low value of � , or vice 
versa. It is interesting to note that the solutions are almost 

Fig. 5   Example 1, boundary 
layer. FEM solutions to the 
CDR equation at t = 5 . Note 
that Fig. 5a shows the high-res-
olution FEM solution projected 
onto the medium resolution 
FOM trial space
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(e) ADJDS
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(f) GLSST
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symmetric with respect to these two parameters. In addi-
tion, we see regions of instability for high values of �APG.

7.3 � Example 2: Advecting Front

The second numerical experiment we consider examines the 
CDR equation in a setting that yields an advecting front. 
ROMs of this problem require more basis vectors to accu-
rately characterize the system and it is easier to examine the 
regime where the ROM itself is under-resolved.

Table 4   Example 1, boundary 
layer. Time integrated (relative) 
L
2(Ω) and H1(Ω) errors of 

various FEMs presented 
in Fig. 5, along with the 
stabilization parameters at 
which the FEMs were executed

Galerkin SUPG GLSDS ADJDS GLSST ADJST

e
L
2 ([Vh

]
fom

) 1.83 × 10−3 2.11 × 10−4 1.69 × 10−3 2.09 × 10−3 4.34 × 10−4 2.38 × 10−4

eH1 ([V
h
]
fom

) 1.56 × 10−3 1.62 × 10−4 1.48 × 10−3 1.61 × 10−3 3.52 × 10−4 2.04 × 10−4

� N/A 1.00 × 10−2 1.00 × 10−4 1.00 × 10−4 1.00 × 10−2 1.00 × 10−2

Δt 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3
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SUPG
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Fig. 6   Example 1, boundary layer. L2(Ω) (top) and H1(Ω) (bottom) 
error as a function of ROM basis dimension for the various ROMs 

evaluated. We note that the left and right figures show the same quan-
tities, but with different visualization techniques. Results are shown 
for optimal values of t, � , as discussed in Sect. 7.1.4
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7.3.1 � Description of Problem Setup, Full‑Order Model, 
and Generation of Trial Spaces

We solve Eq.  (1) with a final time T = 2 and a spatial 
domain Ω = (0, 1) × (0, 1) . We take � = 10−4 , � = 1 , 
and b =

1

2

[
cos(�∕3) sin(�∕3)

]T  . The Peclet number is 
Pe ∶= ||b||2∕� = 5000 . The forcing is set as

The high-resolution trial space [Vh]h−res is obtained via a 
uniform triangulation of Ω into Nel = 2 × 2562 elements 
equipped with a C0(Ω) continuous discretization with 
polynomials of order p = 2 . The grid Peclet number is 
Peg = 9.77 , where we used h = (256p)−1 . Analogously, the 

f =

{
1 0 ≤ x ≤ 0.5 and 0 ≤ y ≤ 0.25

0 x > 0.5 and y > 0.25.

FOM trial space [Vh]fom is obtained via a uniform triangula-
tion of Ω into Nel = 2 × 322 elements equipped with a C0(Ω) 
continuous discretization with polynomials of order p = 2 . 
The grid Peclet number is Peg = 78.125 , where we used 
h = (32p)−1 . The triangulations are obtained in the same 
manner as in the previous experiment. The ROM trial space 
is obtained by executing Algorithm 1; Fig. 12 presents the 
residual statistical energy as a function of basis dimension. 
More basis vectors are required to characterize the system 
as compared to the previous example.

7.3.2 � Full‑Order Model Results

We again first present results of the various FOMs consid-
ered (again for optimal stabilization parameters and time 
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Fig. 7   Example 1, boundary layer. Optimal stabilization parameter 
(top) and time step (bottom) as a function of ROM basis dimension 
for the various ROMs evaluated. We note that the left and right fig-

ures show the same quantities, but with different visualization tech-
niques. Results are shown for optimal values of t, � , as discussed in 
Sect. 7.1.4
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(a) H-Res (L2(Ω) best fit)
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(b) H-Res (H1(Ω) best fit)
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(q) GLSST–APG
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Fig. 8   Example 1, boundary layer. ROM solutions to the CDR equation at t = 5 . Results are shown for solutions obtained with R = 5 and with 
the optimal time step and stabilization parameter as measured by the L2(Ω)-error
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steps). Figure 13 presents the various FOM solutions at the 
final time, t = 2 , while Table 5 tabulates the solution errors 
and stabilization parameters employed in the simulations. 
We observe the following.

•	 The Galerkin, ADJDS , and GLSDS FEM FOMs are the 
worst performing methods and all result in oscillatory 
solutions.

•	 SUPG, GLSST , and ADJST all provide solutions of a simi-
lar qualitative and quantitative quality, and are all able 
to suppress the oscillations seen in the Galerkin FEM 
solution.

