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Abstract

Galerkin and Petrov—Galerkin projection-based reduced-order models (ROMs) of transient partial differential equations are
typically obtained by performing a dimension reduction and projection process that is defined at either the spatially continu-
ous or spatially discrete level. In both cases, it is common to add stabilization to the resulting ROM to increase the stability
and accuracy of the method; the addition of stabilization is particularly common for convection-dominated systems when the
ROM is under-resolved. While continuous and discrete approaches can be equivalent in certain settings, a plethora of different
techniques have emerged for each approach. However, to the best of our knowledge, a thorough comparison of these tech-
niques is currently missing. In this work, we take a first, foundational step and provide an in-depth review of seven commonly
used residual-based ROM stabilization strategies within the setting of finite element method (FEM) discretizations using
the convection-dominated convection—diffusion-reaction (CDR) equation, an established testbed for stabilization methods.
We present the formulations in a unified setting, highlight connections between the strategies, and numerically assess the
strategies. In the spatially continuous case, we examine the Galerkin, streamline upwind Petrov—Galerkin (SUPG), Galerkin/
least-squares (GLS), and adjoint (ADJ) stabilization methods. For the GLS and ADJ methods, we examine formulations con-
structed from both the “discretize-then-stabilize” technique and the space—time technique. In the spatially discrete case, we
examine the Galerkin, least-squares Petrov—Galerkin (LSPG), and adjoint Petrov—Galerkin (APG) methods. We summarize
existing analyses for these methods and provide numerical experiments, comparing competing methods for the first time in
the literature and assessing the impact of stabilization parameters and time step sizes. Our numerical experiments demonstrate
that residual-based stabilized methods developed via continuous and discrete processes yield substantial improvements over
standard Galerkin methods when the underlying FEM model is under-resolved. We find that SUPG, space—time GLS, and
space—time ADJ are the best continuous stabilization techniques considered. For discrete ROMs, we find that APG is more
accurate than LSPG at the expense of a smaller region of stability with respect to the stabilization parameter. The combina-
tion of an APG ROM constructed on top of a SUPG FEM is the overall best performing method. The review, discussion,
and numerical inter-comparison of the seven stabilizations strategies using the CDR equations serves as a stepping stone
toward a comprehensive investigation and further development of stabilization methods for more challenging problems.

1 Introduction
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Petrov—Galerkin (PG)-type reduced-order models are one
such promising technique and are the focus of the present
work. We will refer to the latter class of methods as PG
ROMs. Broadly speaking, PG ROMs operate by (1) restrict-
ing the state to belong to a low-dimensional trial space, and
(2) computing an approximation to the weak form of the
PDE given the low-dimensional trial space and an additional
test space; this step can be analogously viewed as restricting
the residual to be orthogonal to the test space. To enhance
the stability and accuracy of the ROM, the test space often
differs from the trial space (i.e., a Petrov—Galerkin scheme)
and/or additional stabilization terms are added to the gov-
erning equations.

Over the past decades, PG ROMs have been implemented
in numerous codes with varying discretization techniques to
provide model reduction capabilities for a variety of prob-
lems. This diverse set of applications has led, by necessity,
to varying ROM formulations that are suited to different
applications of interest. In particular, two distinct types of
ROMs have emerged: PG ROMs that define a trial space
and Petrov—Galerkin projection scheme at the spatially-con-
tinuous level, and PG ROMs that define a trial space and
Petrov—Galerkin projection scheme at the spatially-discrete
level. In this work, we refer to these approaches as continu-
ous ROMs and discrete ROMs, respectively.'

In continuous ROMs, the state variables are approximated
at the spatially-continuous level in a low-dimensional func-
tion space, and generalized coordinates associated with
the state representation are then obtained by computing
an approximate solution to the weak form of the PDE by
employing low-dimensional trial and test function spaces.
Continuous ROMs are most often employed within the
context of weighted residual methods (e.g., finite element
methods, spectral methods), and examples of continuous
ROMs can be found in [11, 12, 18, 27, 79, 125, 136, 138,
139, 163, 165, 166, 169, 177] (and many other works). We
do note that several pieces of work have examined exten-
sions to finite volume methods [108, 156]. Discrete ROMs,
on the other hand, are typically described at the dynamical
system level and work directly with the spatially-discrete
system emerging after discretization of the differential oper-
ators present in the PDE?. Discrete ROMs approximate the

I We note that, in the transient case considered herein, reduced-order
models are typically formulated by reducing the spatial dimension of
the model and leveraging standard time-marching schemes for tempo-
ral discretization. We restrict our attention to this setting, but note that
several pieces of work have examined the construction of space—time
ROMs [15, 37, 42, 119, 163, 177], in which case the same thematic
similarities of discrete vs. continuous are present.

2 For transient PDEs, discrete ROMs can be formulated at either the
ordinary differential equation (ODE) level (i.e., after spatial discre-
tization) or the ordinary difference equation (OAE level) (i.e., after
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discretized state variables within a low-dimensional Euclid-
ean vector space, and the generalized coordinates associated
with the state representation are then obtained by defining
a (Petrov—)Galerkin scheme using a discrete (e.g., Euclid-
ean) inner product and the discrete residual. Discrete ROMs
have received significant attention for model reduction of
finite difference and finite volume discretizations as well as
for model reduction of large-scale application codes where
underlying information about the discretization (e.g., mass
matrices) are difficult or impossible to access. Examples of
discrete ROMs can be found in [1, 24-26, 29, 31, 32, 37,
99-101, 172].

We note that, in certain settings (e.g., finite elements), it
is straightforward to obtain the discrete form of the ROM
equations obtained via continuous projection. As a result,
provided proper selection of inner products at the discrete
level, it is well-known that there is direct equivalence
between continuous and discrete ROMs [122, 167]. Thus,
some discrete ROM formulations are equivalent to their con-
tinuous ROM counterparts. We emphasize, however, that
the same duality does not exist for all discretizations. As
a result, for the most part, discrete and continuous ROMs
have each developed independently, each branch propos-
ing strategies that do not find a straightforward counterpart
in the other branch. To our knowledge, comparisons of the
continuous and discrete ROMs are relatively scarce (see,
however, [85] for a notable exception). It is one of the main
goals of this paper to (i) discuss and investigate representa-
tive continuous and discrete ROMs in the context of stabili-
zation, and (ii) outline the similarities and differences among
those stabilizations.

Just like standard discretization techniques, both con-
tinuous ROMs and discrete ROMs oftentimes require sta-
bilization to maintain stability and accuracy; it is well-
known that Galerkin projection, in which the trial space
is the same as the test space, often lacks robustness in the
presence of sharp, under-resolved gradients. One appeal-
ing and widely employed class of stabization techniques
is known as residual-based stabilization. In this class of
approaches, an additional residual-based term is added to
the weak form of the PDE. Certain types of residual-based
stabilization approaches can be written as Petrov—Galer-
kin schemes and some can correspond to residual mini-
mization statements (e.g., least-squares Petrov—Galer-
kin). While residual-based stabilization techniques have
been developed for both continuous ROMs and discrete
ROMs, the approaches do not overlap due to the funda-
mentally different setting of the ROM formulations. Thus,

Footnote 2 (continued)

spatial and temporal discretization); Ref. [29] examines commuta-
tivity of the time-discretization step for Galerkin and least-squares
Petrov Galerkin ROM formulations.
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while there is a duality between continuous ROMs and
discrete ROMs in, e.g., finite elements, the same cannot
necessarily be said about stabilized continuous ROMs
and discrete ROMs. As a result, a plethora of different
stabilization schemes are deployed across the two set-
tings. For discrete ROMs, stabilized ROM formulations
include, but are not limited to: least-squares formulations
from LeGresley, Alonso, Bui-Tanh, Willcox, and Ghat-
tas [24-26, 99-101]; the “least-squares Petrov—Galerkin
(LSPG)” and “Gauss—Newton with Approximated Ten-
sors (GNAT)” approaches of Carlberg, Farhat, and oth-
ers [28-30, 32]; the “Adjoint Petrov—Galerkin” approach
explored by Parish, Wentland, and Duraisamy [121, 172];
and the “model-form preserving least-squares with vari-
able transformation” approach of Huang et al. [71]. For
continuous ROMs, stabilization strategies include, but
are certainly not limited to: “streamline upwind Petrov-
Galerkin (SUPG)” approaches of Bergmann and Iollo
[18], Rozza and Pacciarini [118], Iliescu and John [52],
Azaiez, Chacon Rebollo, and Rubino [8], and Novo and
John [82]; “variational multiscale” approaches developed
by Bergmann and Iollo [18], Iliescu, Wang, and Mou [78,
79, 114], Codina and Baiges [10], and Rozza and Stabile
[157]; “eddy viscosity” approaches of Iliescu and Wang
[170] and Noack [117]; “minimal subspace rotation” meth-
ods of Balajewicz, Tezaur and Dowell [11, 12]; energy-
and entropy-stable formulations of Rowley, Kalashnikova
and Barone, and Serre et al. based on carefully-constructed
inner products [85-88, 138, 148]; “filter based regulariza-
tions” developed by Iliescu and Wells [171], Ballarin, and
Strazzullo [147, 158], and Quaini, Girfoglio, and Rozza
[53, 54]; energy- and entropy-stable methods of Yano
[178] and Chen [34] that build on stability of the under-
lying discontinuous-Galerkin and finite-volume methods
based on upwinded fluxes; and “local projection stabiliza-
tion” of Rubino and Novo [116, 141].

A side-by-side review and assessment of stabilization
schemes developed for continuous ROMs and discrete
ROMs does not exist in the literature. Such a review is
needed to assess the overlap, advantages, disadvantages,
and comparative performance of the various strategies.
While a comparison between such a wide range of meth-
ods is daunting, particularly because the methods are often
developed for different spatial and temporal discretizations
(e.g., finite element and finite volume, and explicit and
implicit time stepping) with different end-goals in mind,
and may perform better in some scenarios (e.g., for mod-
erate and high Reynolds numbers), a side-by-side com-
parison of the different approaches could be tremendously
useful for practitioners. Furthermore, there is an interplay
between stabilization schemes that are added to the full-
order model (FOM) and those added to the ROM that is
not well explored. For example, should an LSPG ROM be

constructed for a stabilized finite element method (FEM)?
This interplay can interact with the ROM stabilization and
further motivates a detailed examination of the various
methods.

As a first, foundational step in a wider comparison of
ROM stabilizations, this work provides a review of seven
commonly used residual-based stabilization techniques
developed for both continuous and discrete ROMs in a uni-
fied setting and assesses their performance to help fill this
gap. To ensure a fair comparison, we use the same spatial
discretization, i.e., the FEM, for all the stabilizations. As a
test problem for our numerical investigation, we choose the
convection—diffusion—reaction (CDR) equation. One reason
for choosing the CDR equation is that it is widely used as a
testbed for the development of stabilized methods for clas-
sical discretizations, e.g., the finite element and finite dif-
ference methods (see the research monograph [135], which
summarizes numerous stabilization methods and assesses
their performance for the CDR equation). We emphasize
that, although the CDR equation is linear, it exemplifies sta-
bility challenges that are relevant for convection-dominated
flow problems, such as the Navier—Stokes equations (NSE).
For example, for the CDR equation in the convection-dom-
inated regime (i.e., when the diffusion coefficient is signifi-
cantly smaller than the magnitude of the convection field)
and the under-resolved regime (i.e., when the number of
degrees of freedom is not large enough to capture the com-
plex dynamics), standard Galerkin ROMs can yield inac-
curate results, generally in the form of spurious numerical
oscillations. Thus, in the convection-dominated and under-
resolved regimes of the CDR equations, ROMs generally
require stabilization. Another reason for choosing the CDR
equation as a test problem for our numerical investigation
is that it allows us to isolate the impact of the stabilization
schemes from other discretization choices, e.g., velocity-
pressure coupling [67], hyperreduction [67], discretization
of the nonlinearity [80], dimensional consistency and scalar
vs. vector POD [120, 137, 138].

In this paper, we outline the development of seven contin-
uvous and discrete ROMs, establish commonalities between
these approaches, and present several numerical examples
assessing their performance. Lastly, we examine the sensi-
tivity of the various stabilization approaches with respect
to their stabilization parameters and the time step size. We
note that this sensitivity is well-known to impact accuracy
and robustness of classical numerical discretizations. In this
paper, we show that this is the case for ROMs, too.

The novel contributions of the present work are as
follows.

1. We give the first side-by-side presentation of several

common residual-based-stabilized ROMs developed
through discrete and continuous projection.
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2. We build on Refs. [85, 88] to introduce a taxonomy for
these various reduced-order modeling approaches. As
will be seen in this manuscript, a “Galerkin” approach
may entail different ROMs to different communities.

3. We provide the first summary of existing analyses for the
various ROMs considered.

4. We present the first numerical comparison of discretely
stabilized ROMs to continuously stabilized ROMs,
including ranking 16 different stabilized ROM formu-
lations in terms of the L2(Q) and H' (Q) error for various
basis dimensions in two CDR problem.

5. We present the first study of the Galerkin/least-squares
and adjoint stabilization methods applied to projection-
based ROMs.

6. We provide a comprehensive study on the impact of the
stabilization parameter, T, and time step, At, for all sta-
bilized ROMs considered. This is the first such study
that has been undertaken for the SUPG, GLS, and ADJ
stabilization ROM methods.

The layout of this manuscript is as follows. In Sect. 2,
we provide a brief review of stabilization techniques in
Petrov—Galerkin-based model reduction. In Sect. 3, we out-
line the CDR equation, the Galerkin FEM, and stabilized
FEM formulations for this equation. In Sects. 4 and 5, we
outline ROMs constructed through continuous and dis-
crete projection, respectively. Alternate ROM stabilization
approaches that do not fall into either of these two categories
are summarized in Appendix 1. Section 6 summarizes the
available theoretical support for the various methods. Sec-
tion 7 presents numerical experiments, and Sect. 8 provides
conclusions.

2 Summary of Residual-Based Stabilization
in Petrov-Galerkin Model Reduction

The Galerkin method, where the trial and test space coin-
cide, is the standard approach for constructing a ROM.
Galerkin projection yields optimal results in a given energy
norm for symmetric coercive systems.> It is well-known,
however, that for convection-dominated systems Galerkin
projection often lacks robustness in the presence of sharp,
under-resolved gradients. As a result, a wide variety of sta-
bilization techniques have been developed to increase the
ROM stability and accuracy for both continuous and discrete
ROMs. While this work focuses on residual-based stabiliza-
tion techniques, we briefly mention other approaches that

3 Throughout this work, we define a coercive system as a system
whose bilinear form a(-, -) satisfies the condition a(v,v) > allvlli for
all v in a function space V endowed with the norm || - ||,. The condi-
tion is referred to as “strong coercivity” in some literature.
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include, but are not limited to: stabilizing inner products that
guarantee a non-increasing energy [14, 87, 88, 138, 148] or
non-decreasing entropy [34, 86]; stabilizing subspace rota-
tions that account for truncated modes a priori [11, 12];
eigenvalue reassignment methods that calculate a stabi-
lizing correction to a given linear [89] or nonlinear [133]
ROM that is found to be unstable after it is constructed;
structure preserving methods that guarantee that the ROM
satisfy physical constraints [16, 31, 33, 35, 47, 59, 97]; spa-
tial filtering-based stabilization methods [62, 77, 90, 158,
171] that filter out unphysical high-frequency content; inf-
sup stabilization methods that enforce the inf-sup condition
in the incompressible Stokes and Navier—Stokes equations
[18, 27, 45]; and closure modeling approaches [3, 18, 145,
168—170] that add additional “closure” terms to the ROM
so-as to account for the impact of truncated modes. A more
in depth review of these methods in provided in Appendix 1
for the interested reader.

In the present work, we focus our review on what are
referred to as “residual-based” stabilization techniques.
Within the finite element community, various residual-based
techniques have been proposed in an effort to develop robust
numerical methods for non-symmetric, non-coercive, and
under-resolved problems. These methods, which include sta-
bilized finite elements [22, 23, 49, 75] (e.g., SUPG, Galer-
kin/least-squares (GLS)) and variational multiscale methods
[74], are typically formulated by adding terms involving a
sum of element-wise integrals to the Galerkin method. These
terms typically comprise the product of a test function (that
does not belong to the trial space) with the residual of the
governing equations, and thus the stabilized formulations
can be written as Petrov—Galerkin projections.

These “residual-based” methods have proven to be
quite successful, yielding, for example, robust solutions
for the convection—diffusion equation, incompressible
Navier—Stokes equations, and compressible Navier—Stokes
equations [23, 50, 72, 75, 84, 160]. We note that, in the
context of VMS methods, a body of work additionally exists
that examines the addition of phenomenologically-inspired
terms to the weighted residual form (e.g., eddy viscosity
methods); we do not consider these approaches here and
restrict our attention to residual-based methods. The exten-
sion of residual-based approaches to ROMs obtained via
continuous projection is straightforward as they operate in
a similar variational setting. As a result, various works have
examined the formulation of stabilized ROMs via classical
finite element stabilization techniques [4, 9, 18, 52, 94, 118,
136, 154, 155].

Another class of stabilized model reduction methods that
is important to highlight is continuous minimum-residual

* It is noted that these methods are not mutually orthogonal, for
example VMS methods can recover several stabilized methods.
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Galerkin weak form

Stabilized weak form

ROM trial space FEM trial space

Galerkin FEM

(I) Galerkin ROM
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GLS, ADJ) ROM

(discrete projection) (discrete projection)

Fig.1 Schematic of the various processes for constructing reduced-order models. Blocks in green comprise full-order models, blocks in red
comprise restriction (projection) processes, and blocks in blue comprise reduced-order models

methods (or least-squares methods) [109, 136]. These
methods compute solutions within the trial space that mini-
mize the residual of the governing PDE in the least-squares
sense. Minimum-residual methods can be interpreted as
Petrov—Galerkin methods, where the (parameter-dependent)
test space is defined to be the one that maximizes the inf-
sup stability constant, and hence the method is guaranteed
to be stable. We also note a related double greedy algorithm
[44], which constructs a fixed test space for a Petrov—Galer-
kin formulation that approximately maximizes the inf-sup
constant for all parameter values in a greedy fashion. While
minimum-residual methods are robust and display com-
monalities with discrete stabilization approaches, we do not
consider them here.

The extension of classic stabilization techniques to dis-
crete ROMs is less straightforward. This is a consequence of
the fact that discrete ROMs start from the spatially discrete
level, and, as such, do not generally operate in the same vari-
ational setting as their continuous counterparts. As a result,
various stabilization techniques have been developed for dis-
crete ROMs. One class of particularly popular stabilization
techniques are discrete residual minimization approaches
[24-26, 28-30, 32, 99-101]. These approaches compute a
solution within the trial space that minimizes the discrete
FOM residual. In the time-varying case, which we consider
here, this residual minimization process is typically formu-
lated by sequentially minimizing the time-discrete residual
arising at each time instance on a discrete time grid.’ This
formulation is commonly referred to as the least-squares

5 We note that recent work has examined windowed least-squares
minimization [119] and space—time residual minimization [37]. These
approaches have better stability properties than LSPG, but here we
restrict our focus to the standard LSPG approach, for simplicity.

Petrov—Galerkin (LSPG) approach [29, 32], and can be
written as a Petrov—Galerkin projection of the FOM OAE
(i.e., the FOM ODE after temporal discretization). In finite
element language, LSPG most closely resembles a discrete
least squares principle. We refer to Grimberg et al. [58] for
an overview of LSPG within the context of stabilization.
The adjoint—Petrov Galerkin (APG) method [121] is an
additional discrete model reduction approach that falls into
the class of residual-based methods. In APG, the variational
multiscale method is applied at the discrete level to decom-
pose the Euclidean state-space into coarse and fine-scale
components. The impact of the fine scales on the coarse
scales is then accounted for by virtue of a residual-based
stabilization term that is derived from the Mori—Zwanzig
formalism [38]. APG differs from FEM stabilization tech-
niques in that the residual is defined at the level of the FOM
ODE (i.e., after spatial discretization).

