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> | Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

« Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model Traditional Methods Coupled Numerical Model

PDEs, ODEs Mesh-based (FE, FV, FD)
Nonlocal integral Meshless (SPH, MLS)
Classical DFT Implicit, explicit
Atomistic, ... Eulerian, Lagrangian...

s
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Monolithic (Lagrange multipliers)
Partitioned (loose) coupling
Iterative (Schwarz, optimization)
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+ PDEs, ODEs * Mesh-based (FE, FV, FD) - Monolithic (Lagrange multipliers)
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling

» Classical DFT « Implicit, explicit » Iterative (Schwarz, optimization)
* Atomistic, ... » Eulerian, Lagrangian, ...
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Traditional + Data-Driven Methods

¢ PINNs
* Neural ODEs
» Projection-based ROMs, ...

« There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to
handle plug-and-play integration of non-traditional, data-driven models!



Current Projects on Coupling for Predictive Heterogeneous Models

) ) Cﬁ\ Sandia
fHNM: flexible Heterogeneous Numerical Methods NORD @ National |
- Sandia Laboratory Directed Research & Development (LDRD) project (FY22-FY24)  sesewo: e onveomenr

» Co-Pls: Pavel Bochev & Irina Tezaur; Team: 5 staff, 2 post docs, 3 students, 2 consultants E

» Academic Alliance: Prof. Arif Masud (UIUC)

* Primary research objective: discover the mathematical principles guiding the assembly of standard
and data-driven numerical models in stable, accurate and physically consistent ways

M2dt: Multi-faceted Mathematics for Predictive Digital Twins f M 2 dt

« Funded by DOE’s Advanced Scientific Computing Research (ASCR) Mathematical
Multifaceted Integrated Capability Centers (MMICC) Program (FY23-FY27)

« Partnership between UT Austin (Lead Institution), Sandia National Labs (SNL),
Argonne National Lab (ANL), Brookhaven National Lab (BNL) and MIT

» Directors: Karen Willcox & Omar Ghattas (UT Austin) BROOKHAVEN Ill
» Sandia co-Pls: Irina Tezaur & Pavel Bochev; Sandia team: 6 staff, 1 post doc

* Primary research objective: establish a center for research and education on multifaceted Argonn eé
mathematical foundations for predictive digital twins (DTs) for complex energy systems = wrewsones

> Central to DTs is: (1) tight two-way coupling of data and models, (2) structure preservation and
(3) dynamic data assimilation

Sandia
National
Laboratories




s | Coupling Scenarios, Models and Methods

Coupling scenarios:

Scenario Il;
— multi-scale coupling

. where decomposition

- can be chosen to

model

(Physics 3) < maXimize accuracy)

_/ robustness & efficiency
of coupled model

Scenario I:
multi-component
coupling with a given
domain/component
decomposition (for
reuse of single-
component codes)

Data-driven models: to be “mixed-and-matched” with each other and first-principles models

Class A: projection-based reduced order models (ROMs)
Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

Method 1: Alternating Schwarz-based coupling
Method 2: Optimization-based coupling
Method 3: Coupling via generalized mortar methods (GMMs)



¢ I Coupling Scenarios, Models

and Methods

Coupling scenarios:

— — — Schwarz “glue”

3
High-fidelity
--{~ mesh-free
model
(Physics 3)

P,

Scenario Il:
multi-scale coupling
where decomposition
can be chosen to
maximize accuracy,
robustness & efficiency
of coupled model

Data-driven models:

« C(lass A: projection-based reduced order models (ROMs) This talk
Coupling methods:

 Method 1: Alternating Schwarz-based coupling This talk
* Method 3: Coupling via generalized mortar methods (GMMs) | This talk




7 1 Outline
1. The Alternating Schwarz Method for FOM*-ROM# and

ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation

 Numerical Examples o >r "

2. A lLagrange Multiplier-based Partitioned Scheme for L
FOM-ROM and ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation
* Numerical Examples

Q

--4~ mesh-free
model

3. Summary and Future Work

*Full-Order Model. #Reduced Order Model.