•	 The “space–time” GLSST and ADJST FEMs again per-
form much better than the “discretize-then-stabilize” 
GLSDS and ADJDS FEM FOMs.
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(j) ADJDS–LSPG
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(k) GLSST–LSPG
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Fig. 9   Example 1, boundary layer. Time integrated L2(Ω) best-fit 
error as a function of time step and stabilization parameter for the 

various ROMs evaluated. Note that Galerkin and LSPG display no 
dependence on the stabilization parameter. White regions indicate 
regions where the solution diverged to NaN
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These results are similar to those obtained for example 1 
(Sect. 7.2.1).

7.3.3 � Results as a Function of RB Dimension

Figure 14 shows the time integrated relativeL2(Ω) error 
and H1(Ω) error for each of the ROMs considered as a 
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(a) G–APG
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(d) ADJST–APG

Fig. 10   Example 1, boundary layer. Time integrated L2(Ω) error as a function of time step and stabilization parameter for the APG ROMs evalu-
ated. White regions indicate regions where the solution diverged to NaN
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(b) SUPG FEM
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(c) GLSDS FEM
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(d) ADJDS FEM
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(e) GLSST FEM

10−4 10−3 10−2 10−1

∆t

10−4

10−3

10−2

10−1

τ

−4.592

−4.082

−3.571

−3.061

−2.551

−2.041

−1.531

−1.020

−0.510

0.000

lo
g 1

0(
e L

2 )

(f) ADJST FEM

Fig. 11   Example 1, boundary layer. Time integrated L2(Ω) error as 
a function of time step and stabilization parameter for various FEM 
models. Results are shown for full-order FEM solutions executed on 

the FOM trial space. White regions indicate regions where the solu-
tion diverged to NaN



Residual‑Based Stabilized Reduced‑Order Models of the Transient Convection–Diffusion–Reaction…

function of RB size. Results are presented for the value of 
� and Δt that led to the lowest L2(Ω) error; Fig. 15 shows 
these optimal stabilization parameters and time steps for 
each basis dimension.

Examining Fig. 14, we make the following observations 
about the accuracy of the various ROMs.

•	 The APG-based, SUPG, ADJST , and GLSST ROMs are 
the best overall performing methods.

•	 The “discretize-then-stabilize” ROMs outperform the 
Galerkin ROM, but are consistently worse than their 
space–time stabilized counterparts for all ROM dimen-
sions. In general, even when equipped with LSPG, the 
discretize-then-stabilize methods perform quite poorly.

•	 When applied to the standard Galerkin and GLSDS FEM 
models, LSPG leads to slightly improved solutions. 
LSPG does not lead to improved solutions for SUPG, 
GLSST , or ADJST.

•	 It is again interesting to note the improved performance 
of G–APG over the standard Galerkin method at high 
reduced basis dimensions, given that G–APG will 
converge to the Galerkin method in the limit of a full 
reduced basis. The improved performance is also seen 
for G–LSPG, but to a lesser extent.

•	 Once again, while not always the case, a decrease in 
error in the L2(Ω) norm generally corresponds to a 
decrease in error in the H1(Ω) norm.

•	 Comparing Fig. 14 to Table 5, we again observe that 
some ROMs are more accurate than their correspond-
ing FEM.

Examining Fig. 15, where we show the optimal stabiliza-
tion parameters and time steps associated with Fig. 14, we 
make the following observations about the behavior of the 
stabilization parameters of the various ROMs.

•	 The optimal stabilization parameters for the SUPG, 
ADJST , GLSST , and APG ROMs decrease as R grows 
(Fig. 15a). This result is consistent with analyses per-
formed for SUPG ROMs in [52] and APG ROMs in 
[121], which suggest that the optimal stabilization 
parameter decreases with increasing ROM dimension; 
we refer the reader to the discussion in Sect. 4.3 regard-
ing the scaling of the stabilization parameter with the 
mesh size and ROM size.

•	 The optimal stabilization parameter for GLSDS is quite 
high for all ROM dimensions.

•	 The optimal time step for all LSPG ROMs occurs at an 
intermediate time step larger than the FEM FOM.

•	 Interestingly, the optimal time step for G–LSPG is the 
same as the optimal time step for GLSDS.

•	 The reader may observe that the optimal time step for 
SUPG, GLSST , and ADJDS decreases for moderately 

high ROM dimensions; we note that this improvement 
is very minor as will be seen in Fig. 17.