Figure 1 provides a schematic of the various ROM
approaches just discussed within the context of finite element
discretizations. Continuous ROMs (methods I and II in Fig. 1)
rely on the definition of a weak form and a ROM trial space,
while discrete ROMs (methods III, IV, V, and VI in Fig. 1)
rely on the definition of a “full-order” FEM system and a dis-
crete ROM trial space. As noted earlier, in certain settings
(e.g., FEM), continuous and discrete ROMs can be equivalent
[122, 167] (green arrows in Fig. 1), but this same duality does
not exist, e.g., for for finite volume methods. As a result, the
development and study of ROM methodologies has effectively
forked into bodies of work that start at the spatially continu-
ous level, and bodies of work that start at the spatially discrete
level. This fact is not well-documented in the community. To
the best of the authors’ knowledge it is most clearly outlined
in Refs. [85, 88].
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3 Finite Element Discretizations
for the Convection-Diffusion—-Reaction
Equation

We consider the demonstrative example of the CDR equation.
We emphasize that the concepts presented here generalize to
other systems, including nonlinear equations; the CDR equa-
tion serves as a useful benchmark, as described in the preced-
ing sections. The CDR equation is given by

ou,

t—eAu*+b~Vu*+0'u*=f in (0,T]x £,
u, (0,x) = uy(x), x €Q, )
u,(t,x) =0, xel,te(0,T],

where u, : [0, T] X Q — R is the state implicitly defined
as the solution to Eq. (1), Q € R? is the physical domain,
Q s its closure, T is the domain boundary, T € R, is the
final time, € € R, is the diffusion coefficient, b € R are
the convection coefficients, 6 € R, is the reaction coeffi-
cient, u, : Q — R is the initial condition, and f € L*(Q)
is a forcing term. In what follows, we use the notation
u,t) =u,t,-) : Q- R. We consider homogeneous Dir-
ichlet boundary conditions, for simplicity. We refer to [127]
for more details on the CDR equation and its mathematical
setting.

We consider the standard weighted residual for-
mulation of (1) in space, which reads as follows: find
u € C'((0, TI;L*(Q)) n L*((0, T];Hé(Q))suchthatVt € (0,T]

m(v,u,(t)) + m(eVv, Vu(®)) + m(v,b - Vu(t))

- 1 2
+ m(v, ou(t)) = m(v,f), Vv € H(Q),

and satisfies the initial condition u(0) = u, € L*(Q), where
m: (v,w) fQ v(x)w(x)dx is the L*(Q) inner product, and
H(])(Q) is the standard Sobolev space of functions that have
square-integrable weak first derivatives and vanish onI" in a
weak sense. The problem (2) is well-posed; see, e.g., [127].
For notational simplicity, we introduce the bilinear form

Bg : (v,u) » m(eVv, Vu) + m(v,b - Vu) + m(v, ou).

To transcribe (2) into a discrete problem, we need to intro-
duce spatial and temporal discretizations. In this work, we
consider, for simplicity and without loss of generality, the
implicit Euler method for temporal discretization and a
FEM for the spatial discretization; the concepts presented
here can be extended to other time stepping schemes. We
introduce without loss of generality a uniform partition of
the time domain [0, 7] into N, + 1 time instances " = nAt,
n=0,...,N,, with At = T/N,. Application of the implicit
Euler method yields the series of strong form stationary
PDEs foru” (~ u,(t")),n = 1,...,N,,

@ Springer

u? — !
T—eAu:+b-Vu:+auZ=f 3
with ug =ugandu? =0onl,n=1,...,N, The weak form

then yields the associated series of stationary problems: find
u'(x u") € Hy(Q),n = 1,...,N,, such that

n_ ,n—1
m<v, i) +Bgv,u) = m(v,f), W eHAQ),

At
“

with initial condition u® = .

For spatial discretization, let J,, C H(l)(Q) and W, C H(')(Q)
denote conforming trial and test spaces, respectively, obtained
via a finite element discretization of Q into NV, non-overlapping
elements Q,, k = 1, ..., N. The spatially discrete counterpart
of (4) reads: find uﬁ € V., n=1,...,N, such that

n n—1
up —up o
m| v, —a; + B (v, up) = m(v,f), Vv eW,,

&)

with (approximate) initial condition u = u ,, where ), is,
e.g., the L*(Q) projection of u, onto V.

3.1 Galerkin Approach

The standard Galerkin approach is obtained by setting
W, = V), in (5). We introduce the basis {v,}, for V}, which
yields the following FOM basis vector Vx € Q:

vx) = v () - vy@)]. ©)

The time-discrete state at time-instance ¢” is described with
these basis functions as uﬁ(x) = v(x)aﬁ, where aﬁ e RV,
n=0,...,N,. We refer to aj as the FEM coefficients. The
Galerkin method yields the OAE system to be solved for ap,
n=1,...,N,

s 4V

rg(apa;™) =0, ()
where

L (W M[W_Z]+B —f
rg @ (wiz) » A7 w

In the above, M € SV with M = m(vi,vj) is the FEM
mass matrix, B € RV with B; = B;(v;, v;) is a dynamics
matrix resulting from the bilinear form, and f € RN with
f, = m(vi, ) is the discrete forcing; we denote the space of
N X N symmetric positive definite matrices by SV. We refer
to (7) as the Galerkin FOM OAE.

Remark 3.1 Obtaining the discrete problem (7) requires eval-
uating the inner products in the system (5). In general, evalu-
ating these inner products requires introducing a quadrature
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(a) Galerkin FEM

(b) SUPG FEM

Fig. 2 Finite element solutions to the CDR equation, with the setup described in Sect. 7.2, atf =5

rule. We note that for linear problems (and problems dis-
playing polynomial nonlinearities) with piecewise polyno-
mial forcing operators, the inner products can be evaluated
exactly with an appropriate quadrature rule, e.g., Gaussian
quadrature.

3.2 Residual-Based Stabilization

The Galerkin approach is known to perform well for sym-
metric positive definite systems, in which case the Galerkin
method comprises a minimization principle in a system-spe-
cific energy norm. In the presence of sharp, under-resolved
gradients, however, it is well-known that the Galerkin
approach can lack robustness. In the present context, this
poor performance is most pronounced for large grid Peclet
numbers (i.e., Pe, := [|b]|,2/€ > 1, where h is a measure
of the element size and || - ||, is the Euclidian norm). We
note that large grid Peclet numbers occur, e.g., for coarse
meshes (i.e., in the under-resolved regime), small diffusion
coefficients, or a combination of both. In this regime, the
skew-symmetric convection operator dominates the symmet-
ric diffusion operator. Figure 2 demonstrates this by showing
finite element solutions to the CDR equation obtained using
the Galerkin FEM as well as a stabilized FEM. The Galerkin
approach is seen to yield large oscillations near the boundary
of the computational domain, while the stabilized approach
suppresses these oscillations and yields accurate solutions.®

To improve the performance of the numerical method
in such regimes, it is common to introduce stabilization
to smooth the numerical solution. Various stabilization
techniques exist, including flux limiters, artificial viscos-
ity, etc. In the finite element community, residual-based

% We note that one negative consequence of stabilized methods is
that the convergence rates for the methods are often lower than the
unstabilized FEM.

stabilization is a popular stabilization technique. Residual-
based FEMs, which include the likes of the SUPG [22, 23,
73], GLS [75], and adjoint [49, 50, 74] (ADJ) (also known as
unusual or subgrid-scale) stabilization methods, are typically
formulated by adding terms involving a sum of element-
wise integrals to the Galerkin method. These terms usually
comprise the product of a test function with the residual of
the governing equations. These approaches have been suc-
cessful in providing robust methodologies for a variety of
systems, including the CDR, incompressible Navier—Stokes,
and compressible Navier—Stokes equations [23, 50, 72, 75,
84, 135, 160].

For transient systems, like the CDR equation described
in this work, stabilized methods are typically employed in
one of two ways.

e Space—time discretizations. Space—time finite ele-
ments are employed in both time and space. The tem-
poral dimension is then viewed as an additional spatial
dimension, and standard stabilization approaches can be
applied. This is the approach that was first employed for
stabilized and variational multiscale methods of unsteady
problems [76, 149].

e Discretize-then-stabilize. The PDE is first discretized in
time, and then a stabilized method is applied to the time-
discrete, spatially-continuous system. This approach is
popular as it can be more computationally efficient than
space—time discretizations and is compatible with numer-
ous time marching schemes [41].

In this work, we explore both approaches.

A stabilized form of (4) can be written generally as: find
u* €V, n=1,...,N,, such that
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n n—1
m(v, %) + Bg(v,u") + mg (Qv, rR(u”, ul ))

= m(v,f), Vv ey,
(®)

No u(x)v(x)dx denotes the sum

k=1Jg,
of element-wise L?(Q) inner products, 7 : Q — R is a grid-
dependent stabilization parameter,

n_n—1 . .
R : (u”, u”‘l) - 2 A“t + Lu" — f is the strong form resid-
ual operator, £ : u" — —cAu" +b - Vu" + ou”, and Q is a
linear stabilization operator that is scheme dependent. Note

that [Eu" + % - f} yields the strong form of the time-

where m, : (u,v) = Y,

discrete residual. For notational simplicity, we denote the
bilinear form associated with the stabilized formulations as

Bg : (v,u) = Bg(v,u) +mel(Qv,f(Lu + i))

Remark 3.2 'We note that the stabilized form (8) is consistent
with respect to the continuous equations (1) semi-discretized
in time using an implicit Euler scheme. That is, if one sub-
stitutes in the exact solution, u” < u”, the additional stabili-
zation terms in (8) vanish. We discuss consistency in more
detail in Sect. 6.1.

Some of the most popular types of stabilization methods
are SUPG [22, 73], GLS [75], and ADJ [66]. If a discretize-
then-stabilize approach is taken, the operator Q takes the
form

1 .
Ops_supg - V E(Ev - L v) :=b-Vy, )
v v
Ops—gLs - vV Zt+£v 1= . —€eAv+b-Vv+ov,
(10)
Ops—aApy - VP —Alt—ﬁ*v :=—Alt+€Av+b-Vv—av,
11

where the subscript “DS” denotes “discretize-then-stablize”,
and L* : v —eAv — b - Vv + ov denotes the adjoint of L.
For the space—time approach, we note that the implicit Euler
method is equivalent to a space—time method with p =0
discontinuous Galerkin (DG) finite elements in time, and in
this setting the space—time stabilization approach results in
the operator Q taking the form

Qsr—supc = Lps—supa: (12)
O« gis - VP Lv i:=—eAv+b-Vv+ov, (13)
Qqrapy - VP =LV i=€Av+b-Vv—ov, (14)

@ Springer

where the subscript “ST” denotes space—time.

Remark 3.3 We emphasize that, in this work, for space—time
stabilization methods with the implicit Euler method, we
employ the full residual operator R in the right slot of the
stabilization term as in (8). In Refs. [39, 75], the authors
do not include the (u" —u! )/At term for p = 0 DG. We
include this term for consistency at the time-discrete level. In
our numerical experiments, we observed this term to make
very little difference.

Employing a finite element discretization in space and
leveraging the basis vector (6) yields the stabilized OAE
system to be solved for aﬁ, n=1,...,N,

rs(al;al™) = 0. (15)

The discrete residual of the stabilized discretization is given
by

rg . (w;z) = rg(w;z) + Qw —fg — MsAit’

with Q; = md(Qvi, T(ﬁvj + %)), f5, = meg (Qv;, 7f), and
M, = My (Qvi,v;).

3.3 Selection and Scaling of the Stabilization
Parameter, 7

The stabilized form (8) requires specification of the stabiliza-
tion parameter z. The a priori selection of suitable stabilization
parameters has been a topic of much research; see, for example,
[41, 66, 70] and references therein. Traditionally, the stabiliza-
tion constants are obtained through asymptotic scaling argu-
ments [70], and depend on, e.g., the grid size, the diffusion coef-
ficient and, for transient problems, the time step.

While existing definitions and scalings of the stabilization
constant are well established and have been used successfully
in a myriad of applications (see, e.g., the review in [135]), there
are some outstanding challenges. Relevant to the current work
is that classical definitions of the stabilization parameters are
subject to several issues when deployed on transient problems.
First and foremost, in addition to depending on the spatial grid
resolution, classical definitions of = depend on the time step.
These definitions become poorly behaved in both the low time
step and steady-state regimes. As an example, one common
definition of 7 is [70]

4 5 -1/2
r=<—+b-Gb+CeG:G) , (16)
A2
where Gij = % % and C € R* is a positive constant. Here,

% is the inverse Jacobian of the element mapping between
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the parametric and physical domains, i.e., the grid metrics,
and we note that in one dimension G hl—z, where £ is the
element size. This type of definition enables, e.g., O(h?)
scaling in the low Peclet number limit which helps maintain
optimal convergence rates. As highlighted in Ref. [70], the
definition (16) is not robust in the small time step limit. As
At = 0, the 4/Af* term dominates and the formulation
reverts to a Galerkin method, which is known to lack robust-
ness. We highlight that a very similar issue exists for the
LSPG approach discussed later in this manuscript.

For all numerical experiments considered in the work, we
present results for numerous values of 7 and as such do not
restrict ourselves to a particular definition, but rather explore
the sensitivity of the various methods to this parameter.

3.4 Sensitivity to the Time Step, At

In addition to depending on the stabilization parameter z,
it is well-known that stabilized formulations depend on
the time step At. Stability analyses have demonstrated, for
example, that stabilized formulations may become unstable
at low CFL numbers [20]. This sensitivity to the time step
can be understood intuitively for GLS and ADJ stabiliza-
tion, where changing the time step size changes the nature
of the stabilization operator Q. Thus, changing the time step
modifies both the error incurred due to temporal discretiza-
tion and the properties of the stabilized scheme. As will be
seen later in the manuscript, the LSPG approach suffers from
similar issues. Thus, in our numerical examples, we perform
a thorough investigation of the sensitivity of the results with
respect to the time step, Af.

4 Continuous Projection Reduced-Order
Models

We now develop ROMs of the CDR system via continuous
projection. Continuous ROMs generate approximate solu-
tions u’’(~ u") within a low-dimensional spatial trial space
eV, cl C H(l)(Q), and have been studied in a number
of references including [11, 12, 14, 52, 79, 85, 88, 138,
169, 170]. Various techniques exist for constructing this
trial space, and here we consider proper orthogonal decom-
position (POD) [19]. To construct the trial space through
POD, we assume access to an ensemble of snapshots at time
instances ', n =0, ... ,Nt.7 We collect these snapshots into
the matrix

7 In practice, snapshots are often collected at only a subset of the
time steps. Additionally, snapshots can be collected for a variety of
parameter values, in the case of a parametrized PDE.

S, = [u0 - Y]

The POD method seeks to find an X-orthonormal basis of
rank R < N (where N is the size of the FOM from which the
reduced basis is built) that minimizes the projection error

2

minimize Z u” —Zm , (17)

(98 bV, = .

where ¢; 1 Q > R, j=1,...,R, are ROM basis functions
and X denotes inner product type (e.g., HY(Q), L2(Q),
weighted L2(Q) [14]). The minimization problem (17) can
be solved via the eigenvalue problem

I(uEu = EuAu’

where [K,1; = m([S, 15, (S, ;) , € $"*;, and E, and A, are
the matrices associated with the eigenvectors and eigenval-
ues, respectively. Assuming the snapshot matrix is full rank,
it can be shown that the minimizer of the problem (17) is

¢ =S,E, /A" (18)
For each x € Q, we evaluate these basis functions at x and
assemble the ROM basis vector ¢p(x) = [q')](x) d)R(x)]
with ¢(x) € R™R. We then set V, = span{¢, ..., pg}. We

additionally note that, as V, C ), it directly follows that the
ROM basis vectors can be described with a linear combina-
tion of the FOM basis vectors, i.e., ¢(x) = v(x)C, where
C € R"*R is a coefficient matrix.

4.1 Galerkin Reduced-Order Models

The Galerkin ROM achieved after time discretization is: find
ureV,n=1,...,N, such that

u® — un—l
m<¢, - Atr > +m(eVe, Vu!)

+ m(d),b . Vu:‘) + m(qb, cru:‘) = m(¢,f), Vo e V..
(19)
Leveraging the ROM basis vector ¢, the Galerkin ROM
can be cast as the sequence of OAEs to be solved for %",
n=1,...,N,

1
rg_ (X% =0, (20)

where 8" € RF are the ROM “generalized coordinates” such
that the approximate state is defined as u” = ¢%", and the
residual operator is given by

c s (wz) > Mr[w_tz] +Bw-f,
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with B, eR™ . B =Bs¢.¢), M eR™,
M, =m(¢,$,), and f, € RF £ =m(¢,.f). The Galerkin

i

ROM formulation (19) corresponds to method I in Fig. 1.

4.2 Residual-Based Stabilized Reduced-Order
Models

Analogously to the FEM case, the Galerkin ROM can
lack robustness in the presence of sharp, under-resolved
gradients. In the present context, such a situation may
arise when the diffusion constant is small (relatively to
b) and not enough ROM basis vectors are employed to
capture the behavior of the solution of interest. A stabi-
lized ROM formulation can be written generally as: find
u'eV,n=1,...,N,, such that

n_ n—1
m<¢, %) + m(quS, Vuf) + m(d),b . Vu:') + m(gb,cru:')

+my (Qp, TR (u!,u'™")) = m(e.f). Vo eV,

2D
where Q can be any of the forms given in Eqgs. (9)-(14).
We consider the SUPG, GLSpg, ADJg, GLSgr, and ADJgy
ROMs as defined by the operators in Egs. (9)-(14). Leverag-
ing the ROM basis vectors yields the stabilized OAE system

to be solved for 8", n =1, ..., N,

rg_ (X" =0. (22)

The discrete residual of the stabilized discretization is given
by

rs_, @ (Wiz) = rg_ (w;z) + Qw — Ms—rAit s
with Q= ma(Qpy (L + L)) €RVE
fs_, = mel(Qd)i,Tf) € RR s a n d
Ms_,; = my(Qd;, th;) € RFR. The stabilized ROM for-
mulations (21) correspond to method II in Fig. 1.

In the literature, SUPG ROMs have been considered
in [18, 52, 82,94, 111, 118, 179, 180], amongst others.
To the best of our knowledge, ROMs based on GLS,
ADJpg, GLSgr, and ADJgy are novel.

4.3 Selection and Scaling of the Stabilization
Parameter, 7

Like in the standard FEM, the stabilized ROM form (21)
requires specification of the stabilization parameter 7. A
priori selection of this parameter in the context of ROMs is
not as well explored as in the standard FEM case. It remains
unclear, for instance, if the stabilization parameter should take
on a different value for the ROM as opposed to the full-order
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FEM discretization. While selecting a different value of 7 for
the ROM as the one used in the FOM would lead to a lack of
consistency between the ROM and the FOM, it may nonethe-
less improve the stability and accuracy of the ROM. To the
best of the authors knowledge, [52], which explores the selec-
tion of the stabilization parameter in the context of the SUPG
approach, is the only present study that examines the selection
of = within the ROM context. Specifically, [52] employs the
same strategy as that used in standard FEM: a SUPG-ROM
error bound is first proved, and 7 is chosen to minimize this
bound. However, since the ROM space is a subspace of the
FEM space, two types of inverse inequalities are used to prove
the SUPG-ROM bound: a standard FEM inverse inequality, and
a ROM inverse inequality [95]. These two inverse inequalities
yield two SUPG-ROM error bounds, which in turn yield two
7 scalings: a standard FEM scaling in which 7 depends on the
FEM mesh size, and a new ROM scaling in which = depends
on the ROM parameters (e.g., the ROM dimension, the POD
basis functions, and the corresponding eigenvalues). We note
that other approaches leveraging residual-based stabilization for
ROMs (see, e.g., [118]) use standard definitions of 7 inherited
from the FEM community in which case 7 depends on the FEM
discretization (as opposed to the resolution of the ROM basis).

5 Discrete Projection Reduced-Order
Models

ROMs developed through continuous projection operate in
a weighted residual setting defined at the spatially-contin-
uous level. ROMs developed through discrete projection,
however, perform model reduction at either the level of the
FOM ODE or FOM OAE; Ref. [29] shows that these two
approaches are equivalent for the Galerkin method. In this
work, we restrict our discussion to discrete projection-based
ROMs developed at the OAE level.