3 N
High-fidelity ~ \

(Physics3)
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9 I Schwarz Alternating Method for Domain Decomposition

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on T}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values

just obtained for Q;. non-overlapping
= Solve PDE by any method on Q; w/ transmission BCs on I'; based on values ” )F 0.
just obtained for Q,. ’

\

o)
= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization
method for solving multi-scale or multi-physics partial differential equations (PDEs).




How We Use the Schwarz Alternating Method

. | AS A PRECONDITIONER |
| FOR THE LINEARIZED
SYSTEM |

| AS A SOLVER FOR THE |
COUPLED

FULLY NONLINEAR \
PROBLEM




11 I Spatial Coupling via (Multiplicative) Alternating Schwarz

Overlapping Domain Decomposition

( 1 )
N(u§n+ )) =f,in{,
ugn-l_l) - g, on aﬂl\l—‘l

ugnﬂ) = ugn) on I

A

\
1 .

( N(ugn+ )) =f,inQ,

) ugn-l-l) == g, on aﬂz\rz

ugn+1) _ u§n+1) on T,

3

I

Nw)=f, in 0

Model PDE: {u —g, on a0

Jo

o0

Dirichlet-Dirichlet transmission BCs
[Schwarz 1870; Lions 1988; Mota et
al. 2017; Mota et al. 2022]

Non-overlapping Domain Decomposition

N

-

(N (ugn+1>) =f, inQ

ugnﬂ) =g, ond\I'
(N (u* ) =7, in 0,
ugnﬂ) =g, on dQ,\I'
\Vugnﬂ) ‘n= Vugn“) ‘n,on T

y Gugn) +(1—-60)A,,on I, forn>1

93

Q9

o0

Relevant for multi-material and multi-
physics coupling

Alternating Dirichlet-Neumann
transmission BCs [Zanolli et al. 1987]

Robin-Robin transmission BCs also lead
to convergence [Lions 1990]

0 € [0,1]: relaxation parameter (can
help convergence)



2 | Additional Parallelism via Additive Schwarz

Multiplicative Overlapping Schwarz Additive Overlapping Schwarz Model PDE:
( ( = .
N (") =F,ing, N (V) = £, inqy Nap =/, In &
1) () u=g, on ad{
9 ul =g, on an\Fl ) ul =g, on 091\F1
kugn“) = ugn) on [} \ ugnﬂ) = ugn) on I}
(
(N (u* ) = £, inQ, N(ud™)=f,ina,
) ugn-l-l) = g, on aQZ\FZ \ ugn-l-l) = gr on a'QZ\FZ " : >rl )
Kugnﬂ) = ugnﬂ) on I L ugnﬂ) = ugn) on I \

o0

* Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
« Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

» Typically requires a few more Schwarz iterations, but does not degrade accuracy
> Parallelism helps balance additional cost due to Schwarz iterations

» Applicable to both overlapping and non-overlapping Schwarz



i3 I Time-Advancement Within the Schwarz Framework

I Ty Ty

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for 2,

Time integrator for (2,

Model PDE:

u+N(u) =f, in 2
u(x,t) = g(t), on 41}
u(x,0) = u,, in 2




14 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper
I, Integrate using 4t
= Time integrator for (2,
Q, Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using
solution in , interpolated to I} at times T; + n4t;.

u+N(u) =f, in 2
u(x,t) = g(t), on ad(]
u(x,0) = u,, in 2

Model PDE:




5 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper

I
\ — l - / Interpolate

from (Q; to I,

Time integrator for (2,

Q, > Time integrator for (2,
Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using
solution in , interpolated to I} at times T; + n4t;.

Step 2: Advance (., solution from time T; to time T; ., using time-stepper in Q, with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

u+ N =f, in 2
u(x,t) = g(t), on ad(]
u(x,0) = u,, in 2

Model PDE:




6 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper
I,
= I Time integrator for (2,
Q, | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using
solution in , interpolated to I} at times T; + n4t;.

Step 2: Advance (., solution from time T; to time T; ., using time-stepper in Q, with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj, . u+ N =f, in 0

Model PDE: w(x, t) = g(b), on a0
u(x,0) = u,, in 2




7 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

I, Integrate using 4t

T Interpolate|from
AN O, to I

Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using

solution in , interpolated to I} at times T; + n4t;.