Next, Fig. 16 presents physical space solution profiles for 
the various ROMs for a reduced basis dimension of R = 5 at 
the final time instance, t = 2.0 . We observe that all methods 
yield qualitatively accurate solutions with the exception of 
Galerkin, G–LSPG, and GLSDS ; these three methods under-
predict the magnitude of the solution in the lower-left quad-
rant of the domain ( x1, x2 ≤ 0.4 ). It is interesting to note that, 
although Fig. 14 showed that ADJDS and the non-Galerkin 
LSPG ROMs clearly perform less well than the other formu-
lations, Fig. 16 shows that their physical space solutions still 
show a significant improvement over the standard Galerkin 
ROM. We additionally note that even the best performing 
methods are unable to fully capture the peak in the solution 
in the lower-left quadrant of the domain. The ROM solutions 
may appear overly dissipative relative to the L2(Ω)/H1(Ω) 
best fit solutions, and hence one may deduce that a smaller 
value of � may improve the solution. However, we recall that 
all stabilized ROM methods use the � optimized to minimize 
the error, and hence the lack of sharpness is due to adding 
non-optimal kind (i.e., mode) of dissipation, and it cannot be 
corrected by adjusting the amount (i.e., scale) of dissipation.

7.3.4 � Sensitivity to Time Step and Stabilization Parameters

We now quantify the sensitivity of the various methods to 
their stabilization parameters and the time step. Figure 17 
presents results for the continuous and LSPG ROM solutions 
obtained at R = 5 on the parameter grid (�,Δt) ∈ � × �t , 
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Fig. 12   Example 2, advecting front. Residual statistical energy as a 
function of basis dimension
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while Fig. 18 presents results for the G–APG ROM solutions 
obtained at R = 5 on the parameter grid (�APG,Δt) ∈ � × �t 
and the remaining APG ROM solutions (which depend 
on three parameters, Δt, �, and �APG ) obtained at R = 5 on 
the parameter grid (�, �APG) ∈ � × � with a fixed time step 
Δt = 10−3 . As a reference, Fig. 19 shows the same sensitivi-
ties but for full-order FEM simulations executed on the FOM 
trial space. We make the following observations.

•	 The SUPG (Fig.  17b), GLSST (Fig.  17e), ADJST 
(Fig. 17f), and G–APG (Fig. 18g) ROMs again all dis-

play a dependence on the time step and stabilization 
parameter that is similar to the first example. Optimal 
results are obtained for an intermediate value of � , and 
the solutions all converge in the limit of Δt → 0.

•	 G–LSPG (Fig. 17g), which contains no dependence on 
� , yields optimal results at an intermediate time step.

•	 For sufficiently large � , the dependence of GLSDS 
(Fig. 17c) on the time step is similar to that of LSPG 
(Fig. 17g).

•	 Neither GLSDS nor ADJDS ROMs have optimal results at 
the minimum time step, suggesting that these methods 
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(e) ADJDS
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(g) ADJST

Fig. 13   Example 2, advecting front. FOM solutions to the CDR equation at t = 5

Table 5   Example 2, advecting front. Integrated (relative) L2(Ω) and H1(Ω) errors of various FOMs presented in Fig. 13, along with the stabiliza-
tion parameters at which the FOMs were executed

Galerkin SUPG GLSDS ADJDS GLSST ADJST

e
L
2 ([Vh

]
fom

) 2.76 × 10−2 6.62 × 10−3 2.24 × 10−2 2.19 × 10−2 6.66 × 10−3 6.59 × 10−3

eH1 ([V
h
]
fom

) 9.30 × 10−2 5.37 × 10−3 7.53 × 10−2 7.32 × 10−2 5.81 × 10−3 5.02 × 10−3

� N/A 1.00 × 10−2 1.00 × 10−4 1.00 × 10−4 1.00 × 10−2 1.00 × 10−2

Δt 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3
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are not well-behaved in the low time-step limit. This 
result reinforces those presented in Fig. 15c.

•	 All continuous ROMs (Fig. 17a–f) display a similar 
dependence to the stabilization parameter and time step 
as their corresponding FOMs (Fig. 19a–f).

•	 Lastly, for APG ROMs built on top of a stabilized FEM 
(Fig. 18c–e), optimal results are obtained for either an 
intermediate value of �APG and low value of � , or vice 
versa. It is interesting to note that the solutions are 
almost symmetric with respect to these two parameters.

7.4 � Summary of Numerical Experiments 
and Empirical Findings

Sections 7.2 and 7.3 presented results for stabilized ROMs 
applied to the CDR system for two different configurations. 
Across both cases, we observed that the “space–time” sta-
bilized continuous ROM formulations were superior to their 
“discretize-then-stabilize” counterparts: the space–time sta-
bilization formulations had lower errors, were well-behaved 
in the low time-step limit (the discretize-then-stabilized 
methods were not), and had a smoother, more intuitive 
dependence on the time step and stabilization parameter.

ROMs constructed from LSPG projection had mixed 
results in terms of accuracy. In the first numerical experi-
ment, ROM solutions computed via LSPG projection 
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Fig. 14   Example 2, advecting front. L2(Ω) (top) and H1(Ω) (bottom) 
error as a function of RB dimension for the various ROMs evaluated. 