Discrete projection ROMs approximate the degrees
of freedom associated with the spatial discretization in a
low-dimensional (vector) trial space, aj(~ a;) € V, C RV,
n=0,...,N,, where V, is the discrete ROM trial subspace.
We again employ POD to construct this space. Towards this
end, on the vector space R we first define the P-weighted
inner product m,(-,-)p : (U, V) — U’PV, where P € SV is
a symmetric-positive definite weighting matrix. The asso-
ciated P-weighted norm is ||X||§, = x"Px. Next, we assume
access to an ensemble of snapshots of the FEM coefficients
at time instances ", n =0, ..., N,. We then seek a P-ortho-
normal basis of rank R that minimizes the projection error

minimize

NI
a" — PPTPa’ 3. 23
WERNXR PTPP=] nz::f) llay, llp 23)
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The solution to the minimization problem (23) can be
obtained via an eigenvalue problem or via the generalized
singular value decomposition; we present the former here.
We denote the snapshots of FEM coefficients as

N
3 ah,] e RVNAH

We note that S, = vS, . Defining the time correlation matrix
as K, =my (Sah, Sah)P’ we can leverage the eigenvalue
problem

K,E, =E, A,

to obtain the POD bases. The solution to the minimization
problem (23) can be shown to be

_ R R -
W =S5, EF/IAR ],

where Efl and Afh comprise the first R columns of E, and
the first R columns and rows of A, , respectively.

Remark5.1 Setting P; < m(vi, v]») » We can express the cor-
relation matrix as

Kahtij = m([suh]i’ [Suh]j)X’

which recovers the correlation matrix used in continuous
projection ROMs. Further, as S, = vS, , we can express

Eq. (18) as ¢p(x) = v(x)SahEu\ / Au_1 and we see that
P(x) = v(x)¥.

We emphasize that this result is well-documented in the
community, see, e.g., [122, 167].

5.1 Galerkin Reduced-Order Model

The Galerkin ROM developed through discrete projec-
tion is obtained by (i) making the substitution a} « W&",
n=0,...,N,, and (ii) restricting the residual of the FOM
OAE to be W-orthogonal to the vector trial space V,. Here
"€ RR n=0,...,N, are the ROM generalized coordi-
nates and W € SV is a weighting matrix inducing the inner
product m,(-, -}y : (U, V) = UTWYV with the associated W
-weighted norm ||X||%V = x"Wx; W may or may not be the
same as P. It is critical to note that the Galerkin ROM devel-
oped via discrete projection can be developed for any FOM
OAE,; e.g., the FOM OAE could associate with the Galerkin

8 For simplicity of presentation, we assume the FOM OAE to depend
only on the state at the current time instance and previous time
instance, as would be the case with an implicit Euler temporal discre-
tization.

FOM OAE (7), or it could associate with the stabilized FOM
OAE (19).
We denote the residual of a generic FOM OAE? as

r : (w;z) > r(w;z).

Examples of this residual are r = r for association with the
Galerkin FOM OAE (7) and r = rg for association with the
stabilized FOM OAE (15). The Galerkin ROM obtained via
discrete projection yields the OAE system to be solved for

an
X',n=1,...,N,

ro_prom X" =0, (24)

where the residual of the discretely projected Galerkin ROM
is given by

rG_prom - (W;z) = m, (¥, r(¥w;¥z))y .

The discrete Galerkin ROM formulation (24) corresponds to
methods III and VI in Fig. 1, depending on the underlying
FEM model.

Remark 5.2 Setting P; < m(v,,v;) ,, in optimization prob-
lem (23), and W « I, r < rg in problem (24), the Galer-
kin ROM obtained via discrete projection (24) recovers the
Galerkin ROM obtained via continuous projection (20).

Remark 5.3 Analogously to Remark 5.2, setting
Pij — m(vi, Vj)X in optimization problem (23), and W « 1,
r < rgin problem (24), the Galerkin ROM obtained via dis-
crete projection (24) recovers the stabilized ROM obtained

via continuous projection (22).

5.2 Least-Squares Petrov-Galerkin Reduced-Order
Model

Similar to the continuous Galerkin ROM, the discrete Galer-
kin ROM has been observed to yield inaccurate or unstable
solutions in a variety of settings and thus various stabiliza-
tion approaches have been developed for discrete ROM:s.
The LSPG approach comprises one particularly popular
stabilization approach for discrete ROMs [24, 26, 29, 30].
LSPG operates by computing a sequence of solutions X",

n=1,...,N, that satisfy the minimization problem
" = argmin ||r(Py;P" 1%, 25)
JERR

where r is again the residual of the FOM OAE. The optimi-
zation problem (25) can be solved via the first-order optimal-
ity conditions, which yield the sequence of algebraic equa-
tions forx",n=1,...,N,
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m,g (g—;(‘l’ﬁ")\lﬂ (WY ;\152””)) —0,
W

where g—; is the Jacobian of the residual r(-, -) with respect to

the first argument. In the case r « rg, the optimality condi-
tions become

md(MT‘tP +BY, rG(\I‘ﬁ";‘I‘ﬁ"‘l))w - 0.

We see that LSPG takes the form of a Petrov—Galerkin ROM
and hence we classify it as a residual-based method. The
LSPG ROM formulation (25) corresponds to methods IV
and V in Fig. 1, depending on the underlying FEM.

Remark 5.4 (LSPG can correspond to a continuous minimi-
zation principle.) Setting r < r; and W < M~ in optimi-
zation problem (25), LSPG corresponds to the continuous
minimization principle for u,n=1,....N,

2
u’ = arg min /(RPB(U;U:’_I)) dx, (26)
o

uev,
where
Rg D (wiz) - VM_lm(v, Rcdr(w;z))
and

Rear = (W;z) = %—szw+b-Vw+aw—f.

LSPG computes the solution u? within the ROM trial space
V. that minimizes the L*(Q)-norm of the time-discrete, spa-
tially continuous residual projected onto the finite element
trial space V,. The full derivation for this equivalence is
presented in Appendix 2.

Remark 5.5 For the case r « rg, it is not clear if LSPG cor-
responds to an underlying residual minimization principle
defined at the continuous level.

5.2.1 Selection of the Time Step, At

While LSPG does not contain a stabilization parameter, its
performance depends on the time step and time integra-
tion scheme [29]. This is due to the fact that changing the
time step (i) modifies the error incurred due to temporal
discretization and (ii) modifies the LSPG minimization prob-
lem (i.e., the time-discrete residual changes). As a result,
LSPG yields best results at an intermediary time step [29].
LSPG lacks robustness for too small a time step (in the limit
At — 0 LSPG recovers the Galerkin approach [29]) and too
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large a time step. Minimal work has examined the a priori
selection of an appropriate time step.

5.3 Adjoint Petrov-Galerkin reduced-Order Model

The final residual-based stabilization technique considered
in this work is the APG method [121]. APG is a VMS-based
approach for constructing discrete ROMs, and is derived
from a time-continuous ODE setting. APG is derived via a
multiscale decomposition of R¥ into a coarse-scale, resolved
trial space V, and a fine-scale, unresolved trial space, V;
such that RV =V, @ V. The impact of fine scales on the
coarse-scale dynamics is then accounted for by virtue of
the Mori—Zwanzig formalism and the variational multiscale
method [121]. Setting P « M in (23), associating with the
Galerkin FOM OAE (7), and using the implicit Euler method
for time-discretization, APG yields the sequence of OAE’s
to be solved for f(l, ,)?IN',

X% =0, 27

The APG residual is given by

rara : Wi2) = (1= 7 A1 [B]" ) W o (¥w:¥n) ) |

T
where A’ =M™ —WW7, A’ : RV — V/, and 7,p5 € R,
is a stabilization parameter. The full derivation for APG is
provided in Appendix 3.

Remark 5.6 The APG approach displays conceptual similari-
ties with adjoint stabilization and the (quasi-static) orthogo-
nal subscales (OSS) approach from the variational multi-
scale method [10, 40, 130]; see Ref. [121] for details. There
is no clear direct equivalence between these approaches,
however. This is a result of APG being formulated at the
discrete level, while adjoint stabilization and orthogonal
subscales are formulated at the continuous level.

Like LSPG, APG could also associate with a stabilized
FOM. Some of the stabilized FEM formulations considered
in this work, however, are developed at the time-discrete level
(e.g., ADJg and GLSpg). As APG is derived from a time-
continuous setting, it is not straightforward to construct an
APG ROM of all stabilized formulations, and we only consider
the SUPG, GLSgr, and ADJg FEM models. We note that this
is due to the fact that the test functions in these formulations do
not contain terms of the form é. The APG ROM associating
with one of these stabilized FEM models is obtained by set-
ting P < M in (23), associating with the stabilized FEM OA
E (7) with @ < Qpg_supg> Dst_cLs» OF Lsr_apy> and using
the implicit Euler method for time-discretization. This process

yields the sequence of OAE’s to be solved for g L)Y
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rapg_s (X% =0, (28)
where
rapoos © (Wiz) = ((I=7,p6[AT B + Q" )W, rs(¥w;Wz)) .

The APG ROM formulation (27) corresponds to method IV
Fig. 1, while the APG ROM formulation (28) corresponds
to method V in Fig. 1.

5.4 Summary of Remarks for Discrete ROMs

A summary of the remarks provided in this section is as
follows:

e The discrete POD basis recovers the continuous POD
basis. The POD bases obtained through discrete projection
recover the POD bases obtained through continuous pro-
jection under the conditions P; < m(vi, vj)  Inoptimiza-
tion problem (23).

e The discrete Galerkin ROM recovers the continuous
Galerkin ROM. The discrete Galerkin ROM recovers the
continuous Galerkin ROM under the conditions W « 1
in problem (24), Pij « m(vi, vj) ¥ in optimization prob-
lem (23), and r « rg in problem (24).

e The discrete Galerkin ROM recovers stabilized ROMs.
The discrete Galerkin ROM recovers the stabilized con-
tinuous ROM under the conditions W « Tin problem (24),
P, — m(v,, vj)  inoptimization problem (23), and r < rg
in problem (24).

¢ LSPG mimics a continuous L*(Q2) minimization prin-
ciple. LSPG mimics a continuous L?(Q) minimization
principle under the conditions r < rg and W « M~ 'in
optimization problem (25).

¢ APG displays similarities to adjoint stabilization. Simi-
lar to APG, ADIJ can also be derived from the variational
multiscale method. For transient systems ADJ results in a
set of equations that are conceptually similar to APG, but
without the appearance of an orthogonal projector. We note
that FEM approaches for orthogonal subscales do exist,
e.g., [10, 40, 130], and APG also displays similarities with
these approaches.

6 Brief Survey of Numerical Analysis
of Residual-Based ROM Stabilizations

In this section, we summarize the numerical analysis results
that are currently available for the residual-based ROM sta-
bilizations presented above. Specifically, we discuss the
consistency, stability, and error bounds for these methods.
We emphasize that this is just a brief summary of the exist-
ing results and reflects only our own view on the topic.

Furthermore, we note that these definitions are not neces-
sarily agreed upon.

6.1 Consistency

We start by considering consistency. For ROMs, two types
of consistency can be considered, and for concreteness we
use the following terminology:

e Type 1: (Time-discrete) PDE consistency. The ROM
weak form holds when evaluated at the PDE solution,
u? < u?, assuming u’} € H?(Q). We note that Type 1 con-
sistency is only relevant for continuous ROMs, as dis-
crete ROMs have no notion of the underlying PDE. We
also note that Type 1 consistency is the consistency con-
cept used for classical numerical methods (e.g., FEM).

e Type 2: FOM consistency: The ROM weak form holds
when evaluated at the FOM solution from which it is
constructed. For continuous ROMs, this condition states
that the weak form holds under the substitution u; « uj.
Analogously for discrete ROMs, the “discrete weak
form” holds under the substitution a7 < aj.

Remark 6.1 (Model Consistency) A ROM is model consist-
ent if the same stabilization method is used in the FOM and
ROM. We note that, when the same parameters are used in
the FOM and ROM (i.e., we have parameter FOM-ROM
consistency [158]), model consistency is a special class of
Type 2 consistency. In [118] (see also [52]), the authors have
argued both numerically and theoretically (in particular, see
Section 3.3 and Proposition 3.1 in [118]) that using the same
type of stabilization (i.e., SUPG) in the FOM and ROM
yields more accurate ROM results. More recently, model
consistency for the evolve-filter-relax ROM [158] (which is
a spatial filtering-based stabilization, such as those described
in Appendix 1) was shown to increase the ROM accuracy.

6.1.1 Continuous Residual-Based ROM Stabilizations

Continuous Galerkin ROMs. The continuous Galerkin ROM
is Type 1 and Type 2 consistent. Type 1 consistency follows
directly from setting v = ¢ in the weak form (4), where we
have leveraged V, C H(l)(Q). Analogously, Type 2 consist-
ency is shown from setting v = ¢ in the weak form (5). We
note that, assuming a consistent FOM, Type 2 consistency
automatically implies Type 1 consistency. This allows for a
priori convergence analyses of continuous Galerkin ROMs
with respect to the FOM solution as well as the solution to
the governing continuous PDEs, as discussed in Refs. [67,
87, 139]. We emphasize that, in order to maintain Type 2
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consistency for a continuous Galerkin ROM, it is impor-
tant to employ the same spatial and temporal discretization
method in building the ROM as the one employed in build-
ing the FOM.

Continuous stabilized ROMs. Like continuous Galerkin
ROMs, the SUPG, GLSpg, and ADJg stabilized ROMs
(developed through both the discretize-then-stabilize and
space—time formulations) are Type 1 and Type 2 consistent.
These stabilized formulations display Type 1 consistency
as the stabilization term vanishes when evaluated about the
PDE solution; the term vanishes as the residual evaluates
to zero for the PDE solution (assuming the solution is suf-
ficiently regular). Type 2 consistency follows directly from
setting v = ¢ in the stabilized weak form (8), where we have
leveraged V, C V.

6.1.2 Discrete Residual-Based ROM Stabilizations

Discrete Galerkin ROMs. The discrete Galerkin ROM dis-
plays Type 2 consistency with the FEM model from which it
is constructed. We show this by first settingay,n = 1,..., N,
to be the FOM solution obtained from the Galerkin FOM (7).
Making the substitutional < aj,n =0, ..., N, itis straight-
forward to see that Eq. (24) is satisfied under the condi-
tionsr « rgasrg(al,a’~") = 0,n = 1,..., N,. Analogously,
let aﬁ, n=1,...,N, be the FOM solution obtained from a
stabilized FOM (15). Making the substitution al « a’,
n=0,...,N, it is again straightforward to see that (24) is
satisfied under the conditions r « rg as rs(aﬁ,aﬁ‘l) =0,
n=1,...,N,

Discrete Stabilized ROMs. Like the discrete Galerkin
ROM, discrete stabilized ROMs display Type 2 consistency
with the FEM model from which they are constructed. As
both LSPG and APG can be written as a Petrov—Galerkin
method, Type 2 consistency follows from the same argu-
ments as the discrete Galerkin ROM.

Remark 6.2 The residual-based stabilizations examined here
all display Type 2 consistency,’ and all continuous ROMs
display Type 1 consistency. We emphasize that, while all
methods considered here are consistent within the setting
described above, this does not hold for all stabilized meth-
ods. Stabilization approaches based on, for example, eddy
viscosity approaches [78] typically do not display Type 1
consistency.

6.2 Stability

Stability properties of the ROM depend on the type of pro-
jection, and are a driving factor in the ROM development.

° Formally, these methods are Type 2 consistent only if the same sta-
bilization parameters and time steps are used in the FOM and ROM.
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Here, we highlight the stabilization properties of the various
ROMs considered. For concreteness, we restrict our discus-
sion to stability within the context of the CDR equation.

6.2.1 Continuous ROMs

For continuous ROMs, we define a stable formulation as one
whose spatial bilinear form is strongly coercive. For continu-
ous ROMs, coercivity is defined by

B(u,u) > Cljull? (29)

for some C € R, . In the above, B denotes a bilinear form,
and|| - ||%, denotes a norm associated with the formulation.

Remark 6.3 If the spatial bilinear form is strongly coercive,
then the fully discrete bilinear form associated with an
implicit Euler discretization in time is also strongly coercive.

Coercivity of the spatial bilinear form guarantees bound-
edness of the solution, i.e., for finite n and some f§ > 0,

Iu™lly < BIF My, (30)

where f" is the data at the nth time step.

Remark 6.4 Stability vs. accuracy. Before proceeding, we
make the important point that a stable ROM does not neces-
sarily imply an accurate ROM, and, often times, terminolo-
gies between instabilities and inaccuracies are mixed. As
an example, for the CDR equation, the constants C and f
in (29) and (30) depend on the diffusion parameter, €. It can
be shown that the continuous Galerkin ROM has f§ — o as
€ — 0. Thus, for small € values, the stability constant § can
be very large. As a result, although the standard Galerkin
ROM may be formally stable (in the sense of (30)), it can
be extremely inaccurate and display spurious oscillations.
These spurious oscillations are often viewed as instabili-
ties. We emphasize that this is not just a theoretical issue.
In practical ROM computations of convection-dominated
systems (i.e., when € is very small), the standard Galerkin
ROM approximation—while mathematically stable—can
indeed display large, spurious numerical oscillations (just
as in the FEM setting [135]). Although these oscillations are
often referred to as instabilities, we emphasize here that they
are large, but bounded (by the large stability constant ).

With this in mind, we now outline stability properties of
the various formulations in the sense of the definition (29).

¢ Continuous Galerkin ROM. Coercivity of the con-
tinuous Galerkin FEM model has been demonstrated in
numerous contexts (see, for example, Ref. [159]), and it
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is straightforward to show that the continuous Galerkin
FEM model is stable in the sense
2

BG(U, U) 2 C”U”G, (31)

2 _ 2 2
where JullZ = ollull2, , +ellVull2, o
that this coercivity property guarantees boundedness of
the solution. For instance, under a suitable time-step
restriction, the Galerkin method with a 8-scheme for tem-

poral discretization can be equipped with the stability
bound

We emphasize

tn
u? < lu + C4q/ — max ||f®)|l2
[ h||L2(Q) <l 0,h||L2(g) \/:te[O,T] F®ll . @

for a constant C that depends only on Q. See, e.g., Prop-
osition 12.2.1 in [127]. In the limit of € — 0, the stability
statement (31) loses control over the gradient. Hence, the
Galerkin method is stable, but not robust in the limit of
€ — 0. The stability of the continuous Galerkin ROM
follows along the same lines as that for the continuous
Galerkin FEM model [95, Theorem 5].

Continuous SUPG ROM. Coercivity of the SUPG FEM
model has additionally been demonstrated in various
contexts (see again Ref. [159, pg. 494], or Refs. [52, 83]).
Coercivity of the SUPG FEM model depends on inverse
estimates, and it is fairly straightforward to show that for
some 7 € [0, T;UPG], where T§UPG is a grid and parameter
dependent upper threshold on z, the continuous SUPG
FEM model is stable in the sense

2
BS(U7 U) Z C”u”SUpgv (32)
Nej
where [|ull§ g = ollully, o, + €llVully, o + 7 Z2 b V””fzmky

We note that, in the limit that € — 0, the stability state-
ment (32) maintains control over the gradient of the state
in the streamline direction. Thus, the SUPG method is
stable and robust in the limit of ¢ — (. As a result, we do
not expect the accuracy of the method to deteriorate for
small e. We additionally note that ||ul|gypg = |lullg, SO
that SUPG is more dissipative than Galerkin. The stabil-
ity of the continuous SUPG ROM follows along the same
lines as that for the continuous SUPG FEM model (see,
e.g., [52, Lemma 3.3]).

Continuous GLS,3 ROM. Stability of GLS is given in
Ref. [75] in the steady case. Coercivity is straightforward
to demonstrate as GLS adds a symmetric non-negative
term to the bilinear form. As GLSyyq is equivalent to the
steady case but with a modified source term, the analysis
in Ref. [75] is directly applicable and results in the stabil-
ity statement

BS(U’U) Z C”U”éLS, (33)

w h e r e

llull?

_ 2 2 Nel p . 1), _ 2
B = ol g +ellVul, )+ T b Vut (o4 4 Ju=edul

2@ 2@y’
note that GLSpg is stable for non-negative values of 7.
Like SUPG, the stability statement (33) maintains control
over the gradient of the state in the streamwise direction
in the limit € — 0. Thus, GLS is stable and robust in the
limit of ¢ — 0. We additionally note that ||u ||éLS depends
on the time step At. For very small time steps, the stabil-
ity statement (33) deteriorates. It is worth noting that
some definitions of the r scale with Az. The stability
statement (33) is still not robust in this setting as all sta-
bilization terms drop other than the u/A¢ contribution,
which provides no additional control over the gradient of
the state. The stability of the continuous GLS ;¢ ROM
follows along the same lines as that for the continuous
GLSpg FEM model.