Step 2: Advance (., solution from time T; to time T; ., using time-stepper in Q, with time-step 4t,, using

solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;.
> If unconverged, return to Step 1.

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Model PDE:

u+ N = f,

u(x,t) =g(),
u(x,0) = u,,

in
on 4.
in N




i3 I Time-Advancement Within the Schwarz Framework

Q
1 T1
I, Integrate using At
T, Interpolate from
Q,t6 Ty AN
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using

solution in , interpolated to I} at times T; + n4t;.

Step 2: Advance (., solution from time T; to time T; ., using time-stepper in Q, with time-step 4t,, using

solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;.

> If unconverged, return to Step 1.
> If converged, seti = i+ 1 and return to Step 1.

T

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Can use different integrators with

different time steps within each domain!

Model PDE:

u+ N = f,

u(x,t) =g(),
u(x,0) = u,,

in
on 4.
in N




19 I Time-Advancement Within the Schwarz Framework

. Ty T,
Controller time stepper
£ Integrate using At;
T, Interpolate from . Time integrator for 0
Q,t6 T -
- Time integrator for (2,

Time-stepping procedure is equivalent to doing
Step 0: Initialize i = 0 (controller time index). Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance Q, solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using
solution in , interpolated to I} at times T; + n4t;.

Step 2: Advance (., solution from time T; to time T; ., using time-stepper in Q, with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;. i+ N@) = f, in 0

> If unconverged, return to Step 1. Model PDE: ) oy 1y = g(t), on an
> If converged, set i = i + 1 and return to Step 1. u(x, 0) = u,, in N




o, | Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics'

Model Solid Mechanics PDEs:

Coupling is concurrent (two-way). Quasistatic: Div P + poB =0 1n Q) ‘
Ease of implementation into existing massively- | Dynamic: DivP +p9B =pgp in QxI
parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees!.

L -LCM?
“Plug-and-play” framework: L@LQ M | _
> Ability to couple regions with different non-conformal meshes, different element types |

and different levels of refinement to simplify task of meshing complex geometries.
> Ability to use different solvers/time-integrators in different regions.
"Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.



https://github.com/sandialabs/LCM

A Mota, 1. Tezaur, C. Alleman = Alternating Method in Solid Mechanics

2 Formulation of the Schwarz Alternating Method

We start by defining the standard finite deformation variational formulation to establish notation before
presenting the formulation of the coupling method.

2.1 Variational Formulation on a

ingle Domain

‘Consider a body as the open set © © K? undergoing a motion described by the mapping & = (X)) : 2 = &7,
X € . Assume that the boundary of the body is ) = J €2 U 7€) with unit normal N, where ()
i a displacement boundary, &2 is a traction boundary, and €2 (1972 = . The prescribed boundary
displacements or Dirichlet boundary conditions are x - 9,€2 — K°. The prescribed boundary tractions or
Neumann boundary conditions are T' - 672 — &*. Let F := Grad @ be the deformation gradicnt. Let
also BB : © — R be the body force, with 2 the mass density in the reference configuration. Furthermore,
introduce the energy functional

Plp] = / A(F.Z) av ,/:m e dv — T dS, m
o o onsn

in which A(F, Z) s the Helmholtz free-energy density and Z is acollection of internal variables. The weak
form of the problem is obtained by minimizing the cncrgy functional lgz] over the Soboley space 11 (€2)
that is comprised of all functions that are square-integrable and have square-integrable first derivatives. Define

Si={p e W) 1 p = xon 0,92} @
and

Vim (£ WH(Q) 1 €= 00n 0,0} @
where & € Vs a test function, The potential energy is minimized if and only if $[] < B + e€] for all
€€ Vand e e R. Itis straightforward to show that the minimum of ] is the mapping ¢ € S that satisfies

" " -

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above.