We note that the left and right figures show the same quantities, but 
with different visualization techniques. Results are shown for optimal 
values of Δt, � as discussed in Sect. 7.1.4
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tended to be slightly better than their non-stabilized (e.g., 
discrete Galerkin) ROM counterparts. In the second exam-
ple, however, the performance was mixed. While G–LSPG 
and GLSDS–LSPG led to better solutions than Galerkin and 
GLSDS , respectively, SUPG–LSPG, ADJDS–LSPG, GLSST
–LSPG, and ADJST–LSPG all performed worse than SUPG, 
ADJDS , GLSST , and ADJST , respectively. Further, all LSPG 
ROMs were optimal for intermediate time steps and, when 
built on top of a stabilized FEM solution, displayed a com-
plex sensitivity to both the stabilization parameter and time 
step. The a priori selection of an optimal time step appears 
difficult, and is likely problem dependent.

Constructing ROMs with APG stabilization tended to 
have a positive result in terms of accuracy. In the first exam-
ple, APG ROMs outperformed their non-stabilized (i.e., dis-
crete Galerkin) counterpart for all cases with the exception 

of GLSST . In the second example, APG-based ROMs were 
better than their non-stabilized counterparts for all FEM for-
mulations. APG was well-behaved in the low time step limit. 
However, building an APG ROM on top of a stabilized FEM 
solution led to complex behavior for the stabilization param-
eter: high values of � for the stabilized FEM models required 
low values of �APG for the ROM, and vice versa. The a priori 
selection of these parameters again appears difficult.

Figure 20 summarizes the performance of the various 
ROMs by tabulating the number of times a given ROM for-
mulation led to the lowest errors in the L2(Ω) and H1(Ω)

-norm. Results are compiled for ROMs of basis dimen-
sions R = 1,… , 20 across both numerical experiments. We 
observe that SUPG–APG was the best performing ROM for 
both error metrics. The next best performing ROMs were 
ADJST–APG and GLSST–APG, followed closely by GLSST , 
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Fig. 15   Example 2, advecting front. Optimal stabilization parameter 
(top) and time step (bottom) as a function of RB dimension. We note 
that the left and right figures show the same quantities, but with dif-

ferent visualization techniques. Results are shown for optimal values 
of Δt, � as discussed in Sect. 7.1.4
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Fig. 16   Example 2, advecting front. ROM solutions to the CDR equation at t = 2.0 . Results are shown for R = 5
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SUPG, and ADJST . It is interesting to note that the two dif-
ferent error measures lead to slightly different measure of 
optimality (SUPG is never a top-performing method in 
L2(Ω) but is consistently a top-performing method in H1(Ω)

).
Lastly, Fig. 21 attempts to rank the various ROM for-

mulations by scoring their performance. For a given basis 
dimension, we scored a ROM on a scale of 1 − NROMS , where 

NROMS = 16 is the number of ROM formulations considered. 
The best ROM gets a score of NROMS , the second best ROM 
gets a score of NROMS − 1 , and so on until the worst-perform-
ing ROM gets a score of 1. The total score for each ROM 
formulation is computed by summing the individual scores 
across all basis dimensions and both numerical experiments. 
By this scoring system, we find that SUPG–APG is the best 
performing ROM in both error measures, followed closely 
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(h) SUPG–LSPG
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Fig. 17   Example 2, advecting front. Time integrated L2(Ω) error as 
a function of time step and stabilization parameter for the various 

ROMs evaluated. Note that Galerkin and LSPG display no depend-
ence on the stabilization parameter. White regions indicate solutions 
that diverged to NaN
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by ADJST–APG, GLSST , and GLSST–APG. The GLSST ROM 
is the best continuous ROM considered in this work, while 
the Galerkin ROM performs the worst.

We end the discussion with notes on robustness and com-
putational cost. First, while APG-based methods constructed 
on top of SUPG, GLSST , and ADJST led to solutions with the 
highest errors, these methods had a complex dependence 
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(c) SUPG–APG

10−4 10−3 10−2 10−1

τAPG

10−4

10−3

10−2

10−1

τ

−1.561

−1.388

−1.214

−1.041

−0.867

−0.694

−0.520

−0.347

−0.173

0.000

lo
g 1

0(
e L

2 )

(d) GLSST
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(e) ADJST

Fig. 18   Example 2, advecting front. Time integrated L2(Ω) error as 
a function of time step and stabilization parameter for the various 
ROMs evaluated. Note that Galerkin and LSPG display no depend-

ence on the stabilization parameter. White regions indicate errors 
higher than the color limit
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(a) Galerkin-FEM
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(d) ADJDS-FEM
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Fig. 19   Example 2, advecting front. Time integrated L2(Ω) error as a function of time step and stabilization parameter. Results are shown for 
full-order FEM solutions executed on the FOM trial space. White regions indicate errors higher than the color limit
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on stabilization parameters and were, at times, unstable. 
To fully realize the potential of these methods, analyses are 
needed for optimal selection of stabilization parameters. 
Second, while we did not report wall-clock times for running 
the various models considered in this work, we remark that, 
for linear problems, all ROM methods considered herein 
have similar online computational costs. The costs will dif-
fer for nonlinear problems, and will depend on the choice of 
hyper-reduction method used to handle the online evaluation 
of the nonlinearities in the governing problem. Extension of 
the analysis presented herein to nonlinear problems will be 
the subject of future work.