Continuous ADJ,; ROM. Coercivity of the ADJ FEM
model has been demonstrated for the steady convection
diffusion reaction equation [48]. As ADJg is equivalent
to the steady case but with a modified forcing term, the
stability statement presented in Ref. [48] applies. The

stability statement is given as: for0 < 7 < 7y,
2
BS(U, U) 2 CllullADJ’ (34)
N, 1
where ju2 = 3 ((o‘+ E)akllu\\zz(ﬂk) +eak||VUHiz(ﬂk)+er-Vu|Iiz(nk)>

with @, being a constant that depends on the mesh,
parameters, and inverse estimates. We again observe
more robust behavior in the limit of € — 0 as well as a
dependence on the time step Af. We again expect poor
behavior in the limit of A# — 0 as coercivity is dominated
by the i term. We further note the ADJ,s ROM is subject
to the same issues as the GLS, ROM for the case where
the stabilization constant scales with Az. The stability of
the continuous ADJ,g ROM follows along the same lines
as that for the continuous ADJ, FEM model.
Continuous GLSy; ROM. Coercivity of the GLSg;
FEM model was demonstrated in one of the original ref-
erences on GLS [75] by virtue of the formulation adding
a symmetric term. We note that, here, we include the
( u" -yt ) /At term in the definition of our residual to
retain consistency for the p = 0 DG trial space, and as a
result the analysis in [75] does not directly extend to the
current case.'” We also note that the space—time formula-
tion was advocated in the original reference [75].
Continuous ADJs; ROM. Coercivity of the ADJg;
FEM model applied to the unsteady convection—diffu-
sion—reaction equation has not been demonstrated to the
best of our knowledge.

10 We found that this term makes little difference in practice.
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6.2.2 Discrete ROMs

We now consider stability of the various discrete ROMs dis-
cussed above. For the following analysis, we introduce the
following notation for a generic discrete ROM as

in _ ﬁn—l o

ET +GxX" = fn,

where E € RPR is a “mass matrix” (e.g., E = ¥ MW for the
discrete Galerkin ROM of the Galerkin FEM), G € R**Ris a
“dynamics” matrix, f* € R¥ is a forcing vector, and 8" € R¥
are the reduced coordinates. We define a stable discrete
ROM as one whose “mass” matrix E is symmetric positive
definite and whose dynamics matrix G is positive definite,
ie.,

vIGv >0, VveRR\{0}. (35)

We emphasize that this is analogous to coercivity in finite
dimensional spaces since (35) ensures positive definiteness
in any weighted #2 norm.

To proceed, it is first helpful to note that the continuous
Galerkin FEM model (7) results in the system

no_ an—l

M2 4+ (A+eD+oMa’ =f,

At h
where A = m(vi, b- ij) is the convection matrix,
D= m(Vvi, ij) the symmetric positive definite diffusion
matrix, and M = m(v,,v;) the symmetric positive defi-
nite mass matrix. We note that v/ Av = 0, v/ Dv > 0, and
vIMv > 0 Vv € R¥\{0}. For notational simplicity, we
define B =A +¢D + oM.

e Discrete Galerkin ROM with W = 1. As the discrete
Galerkin ROM of the continuous Galerkin FEM model
with W =1 is equivalent to the continuous Galerkin
ROM, stability is implied. It is further straightforward
to show that v/ By > 0 Vv € R\ {0} at the discrete level
directly. The Galerkin discrete ROM constructed from
the Galerkin continuous ROM results in the dynamics
matrix

Gg =Y/ (A +eD + ocM)WV.
It is straightforward to see that
vIGgv = ellvIly, +ollvily, >0,

where D, = Y"DW. We note the above is simply the
discrete equivalent to the inequality (31). We additionally
note that €||v||]2)‘ + 6||V||12v[ is the discrete statement of a

weighted H' () norm that approaches a o-weighted dis-
crete L2(Q) norm as ¢ — 0.
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It is less straightforward to demonstrate that G is posi-
tive definite for the discrete Galerkin ROM constructed
from a stabilized FEM model. However, as the discrete
Galerkin ROM dynamics recover the continuous Galer-
kin ROM dynamics under the condition W « I, these
ROMs can be expected to obey the same stability proper-
ties as their continuous counterparts.

¢ Discrete LSPG ROMs. To the best of our knowledge, no
result exists in the literature demonstrating stability of a
discrete LSPG ROM constructed from a Galerkin FEM
FOM in the sense of (35). Stability analyses for LSPG
have been carried out in other contexts; for instance,
Ref. [71] demonstrates that, for LTI systems, LSPG with
orthonormal bases results in an asymptotically stable
ROM if the underlying FOM is asymptotically stable.'!

In the present context, one can show that a discrete
LSPG ROM of the continuous Galerkin FEM model con-
structed in the inner product W « M~ results in a mass
matrix E = Y"MY and a dynamics matrix

Grgpg =" [B+B'|¥ + ArP"B'M'BW.

Since E = ¥Y"MY is symmetric positive definite, the
inequality v/ Bv > 0 Vv € RV\ {0} holds for the continu-
ous Galerkin FEM, and v/ B'M™'Bv” > 0Vv € RY \ {0}
due to B"M™'B being symmetric positive definite, stabil-
ity is implied.

From our analysis of the LSPG ROM applied to the
Galerkin FEM model, it is straightforward to see that
if the FOM has a symmetric positive definite mass
matrix and a positive definite dynamics matrix, then the
resulting LSPG ROM constructed in the inner product
W = M~ will be stable in the sense of (35).

e APG ROMs. The APG ROM is derived from a formu-
lation of the Mori—Zwanzig formalism, and a stability
analysis has been undertaken for a model displaying a
structural equivalence to APG in Ref. [65]. This analysis
demonstrates that the so-called +~-model (which is equiva-
lent to APG for 7 set to #) will be be dissipative when
applied to a system that is energy conserving; this result
directly implies a positive definite dynamics matrix.
However, no result exists in the literature demonstrat-
ing stability of the APG ROM for systems that dissipate
energy.

6.3 Error Bounds
We now summarize existing numerical analyses that attempt

to bound the ROM error for the CDR system. We note that
a priori error bounds for POD-based methods are typically

' No mass matrix was considered; it is known that treatment of the
mass matrix can impact the performance of ROMs [6].
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limited to reproductive cases (unless some assumption is
made on the solution manifold), while a posteriori error
bounds are typically valid in both the reproductive and pre-
dictive regime.

6.3.1 Continuous ROMs

Continuous Galerkin ROMs. As a continuous Galerkin
ROM arises from the Galerkin approximation of the CDR
equation in a POD (or reduced-basis method (RBM)
) subspace, its a priori error bound can be derived by
leveraging the FEM error analysis for parabolic PDEs
[161] together with the approximability properties of the
POD [95] or RBM [67, 126] space. For example, error
bounds for the POD-Galerkin ROM constructed using
continuous projection were derived for parabolic linear
systems and certain nonlinear systems by Kunisch and
Volkwein in Ref. [95]. In a follow-up paper, the authors
derived error bounds for equations pertaining to fluid
dynamics [96], e.g., the two-dimensional incompress-
ible Navier—Stokes equations. New error bounds were
proved by Singler [152], who derived exact expressions
for the POD data approximation errors considering four
different POD projections and two different Hilbert space
error norms. Error bounds for the RBM-Galerkin ROM
constructed using continuous projection were derived
for parabolic problems in [56, 57, 64], the convergence
of POD-Greedy algorithm was analyzed in [63], and
sharper error bounds using space-time formulations were
obtained in [164, 177]. We emphasize that these Galerkin
ROM error bounds for parabolic PDEs grow with the
inverse of the coercivity constant, which scales with e for
the CDR system. Hence, there is no guarantee that the
continuous Galerkin ROMs will provide an approxima-
tion comparable to the best-fit approximation in the limit
ofe = 0.

It is worth noting that error bounds and convergence
analyses exist for ROMs built using continuous Galer-
kin projection for PDEs other than the CDR equation,
e.g., hyperbolic equations. In [87], for example, Kalash-
nikova and Barone derived a priori error estimates for
an energy-stability-preserving ROM formulation devel-
oped in [14] for linearized compressible flow. These error
bounds were derived by adapting techniques traditionally
used in the numerical analysis of spectral approximations
to PDEs [51] and employed a carefully constructed sta-
ble penalty-like implementation of the relevant boundary
conditions in the ROM.

Continuous SUPG ROMs. Error analysis of the SUPG
ROM was undertaken recently in Ref. [82], where it was
demonstrated that the SUPG ROM could be equipped
with robust error estimates that do not deteriorate as
€ — 0. These estimates bound the error between the

SUPG ROM solution and a corresponding SUPG FEM
solution. To obtain Af-independent error bounds, the
authors employed POD snapshots that included the time-
difference quotients [92, 95]; without these coefficients
the resulting error bounds depend on Az. In numerical
experiments, however, it was observed that including
the time-difference quotients did not lead to improved
results, and thus the authors believe an important open
question is the derivation of Az-independent bounds
for the case where the time-difference quotients are not
included in the bases. Lastly, we note that Ref. [82] sup-
ports previous analysis of the SUPG ROM in [52].
Other stabilized ROMs. To the best of our knowledge,
no error analysis exists for the other stabilized ROMs
considered here. We do note that error analyses have
been done for the corresponding FEM formulations. We
also note that error analysis exists for stabilized ROMs
that are not residual-based, such as those outlined in
Appendix 1 (see, e.g., Refs. [8, 21, 46, 78, 79, 129, 134,
141, 176]).

6.3.2 Discrete ROMs

e Discrete Galerkin ROM. Due to the equivalence

between a discrete Galerkin ROM and its continuous
counterpart, the error bounds derived for the continuous
Galerkin ROM are applicable to the discrete Galerkin
ROM constructed on top of their corresponding contin-
uous FEM system. Various authors have derived error
bounds for the discrete Galerkin ROM in a more generic
context. In Ref. [128], error bounds are derived for the
discrete Galerkin ROM within the context of a linear and
nonlinear dynamical system x = f(x). Analogously, Ref.
[29] derives error bounds for the discrete Galerkin ROM
for OAEs arriving from linear multistep and Runge—
Kutta time discretizations of x = f(x). In the general
nonlinear case, these error bounds depend on difficult-
to-compute Lipschitz constants, grow exponentially in
time, and lack sharpness. No error analysis of the discrete
Galerkin ROM specialized to the CDR system exists to
the best of our knowledge.

LSPG ROMs. A priori and a posteriori upper error
bounds for LSPG ROMs applied to generic time-discrete
nonlinear dynamical systems are derived in Ref. [29].
These error bounds rely on the assumption of Lipschitz
continuity of the nonlinear right-hand side velocity oper-
ator, which can be related to coercivity in the linear set-
ting. The bounds demonstrate that the upper error bound
of the LSPG ROM grows exponentially with the number
of time steps, and that this upper error bound can be
bounded by the maximum residual over a given time step.
Further, [29] shows that LSPG can be equipped with an
a posteriori upper error bound lower than the Galerkin
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Table 1 Summary of Gal.

SUPG GLS ADJ GLS ADJ
continuous ROMs investigated DS DS ST ST
ROM OAE Eq.(20) Eq.(22) Eg. (22) Egq. (22) Egq. (22) Eg. (22)
Conditions  N/A Q=0Cpssrc 2=C%s-os <2=%ps-amr 2= Dsras 2= Dsr-amy
Table 2 Summary of LSPG G-LSPG SUPG-LSPG GLSpgLSPG ADJpsLSPG GLSg-LSPG ADJLSPG
ROMs investigated
ROMOAE  Eq.(25) Eq.(25) Eq. (25) Eq. (25) Eq. (25) Eq. (25)
FOMOAE  Eq.(7)  Eq.(15) Eq. (15) Eq. (15) Eq. (15) Eq. (15)
Conditions N/A Q=0Cpssutrc 2=C%ps-aLs 2= %ps-amr 2= srars L= Lsr-ams
Inner product W=M"' W=M"! W=M" wW=M"' W=M" w=M"
ROM. The bounds presented in Ref. [29] are derived for ~ Table3 Summary of APG ROMs investigated
the case thire there is no mass matrix, and sl'larpness of G-APG SUPG-APG GLSy APG ADJsAPG
the bounds is not addressed (thus, LSPG having a lower
“upper bound” than Galerkin is not a robust statement =~ ROMOAE  Eq. (27) Eq.(28) Eq. (28) Eq. (28)
of accuracy). Again, no error analysis of LSPG ROMs  FOMOAE  Eq.(7) Eq.(15) Eq. (15) Eq. (15)
specialized to the CDR system exists to the best of our ~ Conditions  N/A Q= Qpg supg €= Qsr_cLs 2= Lsr-ans
knowledge. Inner prod- W=1 W=1I W=I W=I
uct

e APG ROMs. Ref. [121] derives a priori error bounds for
the APG ROM for nonlinear dynamical systems and lin-
ear time-invariant dynamical systems. In the linear case,
it is shown that, for sufficiently small z, the upper bound
on the error in the APG ROM is lower than in the Galer-
kin ROM. Similar to LSPG, however, the bounds are
presented for the case where there is no mass matrix and
sharpness is additionally not addressed (again, APG hav-
ing a lower “upper bound” than Galerkin is not a robust
statement of accuracy). Once again, no error analysis of
APG ROMs specialized to the CDR system exists to the
best of our knowledge.

6.4 Selection and Scaling of the Stabilization
Parameter, 7

Lastly, we comment on analyses for selecting the ROM sta-
bilization parameter. In standard FEM, numerical analysis
arguments are generally used to determine the scaling of the
stabilization parameter, 7, in residual-based stabilizations
(see, e.g., the survey in [135]). The general approach used
to determine the 7 scaling is to (i) prove error bounds for the
stabilized method, and (ii) choose a r scaling with respect to
the discretization parameters (e.g., the mesh size h and the
time step At) that ensures an optimal error bound.

For residual-based ROM stabilizations, one heuristic
approach for choosing the stabilization parameter, z, is to
use the same value as that used in the standard FEM (see,
e.g., equation (13) in [118], equation (20) in [94], and equa-
tion (10) in [111]). We note that this approach is purely heu-
ristic and does not use the numerical analysis arguments
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generally employed for standard FEM residual-based stabi-
lized methods [135].

A fundamentally different approach, which utilizes numerical
analysis arguments to determine the 7 scaling, was proposed in
[52] for the SUPG-ROM. As explained in Section 3.5.1 in [52]
(see also Sect. 4.3 of the present paper), since the ROM space is
a subspace of the FEM space, two types of inverse estimates can
be used to prove optimal error estimates for the SUPG-ROM: (i)
a FEM inverse estimate, which yields the standard FEM scal-
ing in which = depends on the FEM mesh size, and (ii) a ROM
inverse estimate [95], which yields a new ROM scaling in which
7 depends on the ROM parameters (e.g., the ROM dimension,
the POD basis functions, and the corresponding eigenvalues).
The preliminary numerical investigation in [52] suggests that the
FEM 7 scaling yields more accurate results for large R values,
but the ROM 7 scaling is competitive for low R values. Fur-
ther theoretical and numerical investigation is needed in order
to determine optimal 7 scalings for residual-based stabilized
ROM:s.

7 Numerical Experiments

7.1 Overview

We now present several studies to numerically assess the
various ROM formulations for the CDR equation (1).

We first provide specifics on the setup of the numerical
experiments.
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7.1.1 Investigated ROMs and Implementation Details

Table 1 details the continuous ROMs we investigate, while
Tables 2 and 3 detail the LSPG and APG ROMs investi-
gated. For continuous ROMs, we investigate the Galerkin,
SUPG, ADIJ, and GLS ROMs, as detailed in Sect. 4.2. For
ADIJ and GLS, we investigate formulations developed both
through the “discretize-then-stabilize” approach (DS) and
the “space—time” approach (ST), as discussed in Sect. 3.2.
For discrete ROMs, we examine (1) LSPG ROMs based
on the Galerkin FEM, SUPG FEM, ADJ,q FEM, ADJg;
FEM, GLS5 FEM, and GLS¢; FEM, and (2) APG ROMs
based on the Galerkin FEM, SUPG FEM, GLS¢; FEM,
and ADJgr FEM. In what follows, we will abbreviate these
discrete ROM formulations as “FEM type—discrete ROM
type”, e.g., “SUPG-LSPG” denotes an LSPG ROM of the
SUPG FEM. All in all, we consider 16 ROM formulations.
All ROMs employ the implicit Euler method for temporal
discretization. The numerical experiments are carried out in
the FEniCS package [5, 104-106]. We emphasize that sta-
bilization is carried out both at the FEM level and the ROM
level; this will be detailed in subsequent sections. Lastly,
we additionally note that all experiments will focus only on
reproductive ROMs.

7.1.2 Metrics

We use as metrics the (discrete) time-integrated relative
L*(Q) error and the (discrete) time-integrated relative HY(Q)
error between the ROM solution and best-fit solution (i.e.,
the error between the ROM solution and the FOM solution
projected onto the trial space). The time-integrated L*(Q)
relative error is defined as

N 2
2 v = PO, )

ELZ(V) = N
Zntzl ”I]:DLZ(V)U:E”[%Z(Q)

(36)

where P,.(V) is the orthogonal L*(Q) projector onto V. For
ROMs, we measure the e, ( Vr) error, which measures the
error between the ROM solution and the FOM solution pro-
jected onto the ROM trial space. For FEM solutions, we
similarly measure the ;> ()}, ) error. Analogously, the rela-
tive H'(Q) error is defined as

Nr n n|2
Zn:l |ur - IPHI (]/)U* HI(Q)

N, 2
S B D

e (V) = (37)

where | - 1, is the H'(Q) semi-norm and P, (V) is the
orthogonal projector onto V in the H' () semi-norm. We
note that, in our studies, we execute the ROMs for varying

12 This is done because the time step size impacts the stabilization.

time step sizes,'” and as a result the ROM is executed on a
different time grid than the high resolution FOM solution.
We design our studies such that the ratio of the ROM time
step to the high resolution time step is always a positive
integer. The summations in Eqs. (36) and (37) are then per-
formed on the coarser ROM time grid.

7.1.3 Construction of ROM Trial Space

To construct the ROM basis functions, we use the following
two criteria:

1. We consider a realistic setting for convection-dominated
problems. To this end, we use an under-resolved FOM
trial space, just as in the numerical simulation of realis-
tic, convection-dominated (e.g., turbulent) flows.

2. We ensure fairness of the numerical comparison. Specif-
ically, we require all the stabilized ROMs use the same
ROM basis, which is generated without using stabiliza-
tion.

To satisfy the first criterion (i.e., a realistic, under-resolved
regime), we examine cases where the underlying FEM
requires stabilization (this is the relevant case for real-world
applications), and, as such, examine the scenario where
the FEM trial space is under-resolved such that our FEM
requires stabilization to be accurate. The natural approach
to generate the ROM trial space in this setting is to (i) solve
a FOM, which comprises a stabilized FEM model, and
(ii) leverage the solution data to construct the ROM trial
space. The ROM is then executed with the same stabilized
form used to generate the snapshots; this is the so-called
“offline—online stabilization strategy” outlined in Ref. [4]
(see also [158]), which comprises a form of model consist-
ency. This procedure, unfortunately, makes it difficult to
ensure a fair comparison of the performance of different
ROM stabilization techniques (i.e., to satisfy the second cri-
terion listed above). For example, if we generated the FOM
solution with SUPG, then comparing SUPG ROM solutions
to LSPG ROM solutions becomes unfair. As a result, we are
not using this approach to construct the ROM basis for the
stabilized ROMs used in our numerical investigation.

To circumvent this issue, we generate the ROM trial
spaces by projecting “truth data” onto a FOM trial space.
As the problems we analyze in this section do not have ana-
lytical solutions, we generate the truth data via a high fidelity
Galerkin FEM model that uses a high resolution trial space
[Vi]i_res- We generate ROM bases by projecting this truth
data onto the (lower-dimensional) FOM trial space [V}, ], in
the L?(Q) sense and, e.g., performing an SVD. We empha-
size that the high-fidelity Galerkin FEM model and the high
resolution FEM trial space are used only for generating ref-
erence solutions and snapshots. At a high level, one may
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think of this approach of constructing the ROM basis as the
setting where the truth data comes from experimental meas-
urements. We also note that a consequence of this approach
is that none of our ROMs will be consistent with the high
fidelity Galerkin FEM model that generated the truth data,
meaning that adding ROM basis vectors will not necessarily
result in a more accurate solution.