5 ‘ Convergence Proof*

A Mota, 1. Tezaur, C. Alleen Schwarz Alternating Method in Solid Mechanics A Mota, 1. Tezaur, . Alleman Schwarz Alternating Method in Solid Mechanics
1 20— X in 2 — x(X(D) on gt o iidalize or 21
2 @l o X in0n @l o x(X() on g0t » initalize for 25
3 et o Newion Scats oo
vy K+ KU H), K\ H ~R{
rat r syl AB A5 AZ o \ (b  linear system
= : = o () - (R T () !

s el el + ol

6 e al) el
7 untit [(\ o)’ + (lae \m;m)‘] "% < e > tight olerance

Fres iz Jaars

thatisi = landj = 2if nisodd, andi = 2andj = 1if n is even. Introduce the following definitions for
each subdomain

* Closure: = B[ @

* Dirichlet boundary: @ (= @ (= B
+ Neumann boundary: @ (%= @ () .
+ Schwarz boundary: I = @\ 5.

Note that with these definitions we guarantee that @ %\ @ =1, @ [\ [ = ; and @ B\ T =
Now define the spaces

S={ 2WH @) = xon@E = Pyl (H)onf @
and
V= {2 WA(E) 0n@R[ I . ®)

“Aigorthm 5: Monolithc Schwarz Method

[35., 34, 11, Although we do not provide here formal convergence proofs for the remaining variants of the
Schwarz method, we offer some numerical results illustrating their convergence in Section

Consider the energy functional ®[2] defined in (1). We will denote by (-.-) the usual L? inner product
over €, that s,

W) o= [ w1 av )

for 1. 42 € W(2). with corresponding norm || || The proof of the convergence of the Sehwarz alernating
‘method requires that the functional ®[s] satisfy the following properties over the space  defined in (2)

] is coercive.

Dlgp] is Fréchet differentiable, with '] denoting its Fréchet derivative.

] is strictly convex.

B[] is lower semi-continuous.

method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) P[] > d[@W] > ... > P[E" V] > d[@pM] > ... > D[], where @ is the minimizer of D[p] over S.

(b) The sequence {p™ } defined in (39) converges to the minimizer @ of @[] in S.

Consider the Schwarz alternating &

A Mota, 1. Tezaur, C. Alleman Sehwarz Alternating Method in Solid Mechanics

Remark that [50] . . -
S.= @AV for gV ES, 5@ Ve, @0

Theorem 1. Assume that the energy functional ®[p) satisfies properties 1-5 above. Consider the Schwarz
alternating method of Section 2 defined by (9)~(13) and its equivalent form (39). Then

(@ w;a“; 2 B[] = - 2 BB = W] 2 - = Dl where  is the minimizer of blip]

(b) the sequence { G} defined in (39) converges o the minimizer @ of ®|¢] in'S.

() the Schwarz values B[@™)] comverge 10 the minimum value ®[p) in S starting
from any initial guess )

() if ¥'[i] is Lipschitz continuous in @ neighborhood of @, then the sequence {™} comverges geomet-
rically to the minimizer .

Proof. See Appendix A. o

Fi

lly, while most of works cited above present their ai
extension in gencral The case of is considered
specifically in Lions [35], Badea [1], and Li-Shan and Evans [34],

lysis for the specific case of two subdomains,

4 Nume

al Examples

In this section, we present numerical examples of the behavior of the Schwarz alternating method for two
different implementations. Fi briefly describe the two implementations, one in MATLAB and the other
in the open-source ALBANY finite element code [37]. Next, we discuss the error measures used throughout
the numerical examples. Then, we continue with four examples that demonstrate different features of the

boid

omit

ina

tion

onal

(c) The Schwarz minimum values ®[@™] converge monotonically to the minimum value ®[p] in S starting from any

initial guess @.

remarks. Assume properties 1-> enumerated in Section $ hold.

Remark 1 By the coercivity of ®[], it follows from the Lax-Miliram theorem that a unique minimizer to
this functional over § exists, i.c., the minimization of [ is well-posed.

Remark 2 By the Stampacehia theorem, the minimization of (] in & is equivalent to finding i € § such
that
(@£~ ¢) =0 &)
forall € € 5.