8 � Conclusions

The development of robust ROMs for time-critical and 
many-query scenarios remains an active research area. This 
work outlined the construction of stabilized ROMs for the 
transient CDR equation via two differing approaches that 
have emerged within the community: discrete and continu-
ous projections. We outlined the standard Galerkin, SUPG, 
GLSDS , ADJDS , GLSST , and ADJST continuous ROMs 
developed via traditional stabilized finite elements. We 
additionally outlined the construction of the discrete Galer-
kin, LSPG, and APG ROMs. These discrete ROMs can be 
constructed from a standard Galerkin FEM model, or they 
can also be constructed from a stabilized FEM model. We 
highlighted the well-established equivalences between con-
structing ROM basis vectors at the discrete and continuous 
levels. We additionally highlighted the established equiva-
lence conditions between discrete ROM formulations and 
continuous ROM formulations. Lastly, a brief summary 
of existing numerical analyses was provided, where we 

discussed consistency, stability, and error bounds of the 
various methods.

Numerical experiments were conducted for two configu-
rations of the CDR system. These experiments demonstrated 
that all stabilized ROMs result in superior performance over 
a standard Galerkin ROM built via continuous projection. 
APG and GLSST-based ROMs proved to be the best perform-
ing methods, while GLSDS , ADJDS , and G–LSPG proved to 
be the worst performing stabilized methods. In particular, we 
found that equipping a stabilized FEM model with APG or 
LSPG projection can result in more accurate solutions. This 
improvement in accuracy comes at the cost of a more com-
plex dependence on the stabilization parameters and time 
step. In the case of LSPG, results are optimal at an interme-
diate time step which is hard to select a priori. Further, the 
accuracy of LSPG-based methods degrades in the small time 
step limit as it is known to revert to Galerkin projection [29]. 
In the case of APG, we observed a non-trivial relationship 
between � in the stabilized FEM model and �APG in the APG 
projection. Low values of � in the stabilized FEM model 
required high values of �APG , and vice versa. There exist 
minimal methods for the a priori selection of these optimal 
stabilization parameters. However, APG-based ROMs were 
robust for small time steps. Lastly, we observed that ROMs 
built via continuous projection from the “space–time” 
approach were clearly superior to ROMs built via the “dis-
cretize-then-stabilize” approach: the space-time stabilization 
formulations had lower errors, were well-behaved in the low 
time-step limit (the discretize-then-stabilize methods were 
not), and had a smoother, more intuitive dependence on the 
time step and stabilization parameter.

In addition, our study highlighted several points (most 
of which are well-established in the literature) which we 
reiterate here.
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Fig. 20   Summary of numerical experiments. Number of times a given ROM formulation led to lowest errors in the L2(Ω)-norm (left) and H1(Ω)

-norm (right). Results are compiled across both numerical examples for all basis dimensions
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•	 In the case of discrete projection, the POD basis must 
be obtained in an inner product that is M-orthogonal to 
recover the POD basis obtained via continuous projec-
tion. This is well established in the literature.

•	 Both the Galerkin and stabilized ROMs obtained via 
continuous projection can be obtained via the Galerkin 
ROM obtained via discrete projection. This is addition-
ally well-established.

•	 G–LSPG approximates a continuous minimization prin-
ciple if the discrete norm is minimized in the M−1 inner 
product.

•	 All stabilized methods depend on a stabilization param-
eter, � , the time step, Δt , or both. The dependency on 
these parameters is complex, and more work needs to 
be done for proper a priori selection of the stabilization 
parameters.

Future work should focus on several aspects. First, theory 
for discretely stabilized ROMs such as LSPG and APG is 
lacking for linear problems: minimal analyses exist study-
ing the stability of these methods as well as their accuracy, 
and future work should address this. Second, future work 
should focus on the a priori selection of the stabilization 
parameters and optimal time steps (or, alternatively, data-
driven calibration of these parameters). Minimal analyses 
exists for the appropriate a priori selection of these param-
eters within the context of ROMs: SUPG is studied in Refs. 
[52, 82], LSPG is studied in [29], and APG is studied in 
[121]. Third, future work should focus on extension to non-
linear and vector-valued systems. Here, hyper-reduction is 
important and the extension of stabilization techniques to 

this setting offers numerous interesting and important ques-
tions. Lastly, future work should focus on extension to pre-
dictive problems, wherein truncation errors are relevant and 
can dominate predicitive accuracy.