We emphasize that our strategy of generating the ROM
basis, which is outlined in Algorithm 1 and depicted in
Fig. 3, satisfies both criteria outlined at the beginning of this
section. Specifically, the first criterion is satisfied since the
snapshots are obtained from a realistic, under-resolved rep-
resentation of the truth, i.e., a high-resolution solution that is
projected onto an under-resolved FOM trial space. The sec-
ond criterion is satisfied since all the stabilized ROMs use
the same ROM basis. Furthermore, no stabilization method
is used to generate snapshots used for basis construction,
and, thus, none of the stabilized ROMs can claim an unfair
advantage over the others. Thus, our strategy of generating
the ROM basis ensures both a realistic and fair comparison
of the stabilized ROMs.

7.1.4 Selection of Stabilization Parameters and Time Step

In addition to depending on the choice of inner product,
all stabilized methods considered depend on the stabiliza-
tion parameter 7, the time step Az, or both. As discussed
earlier, the a priori selection of 7 is an area that is receiv-
ing attention in both the FEM and ROM communities [52,
70], and is still an outstanding issue for ROMs in particular.
Further, while At is a discretization parameter, it impacts
certain types of stabilization schemes because it shows up
in the stabilization operator. Here we perform a grid sweep
to explore this sensitivity. The grid sweep is obtained by
executing ROM solves for (r, Af) € 7 X At, where

r=Ar={107% 25x 107 5x 107, 1073, 2x 1073, 3x 1073,
4x1073, 5% 1073, 6x 1073, 7x 1073, 8 x 1073,
9% 1073, 1072, 1.5x 1072, 2x 1072, 2.5 x 1072,
3x1072, 4x 1072, 5% 1072,6 x 1072,8 x 1072, 107",

2x 107!, x107", 4% 107",5x 107!

Algorithm 1 Algorithm for generating high fidelity solutions and the ROM trial space

Input: Energy cutoff criterion, €.
Output: ROM bases, ¥

Steps:
1. Solve the Galerkin OAE (7) with WV, <= [Vh]h—res for n =1,..., N; to generate solutions [u']h—res.
n=1,...,N;.
2. Perform the restriction [un]g ., = Pr2([Vhfom)[Unll_res» # =1,..., Ny
3. Collect the FEM coefficients [ay]f, , associated with [u]']rom, n = 0,..., N into the snapshot
matrix
S = [laally - [l

4. Execute Algorithm 2 with inputs S, , €., P = M to obtain the ROM basis ¥ and trial space

V, = Range(¥).
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. We note that the SUPG-APG, GLS¢—APG, and ADJg;
—APG ROMs depend upon both the APG stabiliza-
tion parameter and the FEM stabilization parameter. As
will be seen, these methods are well-behaved in the low
time-step limit and as such we execute these methods for
Tapg> T € T X T with a fixed time step At = 1073 equal to the
FOM time step. As will be detailed in the following section,
we note that all ROMs and FOMs will be performed on the
same spatial grid.

7.2 Example 1: Boundary Layer

The first numerical experiment we consider is a tran-
sient version of the setup used by Codina in [39]. We
solve Eq. (1) with a final time 7 =5 and a physical
domain x € Q=(0,1)x(0,1). We take the parame-
ters to be a slightly modified version of those used in by
Codina in [39], where we set ¢ = 1073, f=1,0=1,and
b= % [cos(zr/3) sin(zr/3)]T. The high-resolution trial
space [V} ];,_..s 1s obtained via a uniform triangulation of Q
into N, = 2 x 1282 elements equipped with a C°(Q) con-
tinuous discretization with polynomials of order p = 2.
The grid Peclet number is Pe, = 1.953125, where we used
h = (128p)~!. Analogously, the FOM trial space [V, lim
is obtained via a uniform triangulation of € based on 32
nodes in each direction into N,; = 2048 elements equipped
with a C°(Q) continuous discretization with polynomials of
order p = 2. The grid Peclet number is Pe, = 7.8125, where
we used i = (32p)‘1. In both cases, the triangulations are
obtained via a partition of Q into uniform square cells. The
triangles are then cut from bottom-left to top-right of each
cell. The Galerkin method equipped with the high-resolution
trial space is mesh-converged and accurate. The Galerkin
method equipped with the FOM trial space yields inaccurate
solutions; this error will be quantified later in this section
and we consider this case as this is representative of practical
problems. Lastly, the ROM trial space is obtained by execut-
ing Algorithm 1. Figure 4 presents the residual statistical
energy as a function of basis dimension, where it is seen
that the first five basis vectors capture over 99.999% of the
statistical energy (in L*(Q)).

7.2.1 Coarse-Grid FEM Results

We first present results of the various FEMs considered
and re-emphasize that (1) these FEMs are executed on a
coarse trial space such that the they require stabilization to
be accurate and (2) the data from these FEMs are not used
to construct the ROM trial subspace; instead, we employ
high-fidelity data as described in Sect. 7.1.3. We present
the FEM solutions to quantify the underlying FEM error
of a given method on this coarse mesh. We re-emphasize

that we examine the case where the FEM requires stabiliza-
tion as this is representative of practical problems. Figure 5
presents the various FEM solutions at the final time, t = 5,
while Table 4 tabulates the solution errors and stabilization
parameters employed in the simulations; these parameters
were selected by executing the FEMs on the 7 X At grid
described above and extracting solutions with the lowest
L*(Q) error. The errors reported in Table 4 measure the
(time integrated) difference between the FEM solutions and
the “truth” solution projected onto the FEM trial space, as
described in Sect. 7.1.2. We observe the following:

e The Galerkin, GLSg, and ADJ,q FEMs are the worst
performing methods, and all result in solutions with large
oscillations at the boundary.

e The SUPG, GLSgy, and ADJg; FEM provide the best
solutions. These methods result in solution errors that
are approximately an order of magnitude better than the
Galerkin FEM and provide qualitatively accurate solu-
tions.

e The “space-time” GLSgyr and ADJg; FEMs perform
much better than the “discretize-then-stabilize” GLSq
and ADJ FEMs.

7.2.2 Reduced-Order Model Results as a Function of Basis
Dimension

We next examine the performance of the various ROMs as
the dimension of the ROM basis is varied for 1 < R < 20.
For each basis dimension, we present results for optimal (z,
At) as measured by the L?(Q) error. Figure 6 shows the con-
vergence of the L()-error and H!(Q)-error as a function of
RB size, while Fig. 7 shows the corresponding optimal sta-
bilization parameters and time steps. We emphasize that the
measured error is defined as the discretely time-integrated

10°

R
i=
Ns

Residual energy, 1 — % -

10-10 4

10-12

T T T T T
0 5 10 15 20 25 30

R

Fig.4 Example 1, boundary layer. Residual statistical energy as a
function of basis dimension
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error between the ROM solution and the FOM solution pro-
jected onto the ROM trial space, as described in Sect. 7.1.2.
We make the following observations about the accuracy of
the various ROMs.

e No method results in a monotonic decrease in error in
both the L2(Q) and H' () norms. This is, in part, a result
of the fact that the ROMs are not consistent with the
high resolution reference solution (see the discussion in
Sect. 7.1.3).

e The Galerkin ROM performs poorly for all basis dimen-
sions.

e SUPG-APG, ADJ4—APG, GLSgy, and SUPG-LSPG are
the best performing ROMs.

e GLSgr and ADJgy are consistently more accurate than
SUPG.

e The “discretize-then-stabilize” ROMs outperform the
Galerkin ROM, but are consistently worse than their
space—time counterparts.

e LSPG ROMs outperform their continuous counterparts
in all cases.

¢ APG ROMs outperform their continuous counterparts in
all cases except for GLSg—APG.

e [t is interesting to note that the G-APG and G-LSPG
ROMs perform significantly better than the standard
Galerkin ROM for large number of bases, even though
these two methods formally converge to the Galerkin
ROM in the limit of a full basis.

e While not always the case, a decrease in error in the
L[*(Q) norm, in general, corresponds to a decrease in
error in the H' () semi-norm.

e Comparing Fig. 6 to Table 4, it is interesting to observe
that, while the same trends are observed, some ROMs
are more accurate than their corresponding FEM models.
This is again likely a result of the inconsistency between
the ROMs and the high-resolution reference solution.

Examining Fig. 7, we make the following observations about
the behavior of the stabilization parameters of the various
ROMs.

e The optimal stabilization parameters for the SUPG,
ADJgr, GLSgp, and APG ROMs are more or less constant
for all reduced basis dimensions (with the exception of a
few APG solutions at very small basis dimensions).

e The GLSpg, ADJpg, and LSPG-based ROMs are optimal
for time step sizes larger than the FOM. In particular, the
optimal time step for almost all LSPG ROMs occurs at
an intermediate time step. This is well documented in the
literature [29].

e [tis difficult to decipher any pattern in the optimal stabili-
zation parameters for the LSPG-based ROMs. We expect
that this is, in part, due to the complex interplay between
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the dependence of the time-step and stabilization param-
eters on the LSPG ROM performance.

Next, Fig. 8 presents solution profiles for the various
ROMs at a reduced basis dimension of R = 5, which cor-
responds to an energy criterion of €, = 0.99999, and at opti-
mal values of 7 and At (and 7,pg) for APG ROMs) for the
final time instance, r = 5. We observe that the projected truth
solution displays a small oscillation at the boundary. This
oscillation is a result of the FOM trial space [V, ];,m being
unable to fully resolve the boundary layer. Next, we see that
the Galerkin ROM results in inaccurate solutions with large-
scale oscillations. All stabilized ROMs are qualitatively
accurate with minimal variation between their solutions.

7.2.3 Sensitivity to Time Step and Stabilization Parameters

The performance of the stabilized methods can depend
on both the stabilization parameter = and the time step Az
(and, for APG, the APG stabilization parameter 7,pg). To
quantify this sensitivity, Fig. 9 presents results for the con-
tinuous and LSPG ROM solutions obtained on the param-
eter grid (r, At) € 7 X At. Figure 10 presents results for
the G-APG ROM solution obtained on the parameter grid
(Tapg> At) € T X At and the remaining APG ROM solutions
(which depend on three parameters, At, 7, and 7,pg) obtained
on the parameter grid (7, T5pg) € T X T with a fixed time step
At = 1073, All ROM results are shown for a reduced basis
dimension R = 5. As a reference, Fig. 11 shows the same
results, but for full-order finite element simulations executed
on the FOM trial space. We observe the following.

e In the limit that 7 — 0 (or Atz — 0 for LSPG), all ROMs
converge to the standard G-ROM with the exception of
ADJpg. This ROM displays poor behavior in the low
time-step limit when 7 =~ At.

e The SUPG (Fig. 9b), GLSqy (Fig. 9¢), ADJ¢p (Fig. 91),
and G-APG (Fig. 10a) ROMs again all display a
similar dependence on the time step and stabilization
parameter. Optimal results are obtained for an interme-
diate value of 7, and the solutions all converge in the
limit of At — 0.

e All LSPG ROMs (Fig. 9g-9f) yield optimal results at an
intermediate time step, and are thus not robust in the low
time-step limit [29].

e Errors in the GLSp¢(Fig. 9c) and ADJg (Fig. 9d) ROMs
start to increase once the time step becomes small
enough, and thus these ROMs are not robust in the low
time-step limit.

e The Galerkin (Fig. 9a), SUPG (Fig. 9b), GLSg(Fig. 9e),
and ADJg; (Fig. 9f) ROMs display a similar dependence
to the stabilization parameter and time step as their cor-
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Fig.5 Example 1, boundary
layer. FEM solutions to the
CDR equation at t = 5. Note
that Fig. 5a shows the high-res-
olution FEM solution projected
onto the medium resolution
FOM trial space
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responding FOMs (Fig. 11a-9f). The behaviors of the e For APG ROMs built on top of a stabilized FEM model
(Figs. 10b-10d), optimal results are obtained for either

GLSpg and ADJ,g ROMs display some qualitative simi-
larities with their corresponding FEM solutions, but in an intermediate value of 7,p; and low value of 7, or vice
general are different. versa. It is interesting to note that the solutions are almost
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Fig.6 Example 1, boundary layer. L*(Q) (top) and H'(Q) (bottom)
error as a function of ROM basis dimension for the various ROMs

symmetric with respect to these two parameters. In addi-
tion, we see regions of instability for high values of 7 ,pg.
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evaluated. We note that the left and right figures show the same quan-
tities, but with different visualization techniques. Results are shown

for optimal values of ¢, 7, as discussed in Sect. 7.1.4

7.3 Example 2: Advecting Front

The second numerical experiment we consider examines the
CDR equation in a setting that yields an advecting front.
ROMs of this problem require more basis vectors to accu-
rately characterize the system and it is easier to examine the

regime where the ROM itself is under-resolved.
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Fig.7 Example 1, boundary layer. Optimal stabilization parameter
(top) and time step (bottom) as a function of ROM basis dimension
for the various ROMs evaluated. We note that the left and right fig-

7.3.1 Description of Problem Setup, Full-Order Model,
and Generation of Trial Spaces

We solve Eq. (1) with a final time 7 =2 and a spatial
domain Q= (0,1)%x(0,1). We take e =10"*, o =1,
and b = % [COS(ﬂ/S) sin(ﬂ/S)]T. The Peclet number is
Pe :=||b||,/e = 5000. The forcing is set as

;o[ 10<x<05 and 0<y <025
“10x>05 and y> 0.25.

The high-resolution trial space [V, I, 1s obtained via a
uniform triangulation of Q into N, = 2 X 2567 elements
equipped with a C°(Q) continuous discretization with
polynomials of order p =2. The grid Peclet number is
Pe, = 9.77, where we used h = (256p)~!. Analogously, the
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ures show the same quantities, but with different visualization tech-
niques. Results are shown for optimal values of ¢, 7, as discussed in
Sect. 7.1.4

FOM trial space [V, I, is obtained via a uniform triangula-
tion of Q into N,; = 2 X 322 elements equipped with a Q)
continuous discretization with polynomials of order p = 2.
The grid Peclet number is Peg = 78.125, where we used
h = (32p)~'. The triangulations are obtained in the same
manner as in the previous experiment. The ROM trial space
is obtained by executing Algorithm 1; Fig. 12 presents the
residual statistical energy as a function of basis dimension.
More basis vectors are required to characterize the system
as compared to the previous example.

7.3.2 Full-Order Model Results

We again first present results of the various FOMs consid-
ered (again for optimal stabilization parameters and time
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Fig.8 Example 1, boundary layer. ROM solutions to the CDR equation at ¢ = 5. Results are shown for solutions obtained with R = 5 and with

the optimal time step and stabilization parameter as measured by the L?()-error
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Fig.9 Example 1, boundary layer. Time integrated L*(Q) best-fit
error as a function of time step and stabilization parameter for the

steps). Figure 13 presents the various FOM solutions at the
final time, t = 2, while Table 5 tabulates the solution errors
and stabilization parameters employed in the simulations.
We observe the following.

e The Galerkin, ADJg, and GLS,g FEM FOMs are the
worst performing methods and all result in oscillatory
solutions.

(k) GLSsT-LSPG

At
(1) ADJsr-LSPG

various ROMs evaluated. Note that Galerkin and LSPG display no
dependence on the stabilization parameter. White regions indicate
regions where the solution diverged to NaN

e SUPG, GLSgr, and ADJgy all provide solutions of a simi-
lar qualitative and quantitative quality, and are all able
to suppress the oscillations seen in the Galerkin FEM
solution.

e The “space-time” GLS¢; and ADJg; FEMs again per-
form much better than the “discretize-then-stabilize”
GLSg and ADJ,g FEM FOMs.
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Fig. 11 Example 1, boundary layer. Time integrated L?(Q) error as
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models. Results are shown for full-order FEM solutions executed on

These results are similar to those obtained for example 1

107

At
(f) ADJsr FEM

the FOM trial space. White regions indicate regions where the solu-
tion diverged to NaN

7.3.3 Results as a Function of RB Dimension

(Sect. 7.2.1).
Figure 14 shows the time integrated relativeL?(Q) error
and HI(Q) error for each of the ROMs considered as a
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function of RB size. Results are presented for the value of
7 and At that led to the lowest L*(Q) error; Fig. 15 shows
these optimal stabilization parameters and time steps for
each basis dimension.

Examining Fig. 14, we make the following observations
about the accuracy of the various ROMs.

e The APG-based, SUPG, ADJgr, and GLSgr ROMs are
the best overall performing methods.

e The “discretize-then-stabilize” ROMs outperform the
Galerkin ROM, but are consistently worse than their
space—time stabilized counterparts for all ROM dimen-
sions. In general, even when equipped with LSPG, the
discretize-then-stabilize methods perform quite poorly.

e  When applied to the standard Galerkin and GLS,g FEM
models, LSPG leads to slightly improved solutions.
LSPG does not lead to improved solutions for SUPG,
GLSgr, or ADJgy.

e Itis again interesting to note the improved performance
of G-APG over the standard Galerkin method at high
reduced basis dimensions, given that G-APG will
converge to the Galerkin method in the limit of a full
reduced basis. The improved performance is also seen
for G-LSPG, but to a lesser extent.

e Once again, while not always the case, a decrease in
error in the L*(Q) norm generally corresponds to a
decrease in error in the H'(€) norm.

e Comparing Fig. 14 to Table 5, we again observe that
some ROMs are more accurate than their correspond-
ing FEM.

Examining Fig. 15, where we show the optimal stabiliza-
tion parameters and time steps associated with Fig. 14, we
make the following observations about the behavior of the
stabilization parameters of the various ROMs.

e The optimal stabilization parameters for the SUPG,
ADJgr, GLSgr, and APG ROMs decrease as R grows
(Fig. 15a). This result is consistent with analyses per-
formed for SUPG ROMs in [52] and APG ROMs in
[121], which suggest that the optimal stabilization
parameter decreases with increasing ROM dimension;
we refer the reader to the discussion in Sect. 4.3 regard-
ing the scaling of the stabilization parameter with the
mesh size and ROM size.

e The optimal stabilization parameter for GLSq is quite
high for all ROM dimensions.

e The optimal time step for all LSPG ROMs occurs at an
intermediate time step larger than the FEM FOM.

e Interestingly, the optimal time step for G-LSPG is the
same as the optimal time step for GLSpg.

e The reader may observe that the optimal time step for
SUPG, GLSgy, and ADIJg decreases for moderately

100

R
i=
Ns

Residual energy, 1 — %

105 4

10-10 4

1012

R

Fig. 12 Example 2, advecting front. Residual statistical energy as a
function of basis dimension

high ROM dimensions; we note that this improvement
is very minor as will be seen in Fig. 17.

Next, Fig. 16 presents physical space solution profiles for
the various ROMs for a reduced basis dimension of R = 5 at
the final time instance, t = 2.0. We observe that all methods
yield qualitatively accurate solutions with the exception of
Galerkin, G-LSPG, and GLS; these three methods under-
predict the magnitude of the solution in the lower-left quad-
rant of the domain (x, x, < 0.4). It is interesting to note that,
although Fig. 14 showed that ADJ,q and the non-Galerkin
LSPG ROMs clearly perform less well than the other formu-
lations, Fig. 16 shows that their physical space solutions still
show a significant improvement over the standard Galerkin
ROM. We additionally note that even the best performing
methods are unable to fully capture the peak in the solution
in the lower-left quadrant of the domain. The ROM solutions
may appear overly dissipative relative to the L2(Q)/H'(Q)
best fit solutions, and hence one may deduce that a smaller
value of 7 may improve the solution. However, we recall that
all stabilized ROM methods use the 7 optimized to minimize
the error, and hence the lack of sharpness is due to adding
non-optimal kind (i.e., mode) of dissipation, and it cannot be
corrected by adjusting the amount (i.e., scale) of dissipation.