Appendix 1: Brief Review 
of Non‑residual‑Based Stabilization 
Techniques

Although the main focus of this paper is on residual-based 
stabilized ROMs for the CDR equation, in this Appendix 
we briefly outline some of the stabilized ROMs not covered 
herein for completeness. This work includes, but is not lim-
ited to, ROM stabilizations that are not residual-based, and 
ROM stabilizations for equations different from the convec-
tion–diffusion–reaction equation (e.g., the incompressible 
Navier–Stokes equations and, especially, the compressible 
Euler equations). We outline several such techniques here:

•	 Closure models that add additional “closure” terms to 
the ROM in order to account for the impact of truncated 
modes. For classical numerical discretizations (e.g., finite 
element, finite volume, or spectral methods) of turbulent 
incompressible or compressible flows, there is an exten-
sive literature on closure models, especially in large eddy 
simulation (LES) [143]. Closure models for ROMs (see 
[3, 146] for surveys) have also been developed, using 
ideas from different fields, e.g., image processing [175], 
data-driven modeling [68, 173], machine learning [144], 
information theory [110] the Mori-Zwanzig formalism 
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Fig. 21   Summary of numerical experiments. Score as measured 
by the L2(Ω)-norm (left) and H1(Ω)-norm (right). For a given basis 
dimension, we scored a ROM on a scale of 1 to NROMS , where 
NROMS = 16 is the number of ROM formulations considered. The 

best ROM gets a score of NROMS , the second best ROM gets a score 
of NROMS − 1 , and so on until the worst ROM gets a score of 1. The 
total score for each ROM formulation is computed by summing the 
individual scores across all basis dimensions and both numerical 
experiments
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from statistical mechanics [102], or dynamical systems 
[36]. We emphasize, however, that (just as in LES) argu-
ably the most popular type of ROM closure models are 
the eddy viscosity models [69, 129, 170], which add a 
dissipative term to the standard ROM. These eddy vis-
cosity ROM closures are generally built by invoking 
physical arguments, i.e., the concept of energy cascade, 
which states that in three-dimensional (3D) turbulent 
flows energy is transferred from large scales to small 
scales where the energy is dissipated [43, 143]. We note 
that eddy viscosity ROM closure models are similar in 
spirit to residual-based ROM stabilization methods since 
they both increase the numerical stability of the ROM. 
There are, however, notable differences. From one per-
spective, eddy viscosity ROM closures can be viewed 
as a phenomenological modeling approach that model 
the physics associated with truncation, i.e., the cascade 
of energy from large resolved scales to unresolved fine 
scales through diffusion. Residual-based ROM stabiliza-
tion methods, on the other hand, can be interpreted as 
targeting errors arising from numerical discretization of 
the partial differential equation; the notable exception to 
this interpretation would be VMS residual-based stabili-
zations, which are typically interpreted as modeling the 
fine scales. Both methods have advantages and disadvan-
tages, depending on the application.

•	 Stabilizing inner products, which are used to construct 
more stable ROMs. One of the earliest examples of sta-
bilizing inner products is the H1(Ω) inner product that 
is used in [81] instead of the standard L2 inner product. 
Other examples of stabilizing inner products are present 
in the literature for ROMs applied to multistate systems 
where a classic vector L2 inner product does not result in 
a physically meaningful energy principle. For example, 
energy-based projections are proposed for compressible 
flows in Refs. [14, 81, 85, 138, 148], which use different 
inner products and flow variables to construct stabilized 
ROMs. Recently, Ref. [91] has proposed similar ideas 
within the context of magnetohydrodynamics. We note 
that the LSPG ROM-based preconditioning approach 
developed in [103] can be interpreted as a modification 
to the underlying inner product that has the effect of scal-
ing different solution components to ensure that they are 
all of roughly the same magnitude.

•	 Inf-sup stabilizations, that aim at enforcing the inf-sup (or 
the Ladyzhenskaya-Babuska-Brezzi (LBB)) condition in 
incompressible Stokes and Navier–Stokes equations. We 
emphasize that the inf-sup condition is used to ensure 
the well-posedness of saddle-point problems, such as 
the incompressible Stokes and Navier–Stokes equations. 
Thus, the inf-sup stabilizations are different from the 
stabilization of convection-dominated systems, such as 
those we consider in this paper. In standard (e.g., FEM) 

numerical discretizations of the Stokes and the Navier–
Stokes equations, it is well-known that not enforcing the 
inf-sup condition can yield spurious numerical oscilla-
tions in the pressure field. There are two main approaches 
to tackle this issue: (i) choose finite elements that do 
satisfy the inf-sup condition, or (ii) choose finite elements 
that do not satisfy the inf-sup condition and add pressure 
stabilization. In the ROM community, the first inf-sup 
stabilizations have been proposed in [140], which devel-
oped ROMs that satisfy the inf-sup condition (which is a 
significantly more difficult task than for finite elements, 
since the velocity and pressure ROM bases are problem 
dependent). Recognizing that enforcing the inf-sup con-
dition at a ROM level can be prohibitively expensive 
[13], more efficient stabilized ROMs that do not satisfy 
the inf-sup condition were devised by using, e.g., the pen-
alty method [18, 27], artificial compressibility [45], or 
local projection stabilization [141].

•	 Structure preserving methods that guarantee that the 
ROM satisfies the same physical constraints as those 
satisfied by the underlying equations. As for classical 
numerical discretizations, preserving these physical con-
straints generally yields more stable ROMs. For example, 
for the incompressible Navier–Stokes equations, ROMs 
in which the nonlinear terms preserve the kinetic energy 
are more stable than standard ROMs [93, 107] (see also 
[112] for ROM closure modeling and [91] for work in 
magnetohydrodynamics). Furthermore, ROMs that pre-
serve Lagrangian structure were developed in [33, 97, 
174], and ROMs that preserve Hamiltonian structure 
were constructed in [2, 55, 60, 61, 123, 150, 151, 153]. 
The recent work by Gruber et al. is the first to construct 
ROMs in which the more general metriplectic structure 
is preserved [59].

•	 Stabilizing basis modification methods designed to rem-
edy the so-called “mode truncation instability”, that is, to 
account for truncated modes a priori [7, 11, 12]. In [7], 
Amsallem and Farhat develop a non-intrusive method 
for stabilizing linear time-invariant (LTI) ROMs through 
the minimal modification of the left ROM basis. The new 
reduced-order basis is obtained by formulating and solv-
ing a small-scale convex constrained optimization prob-
lem in which the constraint imposes asymptotic stabil-
ity of the modified ROM. In [11, 12], Balajewicz et al. 
demonstrate that a ROM for (nonlinear) fluid flow can 
be stabilized through a stabilizing rotation of the pro-
jection subspace. Specifically, the projection subspace 
is “rotated” into a more dissipative regime by modifying 
the eigenvalue distribution of the linear operator. Math-
ematically, the approach is formulated as a trace minimi-
zation on the Stiefel manifold. Like the approach in [7], 
the methods in [11, 12] are non-intrusive.
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•	 Spatial filtering-based stabilization [62, 77, 90, 162, 171], 
in which explicit filtering performed either in the physi-
cal space or in the ROM space (see [131] for an extension 
to neural networks) is used to regularize/smooth different 
terms in the underlying equations, e.g., the convective 
term in the incompressible Navier–Stokes equations. Due 
to their simplicity, minimal invasive character, modular-
ity, and effectiveness, spatially-filtered regularized mod-
els have been extensively studied in standard CFD (e.g., 
with finite element discretizations, surveyed in [98]). In 
contrast, only a few regularized ROMs have been pro-
posed in deterministic [90, 142, 171] and stochastic [62, 
77] settings.

•	 Eigenvalue reassignment methods, which calculate a 
stabilizing correction to an unstable ROM after the 
ROM has been constructed. The correction is computed 
offline by solving a constrained optimization problem. 
The approach was originally developed in Kalashnikova 
et al. [89] in the context of LTI systems, for which it is 
natural to impose a constraint on the Lyapunov stability 
of the ROM system by requiring that the eigenvalues of 
the ROM matrix defining the problem have negative real 
parts. The approach was subsequently extended to the 
nonlinear compressible flow equations by Rezaian and 
Wei in [132]. Here, appropriate constraints on the system 
energy, namely that it is non-increasing, were developed 
and applied. Eigenvalue reassignment methods are non-
intrusive by construction, as they operate on a ROM a 
posteriori (i.e., after the ROM has been constructed), and 
can be effective regardless of the nature of the instability. 
The methods can also be used to assimilate data into a 
given ROM, again after the model has been constructed.

Appendix 2: Correspondence of LSPG 
to a Continuous Minimization Principle

This section outlines the equivalence between LSPG and 
a continuous minimization principle. We define the time-
discrete, spatially continuous residual of the PDE (1) as

Under the assumption that the state is sufficiently regular13, 
the residual of the Galerkin FOM O Δ E can be written as

The FEM coefficients of the L2(Ω) orthogonal projection of 
this residual onto the trial space Vh are given by

𝖱cdr ∶ (𝗐;𝗓) ↦
𝗐 − 𝗓

Δt
− �∇2

𝗐 + b ⋅ ∇𝗐 + �𝗐 − f .

rGti ∶ (w;z) ↦ m
(
𝗏i,𝖱cdr(𝗏w;𝗏z

)
), ∀𝗏 ∈ Vh.