7.3.4 Sensitivity to Time Step and Stabilization Parameters

We now quantify the sensitivity of the various methods to
their stabilization parameters and the time step. Figure 17
presents results for the continuous and LSPG ROM solutions
obtained at R = 5 on the parameter grid (z, A7) € T X At,
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Table 5 Example 2, advecting front. Integrated (relative) L>(€2) and H'(Q) errors of various FOMs presented in Fig. 13, along with the stabiliza-
tion parameters at which the FOMs were executed

Galerkin SUPG GLSDS ADIDS GLSST ADIJST
er2(WValiom) 276 x 1072 6.62x 1073 224 x1072 2.19x 1072 6.66 x 1073 6.59 x 1073
e (Whlfom) 9.30x 1072 5.37x 1073 7.53x 1072 7.32x 1072 5.81x 1073 5.02x 1073
T N/A 1.00 x 1072 1.00 x 1074 1.00x 1074 1.00 x 1072 1.00 x 1072
At 1.00x 1073 1.00x 1073 1.00 x 1073 1.00x 1073 1.00 x 1073 1.00 x 1073

while Fig. 18 presents results for the G-APG ROM solutions
obtained at R = 5 on the parameter grid (zpg, Af) € T X At
and the remaining APG ROM solutions (which depend
on three parameters, Az, 7, and 7,pg) obtained at R = 5 on
the parameter grid (7, 74pg) € T X T with a fixed time step e
At = 1073, As a reference, Fig. 19 shows the same sensitivi-
ties but for full-order FEM simulations executed on the FOM o

trial space. We make the following observations.

e The SUPG (Fig. 17b), GLSq; (Fig. 17e), ADJgr o
(Fig. 17f), and G-APG (Fig. 18g) ROMs again all dis-

@ Springer

play a dependence on the time step and stabilization
parameter that is similar to the first example. Optimal
results are obtained for an intermediate value of 7, and
the solutions all converge in the limit of Az — 0.
G-LSPG (Fig. 17g), which contains no dependence on
7, yields optimal results at an intermediate time step.
For sufficiently large 7, the dependence of GLSpg
(Fig. 17¢) on the time step is similar to that of LSPG

(Fig. 17g).

Neither GLSg nor ADJ,s ROMs have optimal results at
the minimum time step, suggesting that these methods
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Fig. 14 Example 2, advecting front. L2(Q) (top) and H'(€Q) (bottom)
error as a function of RB dimension for the various ROMs evaluated.

are not well-behaved in the low time-step limit. This
result reinforces those presented in Fig. 15c.

e All continuous ROMs (Fig. 17a—f) display a similar
dependence to the stabilization parameter and time step
as their corresponding FOMs (Fig. 19a—f).

e Lastly, for APG ROMs built on top of a stabilized FEM
(Fig. 18c—e), optimal results are obtained for either an
intermediate value of 7,pg and low value of 7, or vice
versa. It is interesting to note that the solutions are
almost symmetric with respect to these two parameters.
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(d) H*(Q) error.

We note that the left and right figures show the same quantities, but
with different visualization techniques. Results are shown for optimal
values of At, t as discussed in Sect. 7.1.4

7.4 Summary of Numerical Experiments
and Empirical Findings

Sections 7.2 and 7.3 presented results for stabilized ROMs
applied to the CDR system for two different configurations.
Across both cases, we observed that the “space—time” sta-
bilized continuous ROM formulations were superior to their
“discretize-then-stabilize” counterparts: the space—time sta-
bilization formulations had lower errors, were well-behaved
in the low time-step limit (the discretize-then-stabilized
methods were not), and had a smoother, more intuitive
dependence on the time step and stabilization parameter.
ROMs constructed from LSPG projection had mixed
results in terms of accuracy. In the first numerical experi-
ment, ROM solutions computed via LSPG projection
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(c) Optimal time step, At.

Fig. 15 Example 2, advecting front. Optimal stabilization parameter
(top) and time step (bottom) as a function of RB dimension. We note
that the left and right figures show the same quantities, but with dif-

tended to be slightly better than their non-stabilized (e.g.,
discrete Galerkin) ROM counterparts. In the second exam-
ple, however, the performance was mixed. While G-LSPG
and GLSi—LSPG led to better solutions than Galerkin and
GLSpg, respectively, SUPG-LSPG, ADJ,—LSPG, GLSg;
—LSPG, and ADJ4—LSPG all performed worse than SUPG,
ADIJpg, GLSgt, and ADJgr, respectively. Further, all LSPG
ROMs were optimal for intermediate time steps and, when
built on top of a stabilized FEM solution, displayed a com-
plex sensitivity to both the stabilization parameter and time
step. The a priori selection of an optimal time step appears
difficult, and is likely problem dependent.

Constructing ROMs with APG stabilization tended to
have a positive result in terms of accuracy. In the first exam-
ple, APG ROMs outperformed their non-stabilized (i.e., dis-
crete Galerkin) counterpart for all cases with the exception
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ferent visualization techniques. Results are shown for optimal values
of At, 7 as discussed in Sect. 7.1.4

of GLSgy. In the second example, APG-based ROMs were
better than their non-stabilized counterparts for all FEM for-
mulations. APG was well-behaved in the low time step limit.
However, building an APG ROM on top of a stabilized FEM
solution led to complex behavior for the stabilization param-
eter: high values of 7 for the stabilized FEM models required
low values of 7, pg for the ROM, and vice versa. The a priori
selection of these parameters again appears difficult.
Figure 20 summarizes the performance of the various
ROMs by tabulating the number of times a given ROM for-
mulation led to the lowest errors in the L2(Q) and H'(Q)
-norm. Results are compiled for ROMs of basis dimen-
sions R = 1, ..., 20 across both numerical experiments. We
observe that SUPG-APG was the best performing ROM for
both error metrics. The next best performing ROMs were
ADJ¢1—APG and GLS¢—APG, followed closely by GLSqr,
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Fig. 17 Example 2, advecting front. Time integrated L*(Q) error as
a function of time step and stabilization parameter for the various

SUPG, and ADJg. It is interesting to note that the two dif-
ferent error measures lead to slightly different measure of
optimality (SUPG is never a top-performing method in
L*(Q) but is consistently a top-performing method in ' (Q)
).

Lastly, Fig. 21 attempts to rank the various ROM for-
mulations by scoring their performance. For a given basis
dimension, we scored a ROM on a scale of 1 — Nygys, Where
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(k) GLSs7-LSPG

(1) ADJsr-LSPG

ROMs evaluated. Note that Galerkin and LSPG display no depend-
ence on the stabilization parameter. White regions indicate solutions
that diverged to NaN

Nroms = 161s the number of ROM formulations considered.
The best ROM gets a score of Ny, the second best ROM
gets a score of Nygys — 1, and so on until the worst-perform-
ing ROM gets a score of 1. The total score for each ROM
formulation is computed by summing the individual scores
across all basis dimensions and both numerical experiments.
By this scoring system, we find that SUPG-APG is the best
performing ROM in both error measures, followed closely
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Fig. 19 Example 2, advecting front. Time integrated L?(Q) error as a function of time step and stabilization parameter. Results are shown for
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by ADJ—APG, GLSgr, and GLS¢—APG. The GLS;; ROM
is the best continuous ROM considered in this work, while

the Galerkin ROM performs the worst.

We end the discussion with notes on robustness and com-

putational cost. First, while APG-based methods constructed
on top of SUPG, GLSg, and ADJg; led to solutions with the
highest errors, these methods had a complex dependence
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on stabilization parameters and were, at times, unstable.
To fully realize the potential of these methods, analyses are
needed for optimal selection of stabilization parameters.
Second, while we did not report wall-clock times for running
the various models considered in this work, we remark that,
for linear problems, all ROM methods considered herein
have similar online computational costs. The costs will dif-
fer for nonlinear problems, and will depend on the choice of
hyper-reduction method used to handle the online evaluation
of the nonlinearities in the governing problem. Extension of
the analysis presented herein to nonlinear problems will be
the subject of future work.

8 Conclusions

The development of robust ROMs for time-critical and
many-query scenarios remains an active research area. This
work outlined the construction of stabilized ROMs for the
transient CDR equation via two differing approaches that
have emerged within the community: discrete and continu-
ous projections. We outlined the standard Galerkin, SUPG,
GLSpg, ADJpg, GLSgp, and ADJgr continuous ROMs
developed via traditional stabilized finite elements. We
additionally outlined the construction of the discrete Galer-
kin, LSPG, and APG ROMs. These discrete ROMs can be
constructed from a standard Galerkin FEM model, or they
can also be constructed from a stabilized FEM model. We
highlighted the well-established equivalences between con-
structing ROM basis vectors at the discrete and continuous
levels. We additionally highlighted the established equiva-
lence conditions between discrete ROM formulations and
continuous ROM formulations. Lastly, a brief summary
of existing numerical analyses was provided, where we
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discussed consistency, stability, and error bounds of the
various methods.

Numerical experiments were conducted for two configu-
rations of the CDR system. These experiments demonstrated
that all stabilized ROMs result in superior performance over
a standard Galerkin ROM built via continuous projection.
APG and GLSg;-based ROMs proved to be the best perform-
ing methods, while GLSpg, ADJg, and G-LSPG proved to
be the worst performing stabilized methods. In particular, we
found that equipping a stabilized FEM model with APG or
LSPG projection can result in more accurate solutions. This
improvement in accuracy comes at the cost of a more com-
plex dependence on the stabilization parameters and time
step. In the case of LSPG, results are optimal at an interme-
diate time step which is hard to select a priori. Further, the
accuracy of LSPG-based methods degrades in the small time
step limit as it is known to revert to Galerkin projection [29].
In the case of APG, we observed a non-trivial relationship
between 7 in the stabilized FEM model and 7, p in the APG
projection. Low values of 7 in the stabilized FEM model
required high values of 7,pg, and vice versa. There exist
minimal methods for the a priori selection of these optimal
stabilization parameters. However, APG-based ROMs were
robust for small time steps. Lastly, we observed that ROMs
built via continuous projection from the “space—time”
approach were clearly superior to ROMs built via the “dis-
cretize-then-stabilize” approach: the space-time stabilization
formulations had lower errors, were well-behaved in the low
time-step limit (the discretize-then-stabilize methods were
not), and had a smoother, more intuitive dependence on the
time step and stabilization parameter.

In addition, our study highlighted several points (most
of which are well-established in the literature) which we
reiterate here.
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Fig.20 Summary of numerical experiments. Number of times a given ROM formulation led to lowest errors in the L2(Q)-norm (left) and H!(Q)
-norm (right). Results are compiled across both numerical examples for all basis dimensions
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Fig.21 Summary of numerical experiments. Score as measured
by the L?(Q)-norm (left) and H'(Q)-norm (right). For a given basis
dimension, we scored a ROM on a scale of 1 to Nygyg, Where
Ngroms = 16 is the number of ROM formulations considered. The

e In the case of discrete projection, the POD basis must
be obtained in an inner product that is M-orthogonal to
recover the POD basis obtained via continuous projec-
tion. This is well established in the literature.

e Both the Galerkin and stabilized ROMs obtained via
continuous projection can be obtained via the Galerkin
ROM obtained via discrete projection. This is addition-
ally well-established.

e G-LSPG approximates a continuous minimization prin-
ciple if the discrete norm is minimized in the M~" inner
product.

e All stabilized methods depend on a stabilization param-
eter, 7, the time step, A¢, or both. The dependency on
these parameters is complex, and more work needs to
be done for proper a priori selection of the stabilization
parameters.

Future work should focus on several aspects. First, theory
for discretely stabilized ROMs such as LSPG and APG is
lacking for linear problems: minimal analyses exist study-
ing the stability of these methods as well as their accuracy,
and future work should address this. Second, future work
should focus on the a priori selection of the stabilization
parameters and optimal time steps (or, alternatively, data-
driven calibration of these parameters). Minimal analyses
exists for the appropriate a priori selection of these param-
eters within the context of ROMs: SUPG is studied in Refs.
[52, 82], LSPG is studied in [29], and APG is studied in
[121]. Third, future work should focus on extension to non-
linear and vector-valued systems. Here, hyper-reduction is
important and the extension of stabilization techniques to
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best ROM gets a score of Nygys» the second best ROM gets a score
of Nroms — 1, and so on until the worst ROM gets a score of 1. The
total score for each ROM formulation is computed by summing the
individual scores across all basis dimensions and both numerical
experiments

this setting offers numerous interesting and important ques-
tions. Lastly, future work should focus on extension to pre-
dictive problems, wherein truncation errors are relevant and
can dominate predicitive accuracy.

Appendix 1: Brief Review
of Non-residual-Based Stabilization
Techniques

Although the main focus of this paper is on residual-based
stabilized ROMs for the CDR equation, in this Appendix
we briefly outline some of the stabilized ROMs not covered
herein for completeness. This work includes, but is not lim-
ited to, ROM stabilizations that are not residual-based, and
ROM stabilizations for equations different from the convec-
tion—diffusion—reaction equation (e.g., the incompressible
Navier—Stokes equations and, especially, the compressible
Euler equations). We outline several such techniques here:

e Closure models that add additional “closure” terms to
the ROM in order to account for the impact of truncated
modes. For classical numerical discretizations (e.g., finite
element, finite volume, or spectral methods) of turbulent
incompressible or compressible flows, there is an exten-
sive literature on closure models, especially in large eddy
simulation (LES) [143]. Closure models for ROMs (see
[3, 146] for surveys) have also been developed, using
ideas from different fields, e.g., image processing [175],
data-driven modeling [68, 173], machine learning [144],
information theory [110] the Mori-Zwanzig formalism
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from statistical mechanics [102], or dynamical systems
[36]. We emphasize, however, that (just as in LES) argu-
ably the most popular type of ROM closure models are
the eddy viscosity models [69, 129, 170], which add a
dissipative term to the standard ROM. These eddy vis-
cosity ROM closures are generally built by invoking
physical arguments, i.e., the concept of energy cascade,
which states that in three-dimensional (3D) turbulent
flows energy is transferred from large scales to small
scales where the energy is dissipated [43, 143]. We note
that eddy viscosity ROM closure models are similar in
spirit to residual-based ROM stabilization methods since
they both increase the numerical stability of the ROM.
There are, however, notable differences. From one per-
spective, eddy viscosity ROM closures can be viewed
as a phenomenological modeling approach that model
the physics associated with truncation, i.e., the cascade
of energy from large resolved scales to unresolved fine
scales through diffusion. Residual-based ROM stabiliza-
tion methods, on the other hand, can be interpreted as
targeting errors arising from numerical discretization of
the partial differential equation; the notable exception to
this interpretation would be VMS residual-based stabili-
zations, which are typically interpreted as modeling the
fine scales. Both methods have advantages and disadvan-
tages, depending on the application.

Stabilizing inner products, which are used to construct
more stable ROMs. One of the earliest examples of sta-
bilizing inner products is the '(Q) inner product that
is used in [81] instead of the standard L? inner product.
Other examples of stabilizing inner products are present
in the literature for ROMs applied to multistate systems
where a classic vector L? inner product does not result in
a physically meaningful energy principle. For example,
energy-based projections are proposed for compressible
flows in Refs. [14, 81, 85, 138, 148], which use different
inner products and flow variables to construct stabilized
ROMs. Recently, Ref. [91] has proposed similar ideas
within the context of magnetohydrodynamics. We note
that the LSPG ROM-based preconditioning approach
developed in [103] can be interpreted as a modification
to the underlying inner product that has the effect of scal-
ing different solution components to ensure that they are
all of roughly the same magnitude.

e Inf-sup stabilizations, that aim at enforcing the inf-sup (or

the Ladyzhenskaya-Babuska-Brezzi (LBB)) condition in
incompressible Stokes and Navier—Stokes equations. We
emphasize that the inf-sup condition is used to ensure
the well-posedness of saddle-point problems, such as
the incompressible Stokes and Navier—Stokes equations.
Thus, the inf-sup stabilizations are different from the
stabilization of convection-dominated systems, such as
those we consider in this paper. In standard (e.g., FEM)

@ Springer

numerical discretizations of the Stokes and the Navier—
Stokes equations, it is well-known that not enforcing the
inf-sup condition can yield spurious numerical oscilla-
tions in the pressure field. There are two main approaches
to tackle this issue: (i) choose finite elements that do
satisfy the inf-sup condition, or (ii) choose finite elements
that do not satisfy the inf-sup condition and add pressure
stabilization. In the ROM community, the first inf-sup
stabilizations have been proposed in [140], which devel-
oped ROMs that satisfy the inf-sup condition (which is a
significantly more difficult task than for finite elements,
since the velocity and pressure ROM bases are problem
dependent). Recognizing that enforcing the inf-sup con-
dition at a ROM level can be prohibitively expensive
[13], more efficient stabilized ROMs that do not satisfy
the inf-sup condition were devised by using, e.g., the pen-
alty method [18, 27], artificial compressibility [45], or
local projection stabilization [141].

Structure preserving methods that guarantee that the
ROM satisfies the same physical constraints as those
satisfied by the underlying equations. As for classical
numerical discretizations, preserving these physical con-
straints generally yields more stable ROMs. For example,
for the incompressible Navier—Stokes equations, ROMs
in which the nonlinear terms preserve the kinetic energy
are more stable than standard ROMs [93, 107] (see also
[112] for ROM closure modeling and [91] for work in
magnetohydrodynamics). Furthermore, ROMs that pre-
serve Lagrangian structure were developed in [33, 97,
174], and ROMs that preserve Hamiltonian structure
were constructed in [2, 55, 60, 61, 123, 150, 151, 153].
The recent work by Gruber et al. is the first to construct
ROMs in which the more general metriplectic structure
is preserved [59].

Stabilizing basis modification methods designed to rem-
edy the so-called “mode truncation instability”, that is, to
account for truncated modes a priori [7, 11, 12]. In [7],
Amsallem and Farhat develop a non-intrusive method
for stabilizing linear time-invariant (LTI) ROMs through
the minimal modification of the left ROM basis. The new
reduced-order basis is obtained by formulating and solv-
ing a small-scale convex constrained optimization prob-
lem in which the constraint imposes asymptotic stabil-
ity of the modified ROM. In [11, 12], Balajewicz et al.
demonstrate that a ROM for (nonlinear) fluid flow can
be stabilized through a stabilizing rotation of the pro-
jection subspace. Specifically, the projection subspace
is “rotated” into a more dissipative regime by modifying
the eigenvalue distribution of the linear operator. Math-
ematically, the approach is formulated as a trace minimi-
zation on the Stiefel manifold. Like the approach in [7],
the methods in [11, 12] are non-intrusive.
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e Spatial filtering-based stabilization [62, 77, 90, 162, 171],
in which explicit filtering performed either in the physi-
cal space or in the ROM space (see [131] for an extension
to neural networks) is used to regularize/smooth different
terms in the underlying equations, e.g., the convective
term in the incompressible Navier—Stokes equations. Due
to their simplicity, minimal invasive character, modular-
ity, and effectiveness, spatially-filtered regularized mod-
els have been extensively studied in standard CFD (e.g.,
with finite element discretizations, surveyed in [98]). In
contrast, only a few regularized ROMs have been pro-
posed in deterministic [90, 142, 171] and stochastic [62,
77] settings.

e FEigenvalue reassignment methods, which calculate a
stabilizing correction to an unstable ROM after the
ROM has been constructed. The correction is computed
offline by solving a constrained optimization problem.
The approach was originally developed in Kalashnikova
et al. [89] in the context of LTI systems, for which it is
natural to impose a constraint on the Lyapunov stability
of the ROM system by requiring that the eigenvalues of
the ROM matrix defining the problem have negative real
parts. The approach was subsequently extended to the
nonlinear compressible flow equations by Rezaian and
Wei in [132]. Here, appropriate constraints on the system
energy, namely that it is non-increasing, were developed
and applied. Eigenvalue reassignment methods are non-
intrusive by construction, as they operate on a ROM a
posteriori (i.e., after the ROM has been constructed), and
can be effective regardless of the nature of the instability.
The methods can also be used to assimilate data into a
given ROM, again after the model has been constructed.

Appendix 2: Correspondence of LSPG
to a Continuous Minimization Principle

This section outlines the equivalence between LSPG and
a continuous minimization principle. We define the time-
discrete, spatially continuous residual of the PDE (1) as

Regr @ (Wi2) &> %—vvzw+b‘Vw+0'w—f.

Under the assumption that the state is sufficiently regular'?,
the residual of the Galerkin FOM OAE can be written as

rgt; o (wiz) > m(v;, Rog.(vwivz)), vv € V.

The FEM coefficients of the L?>(Q) orthogonal projection of
this residual onto the trial space V), are given by

13 We remark that this assumption does not hold for standard Q)
FEM discretizations, in which case the state is not twice continuously
differentiable.

rg t(wz) > M_er(w;z).
Analogously, at the spatially continuous level
Rll,’ (wiz) - vM_lm(v, RCdr(w;z)).

The square residual integrated over the domain is then given
by

I )’ -1 ENE
/Q (RE@wsw)) dx = [Mrgazar )
MM_er(aﬁ;aﬁ'l).

(38)

Settingr < rgand P « M~ in optimization problem (25),
LSPG corresponds to the continuous minimization principle
foruf,n =1,...,N,

u’ = arg min / (Rg(u;uf‘l))zdx. (39)
uey, Q

LSPG computes the solution u” within the ROM trial space
V. that minimizes the L*(Q)-norm of the time-discrete, spa-
tially continuous residual projected onto the finite element
trial space V. Analogously, LSPG can be defined on the
stabilized FOM OAE (15). Setting r < rg, the optimality
conditions become

md(% +BY + Q¥, ry(P§; 95" )) —0.

Appendix 3: Derivation of the Adjoint
Petrov-Galerkin Method

The APG method was derived in Ref. [121] in the case
where the coarse- and fine-scale bases are orthogonal in a
standard #2 discrete inner product. In FEM discretizations it
is more appropriate to construct the spaces to be orthogonal
in an M inner product. As such, in this section we derive the
APG method for the case where the fine and coarse scales
are M-orthogonal. We consider application to the dynamical
system given by

Md—X +Ax—-f=0,

dt

where M € SV is the mass matrix, x : [0,7] — RV is
the state, A € RV is the system matrix, and f is a forc-
ing term. The derivation begins by decomposing R into
a coarse-scale space V, and a fine-scale space V; such that
V. @® V. = RY. The coarse-scale space V, C R" corresponds
to the standard ROM space and is of dimension dim(V,) = R,
while the fine-scale space V; comprises the M-orthogonal
complement of the coarse-scale space and has dimension
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dim(V;) = N — R. We equip the coarse- and fine-scale spaces
with M-orthogonal bases ¥ € RVM® and W' € RVW-R),
Note that ¥"MY' = 0 by definition.

The APG derivation proceeds by expressing the dynami-
cal system in terms of the generalized coordinates associated
with the coarse and fine-scale bases. This process results in a
coupled system for the coarse and fine scales

4
dt
¥ MEwR + (v A s+ WK ] - [w] =0,

WML ws + WA [‘I’ﬁ + ‘Px] —Wit=0

where X : [0,T] —» RX are the coarse-scale generalized
coordinates and % : [0, T] — RV are the fine-scale gen-
eralized coordinates. The APG method proceeds to approxi-
mate the fine-scales via the Mori—-Zwanzig formalism and a
perturbation analysis, which here results in the quasi-static

aproximation
(1) ~ —[W] AWR(),

where 7 € R, is a stabilization constant. Injecting in the
approximation to the fine-scale state into the coarse-scale
equation results in

Algorithm 2 Algorithm for generating POD basis.

\PTMC%\P& +WA [‘I’fc — ¥ W] TA‘Pf(] W=,

Next we use the property WW'M + ¥ [‘I’/]TM =1 to
remove the dependence on the fine-scale basis functions
and get

d

wiv =~
dt

Wi + WA [‘I’f{ - TA’A\I‘)A(] -yTf=0,

where A’ = M~ — WW7 Next, assuming the forcing to be
zero on the fine-scale space such that A’f = 0, we write the
above in a Petrov—Galerkin form

[(1-cATAT )] [M%‘I‘f{ +AYR - f] =0,
where we have leveraged A'MW¥ = 0. This Petrov—Galerkin

projection is what we refer to as the Adjoint Petrov—Galerkin
method.

Appendix 4: Proper Orthogonal
Decomposition Algorithm

Algorithm 2 presents the algorithm for computing the trial
basis via proper orthogonal decomposition.

Input: Snapshot matrix, S,, € RV*s ; cutoff energy tolerance, €. ; symmetric positive definite

inner product matrix, P

Output: POD Basis ¥ € RV*f ;

Steps:

1. Compute the “covariance matrix”

K =S PS,,.

2. Compute the eigenvalue decomposition

K= EahAah [Eah]_l‘

3. Compute the statistical energy

where K < Nj.

4. Determine basis dimension from cutoff criterion

R = Card({&;} 2, |e; < ec).

5. Compute the ROM bases as

T =8, Ef /AR,

where Eg‘ and Af"‘ comprise the first R columns of E,, and the first R columns and rows of A,

respectively.

@ Springer



Residual-Based Stabilized Reduced-Order Models of the Transient Convection-Diffusion—Reaction...

Acknowledgements E. Parish acknowledges funding from the John
von Neumann Postdoctoral Fellowship, ASC V &V 103723/05.30.02,
and ASC V &V 131792/04.09.02. 1. Tezaur acknowledges funding
from her Presidential Early Career Award for Scientists and Engineers
(PECASE), awarded by the U.S. Department of Energy (DOE), as
well as support from the U.S. Office of Science, Office of Advanced
Scientific Computing Research, Mathematical Multifaceted Integrated
Capability Centers (MMICCS) program, under Field Work Proposal
22025291 and the Multifaceted Mathematics for Predictive Digi-
tal Twins (M2dt) project. T. Iliescu acknowledges funding from the
NSF grants DMS-2012253 and CDS &E-MSS-1953113. This paper
describes objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not necessarily rep-
resent the views of the U.S. Department of Energy or the United States
Government. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solu-
tions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter-
national Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

Author Contributions All authors wrote the main manuscript text. E.P.
prepared all figures and performed numerical experiments. All authors
reviewed manuscript. All authors contributed to numerical analysis.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Competing interests The authors declare no competing interests.

References

1. Abgrall R, Crisovan R (2018) Model reduction using L1-norm
minimization as an application to nonlinear hyperbolic problems.
Int J Numer Methods Fluids 87:628-651

2. Afkham BM, Hesthaven JS (2017) Structure preserving model
reduction of parametric Hamiltonian systems. STAM J Sci Com-
put 39:A2616-A2644

3. Ahmed SE, Pawar S, San O, Rasheed A, Iliescu T, Noack BR
(2021) On closures for reduced order models — a spectrum
of first-principle to machine-learned avenues. Phys Fluids
33:091301

4. Ali S, Ballarin F, Rozza G (2020) Stabilized reduced basis meth-
ods for parametrized steady Stokes and Navier-Stokes equations,
arXiv e-print

5. Alnes MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A,
Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEn-
iCS project version 1.5. Arch Numer Soft 3

6. Amsallem D, Farhat C (2012) On the stability of linearized
reduced-order models: descriptor vs. non-descriptor form and
application to fluid-structure interaction. In: 42nd AIAA fluid
dynamics conference and exhibit

7. Amsallem D, Farhat C (2012) Stabilization of projection-based
reduced-order models. Int ] Numer Methods Eng 91:358-377

8. Azaiez M, Rebollo TC, Rubino S (2021) A cure for instabili-
ties due to advection-dominance in POD solution to advection-
diffusion-reaction equations. J] Comput Phys 425:109916

9. Baiges J, Codina R, Idelsohn S (2013) Explicit reduced-order
models for the stabilized finite element approximation of the
incompressible Navier-Stokes equations. Int J Numer Methods
Fluids 72:1219-1243

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Baiges J, Codina R, Idelsohn S (2015) Reduced-order subscales
for POD models. Comput Methods Appl Mech Eng 291:173-196
Balajewicz M, Dowell EH (2012) Stabilization of projection-
based reduced order models of the Navier-Stokes. Nonlinear Dyn
70:1619-1632

Balajewicz M, Tezaur I, Dowell E (2016) Minimal subspace rota-
tion on the Stiefel manifold for stabilization and enhancement
of projection-based reduced order models for the compressible
Navier-Stokes equations. ] Comput Phys 321:224-241
Ballarin F, Manzoni A, Quarteroni A, Rozza G (2015)
Supremizer stabilization of POD-Galerkin approximation of
parametrized steady incompressible Navier-Stokes equations.
Int J Numer Methods Eng 102:1136-1161

Barone MF, Kalashnikova I, Segalman DJ, Thornquist HK (2009)
Stable Galerkin reduced order models for linearized compress-
ible flow. J] Comput Phys 228:1932-1946

Baumann M, Benner P, Heiland J (2018) Space-time Galerkin
POD with application in optimal control of semilinear partial
differential equations. SIAM J Sci Comput 40:A1611-A1641
Beattie C, Gugercin S (2011) Structure-preserving model reduc-
tion for nonlinear port-Hamiltonian systems. In: 2011 50th IEEE
conference on decision and control and european control confer-
ence (CDC-ECC), pp 6564-6569. IEEE

Benner P, Gugercin S, Willcox K (2015) A survey of projection-
based model reduction methods for parametric dynamical sys-
tems. SIAM Rev 57:483-531

Bergmann M, Bruneau CH, Iollo A (2009) Enablers for robust
POD models. J Comput Phys 228:516-538

Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal
decomposition in the analysis of turbulent flows. Annu Rev Fluid
Mech 25:539-575

Bochev PB, Gunzburger MD, Shadid JN (2004) Stability of the
SUPG finite element method for transient advection-diffusion
problems. Comput Methods Appl Mech Eng 193:2301-2323
Borggaard J, Iliescu T, Wang Z (2011) Artificial viscosity proper
orthogonal decomposition. Math Comput Modell 53:269-279
Brooks AN (1981) A Petrov-Galerkin finite element formulation
for convection dominated flows, PhD thesis, California Institute
of Technology

Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov-Galer-
kin formulations for convection dominated flows with particular
emphasis on the incompressible Navier-Stokes equations. Com-
put Methods Appl Mech Eng 32:199-259

Bui-Thanh T (2007) Model-constrained optimization methods
for reduction of parameterized large-scale systems, PhD thesis,
Massachusetts Institute of Technology

Bui-Thanh T, Willcox K, Ghattas O (2008) Model reduction
for large-scale systems with high-dimensional parametric input
space. SIAM J Sci Comput 30:3270-3288

Bui-Thanh T, Willcox K, Ghattas O (2008) Parametric reduced-
order models for probabilistic analysis of unsteady aerodynamic
applications. AIAA J 46:2520-2529

Caiazzo A, Iliescu T, John V, Schyschlowa S (2014) A numeri-
cal investigation of velocity-pressure reduced order models for
incompressible flows. J] Comput Phys 259:598-616

Carlberg K (2011) Model reduction of nonlinear mechanical
systems via optimal projection and tensor approximation, PhD
thesis, Stanford University

Carlberg K, Barone M, Antil H (2017) Galerkin v. least-squares
Petrov-Galerkin projection in nonlinear model reduction. J Com-
put Phys 330:693-734

Carlberg K, Bou-Mosleh C, Farhat C (2011) Efficient non-linear
model reduction via a least-squares Petrov-Galerkin projection
and compressive tensor approximations. Int J] Numer Methods
Eng 86:155-181

@ Springer



E. Parish et al.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Carlberg K, Choi Y, Sargsyan S (2018) Conservative model
reduction for finite-volume models. J Comput Phys 371:280-314
Carlberg K, Farhat C, Cortial J, Amsallem D (2013) The GNAT
method for nonlinear model reduction: effective implementation
and application to computational fluid dynamics and turbulent
flows. J Comput Phys 242:623-647

Carlberg K, Tuminaro R, Boggs P (2015) Preserving Lagrangian
structure in nonlinear model reduction with application to struc-
tural dynamics. SIAM J Sci Comput 37:B153-B184

Chan J (2020) Entropy stable reduced order modeling of nonlin-
ear conservation laws. J Comput Phys 423:109789
Chaturantabut S, Beattie C, Gugercin S (2016) Structure-pre-
serving model reduction for nonlinear port-Hamiltonian systems.
SIAM J Sci Comput 38:B837-B865

Chekroun MD, Liu H, McWilliams JC (2019) Variational
approach to closure of nonlinear dynamical systems: autonomous
case. J Stat Phys 1-88

Choi Y, Carlberg K (2019) Space-time least-squares Petrov-
Galerkin projection for nonlinear model reduction. SIAM J Sci
Comput

Chorin A, Hald O, Kupferman R (2002) Optimal prediction with
memory. Phys D239-257

Codina R (1998) Comparison of some finite element methods
for solving the diffusion-convection-reaction equation. Comput
Methods Appl Mech Eng 156:185-210

Codina R (2000) Stabilization of incompressibility and convec-
tion through orthogonal sub-scales in finite element methods.
Comput Methods Appl Mech Eng 190

Codina R, Principe J, Guasch O, Badia S (2007) Time depend-
ent subscales in the stabilized finite element approximation of
incompressible flow problems. Comput Methods Appl Mech Eng
196:2413-2430

Constantine PG, Wang Q (2012) Residual minimizing model
interpolation for parameterized nonlinear dynamical systems.
SIAM J Sci Comput

Couplet M, Sagaut P, Basdevant C (2003) Intermodal energy
transfers in a proper orthogonal decomposition-Galerkin
representation of a turbulent separated flow. J Fluid Mech
491:275-284

Dahmen W, Plesken C, Welper G (2014) Double greedy algo-
rithms: reduced basis methods for transport dominated prob-
lems. ESAIM 48:623-663

DeCaria V, Iliescu T, Layton W, McLaughlin M, Schneier M
(2020) An artificial compression reduced order model. SIAM
J Numer Anal (accepted)

Eroglu FG, Kaya S, Rebholz LG (2017) A modular regular-
ized variational multiscale proper orthogonal decomposition
for incompressible flows. Comput Methods Appl Mech Eng
325:350-368

Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional
reduction of nonlinear finite element dynamic models with
finite rotations and energy-based mesh sampling and weight-
ing for computational efficiency. Int ] Numer Methods Eng
98:625-662

Franca L, Valentin F (2000) On an improved unusual stabilized
finite element method for the advective-reactive-diffusive equa-
tion. Comput Methods Appl Mech Eng 190:1785-1800

Franca LP, Farhat C (1995) Bubble functions prompt unusual
stabilized finite element methods. Comput Methods Appl Mech
Eng 123:299-308

Franca LP, Frey SL, Hughes TJ (1992) Stabilized finite element
methods: 1. Application to the advective-diffusive model. Com-
put Methods Appl Mech Eng 95:253-276

Funaro D, Gottlieb D (1991) Convergence results for pseudospec-
tral approximations of hyperbolic systems by a penalty-type
boundary treatment. Math Comput 57

@ Springer

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Giere S, Iliescu T, John V, Wells D (2015) SUPG reduced order
models for convection-dominated convection-diffusion-reaction
equations. Comput Methods Appl Mech Eng 289:454-474
Girfoglio M, Quaini A, Rozza G (2021) A POD-Galerkin
reduced order model for a LES filtering approach. J Comput Phys
436:110260

Girfoglio M, Quaini A, Rozza G (2023) A linear filter regulari-
zation for POD-based reduced-order models of the quasi-geos-
trophic equations. C R Mech 351:1-21

Gong Y, Wang Q, Wang Z (2017) Structure-preserving Galerkin
POD reduced-order modeling of Hamiltonian systems. Comput
Methods Appl Mech Eng 315:780-798

Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient
reduced-basis treatment of nonaffine and nonlinear partial dif-
ferential equations. ESAIM 41:575-605

Grepl MA, Patera AT (2005) A posteriori error bounds for
reduced-basis approximations of parametrized parabolic partial
differential equations. ESAIM 39:157-181

Grimberg S, Farhat C, Youkilis N (2020) On the stability of pro-
jection-based model order reduction for convection-dominated
laminar and turbulent flows. J Comput Phys 419:109681
Gruber A, Gunzburger M, Ju L, Wang Z (2023) Energetically
consistent model reduction for metriplectic systems. Comput
Methods Appl Mech Eng 404:115709

Gruber A, Tezaur I (2023) Canonical and noncanonical Ham-
iltonian operator inference. Comput Methods Appl Mech Eng
416:116334

Gruber A, Tezaur I (2024) Variationally consistent Hamiltonian
reduced order models. SIAM J Dyn Syst (under review)
Gunzburger M, Iliescu T, Mohebujjaman M, Schneier M (2019)
An evolve-filter-relax stabilized reduced order stochastic collo-
cation method for the time-dependent Navier-Stokes equations.
SIAM-ASA J Uncertain 1162-1184

Haasdonk B (2013) Convergence rates of the POD-Greedy
method. ESAIM 47:859-873

Haasdonk B, Ohlberger M (2008) Reduced basis method for
finite volume approximations of parametrized linear evolution
equations. Math Modell Numer Anal 42:277-302

Hald OH, Stinis P (2007) Optimal prediction and the rate of
decay for solutions of the Euler equations in two and three
dimensions. Proc Natl Acad Sci 104:6527-6532

Harari I (2004) Stability of semidiscrete formulations for par-
abolic problems at small time steps. Comput Methods Appl
Mech Eng 193(2004):1491-1516

Hesthaven JS, Rozza G, Stamm B (2016) Certified reduced
basis methods for parametrized partial differential equations.
Springer, Cham

Hijazi S, Stabile G, Mola A, Rozza G (2019) Data-driven POD-
Galerkin reduced order model for turbulent flows, arXiv pre-
print, arXiv:1907.09909

Holmes P, Lumley JL, Berkooz G (1996) Turbulence. Coher-
ent structures, dynamical systems and symmetry. Cambridge
University Press, Cambridge

Hsu M-C, Bazilevs Y, Calo V, Tezduyar T, Hughes T (2010)
Improving stability of stabilized and multiscale formulations
in flow simulations at small time steps. Comput Methods Appl
Mech Eng 199:828-840

Huang C, Wentland CR, Duraisamy K, Merkle C (2022) Model
reduction for multi-scale transport problems using model-form
preserving least-squares projections with variable transforma-
tion. J] Comput Phys 448:110742

Hughes T, Tezduyar T (1984) Finite element methods for first-
order hyperbolic systems with particular emphasis on the com-
pressible euler equations. Comput Methods Appl Mech Eng
45:217-284


http://arxiv.org/abs/1907.09909

Residual-Based Stabilized Reduced-Order Models of the Transient Convection-Diffusion—Reaction...