Analogously, at the spatially continuous level

The square residual integrated over the domain is then given 
by

Setting r ← rG and P ← M−1 in optimization problem (25), 
LSPG corresponds to the continuous minimization principle 
for �n

r
 , n = 1,… ,Nt

LSPG computes the solution �n
r
 within the ROM trial space 

Vr that minimizes the L2(Ω)-norm of the time-discrete, spa-
tially continuous residual projected onto the finite element 
trial space Vh . Analogously, LSPG can be defined on the 
stabilized FOM O ΔE (15). Setting r ← rS , the optimality 
conditions become

Appendix 3: Derivation of the Adjoint 
Petrov–Galerkin Method

The APG method was derived in Ref. [121] in the case 
where the coarse- and fine-scale bases are orthogonal in a 
standard �2 discrete inner product. In FEM discretizations it 
is more appropriate to construct the spaces to be orthogonal 
in an M inner product. As such, in this section we derive the 
APG method for the case where the fine and coarse scales 
are M-orthogonal. We consider application to the dynamical 
system given by

where M ∈ �
N  is the mass matrix, x ∶ [0, T] → ℝ

N  is 
the state, A ∈ ℝ

N×N is the system matrix, and f is a forc-
ing term. The derivation begins by decomposing ℝN into 
a coarse-scale space Vr and a fine-scale space V′

r
 such that 

Vr ⊕ V′

r
≡ ℝ

N . The coarse-scale space Vr ⊂ ℝ
N corresponds 

to the standard ROM space and is of dimension dim(Vr) = R , 
while the fine-scale space V′

r
 comprises the M-orthogonal 

complement of the coarse-scale space and has dimension 

r
∥

G
∶ (w;z) ↦ M−1rG(w;z).

𝖱
∥

G
∶ (𝗐;𝗓) ↦ 𝗏M−1m

(
𝗏,𝖱cdr(𝗐;𝗓)

)
.

(38)∫
Ω

(

�
∥

G
(�n;�n−1)

)2

dx =
[
M−1rG(a

n
h
;an−1

h
)
]T

MM−1rG(a
n
h
;an−1

h
).

(39)�
n
r
= argmin

�∈Vr
∫
Ω

(

�
∥

G
(�;�n−1

r
)

)2

dx.

md

(
M�

Δt
+ B� +Q�, rS(�ŷ;�x̂

n−1
)

)

= 0.

M
dx

dt
+ Ax − f = 0,

13  We remark that this assumption does not hold for standard C0(Ω) 
FEM discretizations, in which case the state is not twice continuously 
differentiable.
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dim(V�

r
) = N − R . We equip the coarse- and fine-scale spaces 

with M-orthogonal bases � ∈ ℝ
N×R and �� ∈ ℝ

N×(N−R) . 
Note that �TM�

� = 0 by definition.
The APG derivation proceeds by expressing the dynami-

cal system in terms of the generalized coordinates associated 
with the coarse and fine-scale bases. This process results in a 
coupled system for the coarse and fine scales

where x̂ ∶ [0, T] → ℝ
R are the coarse-scale generalized 

coordinates and x̂
�

∶ [0, T] → ℝ
N−R are the fine-scale gen-

eralized coordinates. The APG method proceeds to approxi-
mate the fine-scales via the Mori–Zwanzig formalism and a 
perturbation analysis, which here results in the quasi-static 
aproximation

where 𝜏 ∈ ℝ
>0 is a stabilization constant. Injecting in the 

approximation to the fine-scale state into the coarse-scale 
equation results in

�
TM

d

dt
�x̂ +�

TA
[

�x̂ +�
�

x̂
�
]

−�
T f = 0

[
�

�]T
M

d

dt
�

�

x̂
�

+
[
�

�]T
A
[

�x̂ +�
�

x̂
�
]

−
[
�

�]T
f = 0,

x̂
�

(t) ≈ −𝜏
[
�

�]T
A�x̂(t),

Next we use the property ��
TM +�

�[
�

�]T
M = I to 

remove the dependence on the fine-scale basis functions 
and get

where �� = M−1
−��

T . Next, assuming the forcing to be 
zero on the fine-scale space such that ��f = 0 , we write the 
above in a Petrov–Galerkin form

where we have leveraged ��M� = 0 . This Petrov–Galerkin 
projection is what we refer to as the Adjoint Petrov–Galerkin 
method.

Appendix 4: Proper Orthogonal 
Decomposition Algorithm

Algorithm 2 presents the algorithm for computing the trial 
basis via proper orthogonal decomposition. 

�
TM

d

dt
�x̂ +�

TA
[

�x̂ − 𝜏�
�[
�

�]T
A�x̂

]

−�
T f = 0.

�
TM

d

dt
�x̂ +�

TA
[
�x̂ − 𝜏�

�A�x̂
]
−�

T f = 0,

[(
I − 𝜏�

�TAT
)
�
]T
[

M
d

dt
�x̂ + A�x̂ − f

]

= 0,

Algorithm 2   Algorithm for generating POD basis.
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