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Hughes TJ, Brooks AN (1979) A multidimensional upwind
scheme with no crosswind diffusion. In: Finite element meth-
ods for convection dominated flows, ASME

Hughes TJ, Feijoo G, Mazzei L, Qunicy J (1998) The vari-
ational multiscale method—a paradigm for computational
mechanics. Comput Methods Appl Mech Eng 166:173-189
Hughes TJ, Franca LP, Hulbert GM (1989) A new finite ele-
ment formulation for computational fluid dynamics: VIII. The
Galerkin/least-squares method for advective-diffusive equa-
tions. Comput Methods Appl Mech Eng 73:173-189

Hughes TJ, Stewart JR (1996) A space-time formulation for
multiscale phenomena. J] Comput Appl Math 74:217-229
Iliescu T, Liu H, Xie X (2018) Regularized reduced order mod-
els for a stochastic Burgers equation. Int J Numer Anal Mod
15:594-607

Iliescu T, Wang Z (2013) Variational multiscale proper orthog-
onal decomposition: Convection-dominated convection-diffu-
sion-reaction equations. Math Comput 82:1357-1378

Iliescu T, Wang Z (2014) Variational multiscale proper orthog-
onal decomposition: Navier-Stokes equations. Numer Methods
PDEs 30:641-663

Ingimarson S, Rebholz LG, Iliescu T (2022) Full and reduced
order model consistency of the nonlinearity discretization
in incompressible flows. Comput Methods Appl Mech Eng
401:115620

Iollo A, Lanteri S, Désidéri JA (2000) Stability properties of
POD-Galerkin approximations for the compressible Navier-
Stokes equations. Theoret Comput Fluid Dyn 13:377-396
John V, Moreau B, Novo J (2022) Error analysis of a SUPG-
stabilized POD-ROM method for convection-diffusion-reaction
equations. Comput Math Appl 122:48-60

John V, Novo J (2011) Error analysis of the supg finite element
discretization of evolutionary convection-diffusion-reaction
equations. SIAM J Numer Anal 49:1149-1176

Johnson C, Navert U, Pitkdranta J (1984) Finite element methods
for linear hyperbolic problems. Comput Methods Appl Mech Eng
45:285-312

Kalashnikova I, Arunajatesan S, Barone MF, van Bloe-
men Waanders BG, Fike JA (2014) Reduced order modeling for
prediction and control of large-scale systems, Sandia National
Laboratories Report, SAND

Kalashnikova I, Barone M (2011) Stable and efficient Galerkin
reduced order models for non-linear fluid flow. In: 6th AIAA
theoretical fluid mechanics conference, AIAA-2011-3110, 6th
ATAA theoretical fluid mechanics conference. Honolulu, Hawaii
Kalashnikova I, Barone MF (2010) On the stability and conver-
gence of a Galerkin reduced order model ROM of compress-
ible flow with solid wall and far-field boundary treatment. Int J
Numer Methods Eng 83:1345-1375

Kalashnikova I, Barone MF, Arunajatesan S, van Bloemen
Waanders BG (2014) Construction of energy-stable projection-
based reduced order models. Appl Math Comput 249:569-596
Kalashnikova I, van Bloemen Waanders B, Arunajatesan S, Bar-
one M (2014) Stabilization of projection-based reduced order
models for linear time-invariant systems via optimization-based
eigenvalue reassignment. Comput Methods Appl Mech Eng
272:251-270

Kaneko K, Tsai P-H, Fischer P (2020) Towards model order
reduction for fluid-thermal analysis. Nucl Eng Des 370:110866
Kaptanoglu AA, Morgan KD, Hansen CJ, Brunton SL (2020)
Physics-constrained, low-dimensional models for MHD: First-
principles and data-driven approaches, arXiv preprint arXiv:
2004.10389

Koc B, Rubino S, Schneier M, Singler JR, Iliescu T (2021) On
optimal pointwise in time error bounds and difference quotients

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

for the proper orthogonal decomposition. SIAM J Numer Anal
59:2163-2196

Kondrashov D, Chekroun MD, Ghil M (2015) Data-driven non-
Markovian closure models. Phys D 297:33-55

Kragel B (2005) Streamline diffusion POD models in optimiza-
tion, PhD thesis, Universitit Trier

Kunisch K, Volkwein S (2001) Galerkin proper orthogonal
decomposition methods for parabolic problems. Numer Math
90:117-148

Kragel B (2002) Galerkin proper orthogonal decomposition
for a general equation in fluid dynamics. SIAM J Numer Anal
40:492-515

Lall S, Krysl P, Marsden JE (2003) Structure-preserving model
reduction for mechanical systems. Physica D 184:304-318
Layton WJ, Rebholz LG (2012) Approximate deconvolution
models of turbulence: analysis, phenomenology and numerical
analysis, vol 2042. Springer, Berlin

LeGresley P, Alonso J (2000) Airfoil design optimization using
reduced order models based on proper orthogonal decomposi-
tion. In: Fluids 2000 conference and exhibit

LeGresley P, Alonso J (2003) Dynamic domain decomposition
and error correction for reduced order models. In: 41st Aerospace
Sciences Meeting and Exhibit

LeGresley P, Alonso JJ (2001) Investigation of non-linear projec-
tion for POD based reduced order models for aerodynamics. In:
39th Aerospace Sciences Meeting and Exhibit

Lin KK, Lu F (2019) Data-driven model reduction, Wiener pro-
jections, and the Mori-Zwanzig formalism, arXiv preprint arXiv:
1908.07725

Lindsay P, Fike J, Tezaur I, Carlberg K (2022) Preconditioned
least-squares Petrov-Galerkin reduced order models. Int J Numer
Methods Eng 123:4809-4843

Logg A, Mardal K-A, Wells GN et al (2012) Automated solution
of differential equations by the finite element method. Springer,
New York

Logg A, Wells GN (2010) DOLFIN: automated finite element
computing. ACM Trans Math Softw 37

Logg A, Wells GN, Hake J (2012) DOLFIN: a C++/Python
finite element library. In: Logg A, Mardal K-A, Wells GN (eds)
Automated solution of differential equations by the finite ele-
ment method, volume 84 of Lecture Notes in Computational
Science and Engineering, ch. 10. Springer, New York
Loiseau J-C, Brunton SL (2018) Constrained sparse Galerkin
regression. J Fluid Mech 838:42-67

Lorenzi S, Cammi A, Luzzi L, Rozza G (2016) POD-Galer-
kin method for finite volume approximation of Navier-Stokes
and RANS equations. Comput Methods Appl Mech Eng
311:151-179

Maday Y, Patera AT, Rovas DV (2002) A blackbox reduced-
basis output bound method for noncoercive linear problems.
In: Nonlinear partial differential equations and their applica-
tions—College de France Seminar Volume XIV. Elsevier,
Amsterdam, pp 533-569

Majda AJ, Chen N (2018) Model error, information barriers,
state estimation and prediction in complex multiscale systems.
Entropy 20:644

McLaughlin B, Peterson J, Ye M (2016) Stabilized reduced
order models for the advection-diffusion-reaction equation
using operator splitting. Comput Math Appl 71:2407-2420
Mohebujjaman M, Rebholz LG, Iliescu T (2019) Physically-
constrained data-driven correction for reduced order modeling
of fluid flows. Int J Numer Methods Fluids 89:103-122
Moore B (1981) Principal component analysis in linear sys-
tems: Controllability, observability, and model reduction. IEEE
Trans Autom Control 26:17-32

@ Springer


http://arxiv.org/abs/2004.10389
http://arxiv.org/abs/2004.10389
http://arxiv.org/abs/1908.07725
http://arxiv.org/abs/1908.07725

E. Parish et al.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Mou C, Koc B, San O, Rebholz LG, Iliescu T (2021) Data-
driven variational multiscale reduced order models. Comput
Methods Appl Mech Eng 373:113470

Mullis CT, Roberts RA (1976) Synthesis of minimum round-
off noise fixed point digital filters. IEEE Trans Circ Syst
23:551-562

Novo J, Rubino S (2021) Error analysis of proper orthogonal
decomposition stabilized methods for incompressible flows.
SIAM J Numer Anal 59:334-369

Osth J, Noack BR, Krajnovi¢ S, Barros D, Borée J (2014) On the
need for a nonlinear subscale turbulence term in POD models as
exemplified for a high-Reynolds-number flow over an Ahmed
body. J Fluid Mech 747:518-544

Pacciarini P, Rozza G (2014) Stabilized reduced basis method for
parametrized advection-diffusion PDEs. Comput Methods Appl
Mech Eng 274:1-18

Parish EJ, Carlberg KT (2021) Windowed least-squares model
reduction for dynamical systems. J Comput Phys 426:109939
Parish EJ, Rizzi F (2023) On the impact of dimensionally-con-
sistent and physics-based inner products for POD-Galerkin and
least-squares model reduction of compressible flows. J] Comput
Phys 491:112387

Parish EJ, Wentland CR, Duraisamy K (2020) The Adjoint
Petrov-Galerkin method for non-linear model reduction. Comput
Methods Appl Mech Eng 365:112991

Patera AT, Rozza G (2007) Reduced basis approximation and a
posteriori error estimation for parametrized partial differential
equations. MIT Pappalardo Graduate Monographs in Mechanical
Engineering, Massachusetts Institute of Technology, Department
of Mechanical Engineering

Peng L, Mohseni K (2016) Symplectic model reduction of Ham-
iltonian systems. SIAM J Sci Comput 38:A1-A27

Pillage LT, Huang X, Rohrer RA (1989) Asymptotic waveform
evaluation for timing analysis. In: Proceedings of the 26th ACM/
IEEE design automation conference, DAC ’89, New York, NY,
USA, ACM, pp 634-637

Prud’homme C, Rovas DV, Veroy K, Machiels L, Maday Y, Pat-
era AT, Turinici G (2001) Reliable real-time solution of para-
metrized partial differential equations: reduced-basis output
bound methods. J Fluids Eng 124:70-80

Quarteroni A, Manzoni A, Negri F (2015) Reduced basis meth-
ods for partial differential equations: an introduction, vol 92.
Springer, New York

Quarteroni A, Valli A (1997) Numerical approximation of partial
differential equations. Springer, New York

Rathinam M, Petzold LR (2003) A new look at proper orthogonal
decomposition. STAM J Numer Anal 41:1893-1925

Rebollo TC, Avila ED, Marmol MG, Ballarin F, Rozza G (2017)
On a certified Smagorinsky reduced basis turbulence model.
SIAM J Numer Anal 55:3047-3067

Reyes R, Codina R (2020) Projection-based reduced order mod-
els for flow problems: a variational multiscale approach. Comput
Methods Appl Mech Eng 363:112844

Rezaian E, Duraisamy K (2023) Predictive modeling of complex
flows using regularized conditionally parameterized graph neural
networks. In: AIAA SCITECH 2023 Forum, p 1284

Rezaian E, Wei M (2020) Impact of symmetrization on the
robustness of POD-Galerkin ROMs for compressible flows. In:
AIAA Scitech. Orlando, Florida

Rezaian E, Wei M (2021) A global eigenvalue reassignment
method for the stabilization of nonlinear reduced-order models.
Int J Numer Methods Eng 122:2393-2416

Roop JP (2013) A proper-orthogonal decomposition variational
multiscale approximation method for a generalized Oseen prob-
lem. Adv Numer Anal

@ Springer

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Roos HG, Stynes M, Tobiska L (2008) Robust numerical meth-
ods for singularly perturbed differential equations: convection-
diffusion-reaction and flow problems, 2nd ed, vol 24. Springer
Series in Computational Mathematics, Springer, New York
Rovas DV (2003) Reduced-basis output bound methods for para-
metrized partial differential equations, PhD thesis, Massachusetts
Institute of Technology

Rowley CW (2002) Modeling, simulation, and control of cavity
flow oscillations, PhD thesis, California Institute of Technology
Rowley CW, Colonius T, Murray RM (2004) Model reduction for
compressible flows using POD and Galerkin projection. Physica
D 189:115-129

Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approxi-
mation and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations. Arch Comput
Methods Eng 15:229

Rozza G, Veroy K (2007) On the stability of the reduced basis
method for Stokes equations in parametrized domains. Comput
Methods Appl Mech Eng 196:1244-1260

Rubino S (2020) Numerical analysis of a projection-based stabi-
lized POD-ROM for incompressible flows. SIAM J Numer Anal
58:2019-2058

Sabetghadam F, Jafarpour A (2012) a regularization of the POD-
Galerkin dynamical systems of the Kuramoto-Sivashinsky equa-
tion. Appl Math Comput 218:6012-6026

Sagaut P (2006) Large eddy simulation for incompressible flows,
scientific computation, 3rd edn. Springer, Berlin

San O, Maulik R (2018) Machine learning closures for model
order reduction of thermal fluids. Appl Math Model 60:681-710
San O, Maulik R (2018) Neural network closures for nonlinear
model order reduction. Adv Comput Math 44:1717-1750
Sanderse B, Stinis P, Maulik R, Ahmed SE (2024) Scientific
machine learning for closure models in multiscale problems: a
review, arXiv preprint arXiv:2403.02913

Sanfilippo A, Moore IR, Ballarin F, Iliescu T (2023) Approxi-
mate deconvolution Leray reduced order model. Finite Elem
Anal Des 226:104021

Serre G, Lafon P, Gloerfelt X, Bailly C (2012) Reliable reduced-
order models for time-dependent linearized Euler equations. J
Comput Phys 231

Shakib F, Hughes TJ (1991) A new finite element formulation for
computational fluid dynamics: Ix. Fourier analysis of space-time
Galerkin/least-squares algorithms. Comput Methods Appl Mech
Eng 87:35-58

Sharma H, Mu H, Buchfink P, Geelen R, Glas S, Kramer B
(2023) Symplectic model reduction of Hamiltonian systems
using data-driven quadratic manifolds. Comput Methods Appl
Mech Eng 417:116402

Sharma H, Wang Z, Kramer B (2022) Hamiltonian operator
inference: physics-preserving learning of reduced-order models
for canonical Hamiltonian systems. Physica D 431:133122
Singler J (2014) New POD error expressions, error bounds, and
asymptotic results for reduced order models of parabolic PDEs.
SIAM J Numer Anal 52 (2014)

Sockwell K (2019) Mass conserving hamiltonian-structure-pre-
serving reduced order modeling for the rotating shallow water
equations discretized by a mimetic spatial scheme, PhD thesis,
Florida State University

Sotomayor RR (2020) On approaching real-time simulations for
fluid flows, PhD thesis, Universitat Politécnica de Catalunya
Stabile G, Ballarin F, Zuccarino G, Rozza G (2019) A reduced
order variational multiscale approach for turbulent flows. Adv
Comput Math 45:2349-2368

Stabile G, Hijazi S, Mola A, Lorenzi S, Rozza G (2017) POD-
Galerkin reduced order methods for CFD using Finite Volume


http://arxiv.org/abs/2403.02913

Residual-Based Stabilized Reduced-Order Models of the Transient Convection-Diffusion—Reaction...

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

Discretisation: vortex shedding around a circular cylinder, Com-
mun. Appl. Ind Math 8:210-236

Stabile G, Rozza G (2018) Finite volume POD-Galerkin stabi-
lised reduced order methods for the parametrised incompressible
Navier-Stokes equations. Comput Fluids 173:273-284
Strazzullo M, Girfoglio M, Ballarin F, Iliescu T, Rozza G (2022)
Consistency of the full and reduced order models for evolve-
filter-relax regularization of convection-dominated, marginally-
resolved flows. Int J Numer Methods Eng 123:3148-3178
Stynes M (2005) Steady-state convection-diffusion problems.
Acta Numer 14:445-508

Tezduyar T (1991) Stabilized finite element formulations for
incompressible flow computations. In: Hutchinson JW, Wu TY
(eds) Advances in Applied Mechanics, vol 28. Elsevier, Amster-
dam, pp 1-44

Thomée V (2006) Galerkin finite element methods for parabolic
problems. Springer, New York

Tsai PH, Fischer P (2022) Parametric model-order-reduction
development for unsteady convection. Front Phys 711

Urban K, Patera AT (2012) A new error bound for reduced basis
approximation of parabolic partial differential equations. CR
Math 350:203-207

Urban K, Patera AT (2014) An improved error bound for reduced
basis approximation of linear parabolic problems. Math Comput
83:1599-1615

Veroy K, Patera AT (2005) Certified real-time solution of the
parametrized steady incompressible Navier-Stokes equations:
rigorous reduced-basis a posteriori error bounds. Int J Numer
Methods Fluids 47:773-788

Veroy, K, Prud’homme C, Rovas D, Patera A (2003) A posteriori
error bounds for reduced-basis approximation of parametrized
noncoercive and nonlinear elliptic partial differential equations.
In: 16th AIAA computational fluid dynamics conference
Volkwein S (2013) Proper orthogonal decomposition: Theory
and reduced-order modelling, Lecture Notes, University of
Konstanz. http://www.math.uni-konstanz.de/numerik/personen/
volkwein/teaching/POD-Book.pdf

Wang Q, Ripamonti N, Hesthaven JS (2019) Recurrent neural
network closure of parametric POD-Galerkin reduced-order
models based on the Mori-Zwanzig formalism. J Comput Phys
(2019)

Wang Z (2012) Reduced-order modeling of complex engineering
and geophysical flows: analysis and computations, PhD thesis,
Virginia Polytechnic Institute and State University

Wang Z, Akhtar I, Borggaard J, Iliescu T (2012) Proper
orthogonal decomposition closure models for turbulent flows:

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

a numerical comparison. Comput Methods Appl Mech Eng
237-240:10-26

Wells D, Wang Z, Xie X, Iliescu T (2017) An evolve-then-filter
regularized reduced order model for convection-dominated flows.
Int J Numer Methods Fluids 84:598-615

Wentland CR, Huang C, Duraisamy K (2019) Closure of react-
ing flow reduced-order models via the adjoint Petrov-Galerkin
method. In: ATAA Aviation 2019 Forum

Xie X, Mohebujjaman M, Rebholz LG, Iliescu T (2018) Data-
driven filtered reduced order modeling of fluid flows. SIAM J Sci
Comput 40:B834-B857

Xie X, Nolan PJ, Ross SD, Mou C, Iliescu T (2020) Lagrangian
data-driven reduced order modeling using finite time Lyapunov
exponents. Fluids 5:189

Xie X, Wells D, Wang Z, Iliescu T (2017) Approximate decon-
volution reduced order modeling. Comput Methods Appl Mech
Eng 313:512-534

Xie X, Wells D, Wang Z, Iliescu T (2018) Numerical analysis of
the Leray reduced order model. J Comput Appl Math 328:12-29
Yano M (2014) A space-time Petrov-Galerkin certified reduced
basis method: application to the Boussinesq equations. SIAM J
Sci Comput 36:A232-A266

Xie X, Wells D, Wang Z, Iliescu T (2019) Discontinuous Galer-
kin reduced basis empirical quadrature procedure for model
reduction of parametrized nonlinear conservation laws. Adv
Comput Math 45:2287-2320

Zoccolan F, Strazzullo M, Rozza G (2023) A streamline upwind
Petrov-Galerkin reduced order method for advection-dominated
partial differential equations under optimal control, arXiv pre-
print, arXiv:2301.01973

Zoccolan F, Strazzullo M, Rozza G (2023) Stabilized weighted
reduced order methods for parametrized advection-dominated
optimal control problems governed by partial differential equa-
tions with random inputs, arXiv preprint, arXiv:2301.01975

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://arxiv.org/abs/2301.01973
http://arxiv.org/abs/2301.01975

	Residual-Based Stabilized Reduced-Order Models of the Transient Convection–Diffusion–Reaction Equation Obtained Through Discrete and Continuous Projection
	Abstract
	1 Introduction
	2 Summary of Residual-Based Stabilization in Petrov–Galerkin Model Reduction
	3 Finite Element Discretizations for the Convection–Diffusion–Reaction Equation
	3.1 Galerkin Approach
	3.2 Residual-Based Stabilization
	3.3 Selection and Scaling of the Stabilization Parameter, 
	3.4 Sensitivity to the Time Step, 

	4 Continuous Projection Reduced-Order Models
	4.1 Galerkin Reduced-Order Models
	4.2 Residual-Based Stabilized Reduced-Order Models
	4.3 Selection and Scaling of the Stabilization Parameter, 

	5 Discrete Projection Reduced-Order Models
	5.1 Galerkin Reduced-Order Model
	5.2 Least-Squares Petrov–Galerkin Reduced-Order Model
	5.2.1 Selection of the Time Step, 

	5.3 Adjoint Petrov–Galerkin reduced-Order Model
	5.4 Summary of Remarks for Discrete ROMs

	6 Brief Survey of Numerical Analysis of Residual-Based ROM Stabilizations
	6.1 Consistency
	6.1.1 Continuous Residual-Based ROM Stabilizations
	6.1.2 Discrete Residual-Based ROM Stabilizations

	6.2 Stability
	6.2.1 Continuous ROMs
	6.2.2 Discrete ROMs

	6.3 Error Bounds
	6.3.1 Continuous ROMs
	6.3.2 Discrete ROMs

	6.4 Selection and Scaling of the Stabilization Parameter, 

	7 Numerical Experiments
	7.1 Overview
	7.1.1 Investigated ROMs and Implementation Details
	7.1.2 Metrics
	7.1.3 Construction of ROM Trial Space
	7.1.4 Selection of Stabilization Parameters and Time Step

	7.2 Example 1: Boundary Layer
	7.2.1 Coarse-Grid FEM Results
	7.2.2 Reduced-Order Model Results as a Function of Basis Dimension
	7.2.3 Sensitivity to Time Step and Stabilization Parameters

	7.3 Example 2: Advecting Front
	7.3.1 Description of Problem Setup, Full-Order Model, and Generation of Trial Spaces
	7.3.2 Full-Order Model Results
	7.3.3 Results as a Function of RB Dimension
	7.3.4 Sensitivity to Time Step and Stabilization Parameters

	7.4 Summary of Numerical Experiments and Empirical Findings

	8 Conclusions
	Appendix 1: Brief Review of Non-residual-Based Stabilization Techniques
	Appendix 2: Correspondence of LSPG to a Continuous Minimization Principle
	Appendix 3: Derivation of the Adjoint Petrov–Galerkin Method
	Appendix 4: Proper Orthogonal Decomposition Algorithm
	Acknowledgements 
	References