Remark 3 Recall that the striet convexity property of (2] can be written as

@l — D] — (@il — ) 2 0, 2

Va1, 42 € . From (36), remark that if ®[g] is strictly convex over § VR € R such that R < oo, we can find
an > 0 such that Vaby, 422 € Ky we have

Blaps] = Blya] — (@'[a] 2 — 91) = arlla — ¢l 53)

Remark 4 By property 5. the uniform continuity of @[], there exists a modulus of continuity i > 0, with
@ K~ K, such that

(1) = ¥ (2)l] = w(llvor — ) (s4)

b2 € K. By definition, w(c) - 0as ¢ - 0.

Remark § It was shown in [15] that in the case €2, (12 # 0, Vip € S, there exist ¢; € Sy and G € S
such that

=Gt (55)
and
max (|Gl 11¢:])) < Colleell. (56)
for some Co > 0 independent of .
Remark 6 Note that (39) can be written as
@[™).€7) =0, for g™ € &, v € 8, 7

fori € {1,2} andn € {0,1,2, ..} (recall from (6) the
of the solution to eac
s

tion between i and 7). This is due to the uniqueness

jzation problem over &, and the definition of () as the minimizer of ] over

Remark 7 Let ) € ,, and let € € 5. By Remark 5, there exist €1 € S) and Gz € S such that

(@'[p],€) = (@[p"™)]. 1 + ). (58)

(@[], 62) = (#1607, G2) = (#[6M] = #[6"], &2) < [[#16] = S]] all. (60)
Again using (57) and also (58) in (60) leads to
@[] - ¥[p" V), &) = (@), ) < [|#[6] - Ve V|- lIGall, ©n
and substituting (56) into (61) we finally obtain that

(@[5],€) = Col|9/[6™] — @[5 ]| - |I€]]. ©2)

Remark 8 For part (d) of Theorem 1, recall the definition of geometric convergence:
By < CE, ©3)
Vi€ {0,1,2,....} for some C > 0, where

By = |0 — )] ©4)

Remark 9 Recall from the definition of continuity that if ©'[¢] is Lipshitz continuous at 3" near . then
there exists a constant K = 0 such that

P
116~ (gl _ e 5
Tl
Considering that (] = 0 since ¢ is the minimizer of (g, (65)is cquivalent to
191211l < K116 = el (©6)

Proof of Theorem 1

Proofof (a). Let @) = argmin, s, ®lp]. By (10). ¢ € Sy. Let ¢* be the minimizer of @[] over 8
and suppose B5*] > B{g(M)]. But this is a contradiction, since we can take @* = (1), Hence, it cannot be

that {p(1)] < @[@(2)] where $(2) = argmin,, s, ). It follows by induction that

e
Bp] < Bl ()

forn € {1.2.3.....}. Now let  be the minimizer of (2] over . Since the problem is well-posed @ is
unique, Hence ®lp] < ®[p] forall n & {1,2,3,...} o

oAl € {1 2;3, -} Since B[] =5 14 7 =5 50, 1t Follows that B[ = B[V =5 01 =5 58,
From (68), we have that
Jim [ — GO = ©)

from which we can conclude that 3") — G("+1) 5 0as n — oc
‘We must now show that ") converges to . the minimizer of B[] on S. By (53) with 16, = @ and

a5 we nave
ke = @™ < — {@lp] - Blp"

(@ - e)} a0

si

« is the mimimum of ®[s2], by (a) we have that ] < ®[(™)]. It follows that

_ (4,/[¢,(rr»],w,@ ,,,) - («.,r[@w e ). D

D] - 2] - (15,0 - )
Subsitating (71 ino (70) we have
2oL 13 B
llp = ¢ < o (#1606 — o) @2)
Now by (62) (Remark 7).

(P68 — ) < Call#' 8] - (VNI 16 — el a3

tuting (73) into (72) leads to

)

16 — ll < 22|/ [5)] - ¥ s

Applying the uniform continuity assumption (54), we obtain

11 =l < 2w (116 - @ V1l) s

By (69), [[¢") — @ "V|| = 0as n — oc. From this we obtain the result, namely that (") — @ as

Proof of (c). This follows immediately from (a) and (b). o
Proof of (d). By (b . for large enough . there exists some Cy > 0 independent of n such that

16 = ll* < Cullg™+h — )2 ao

Let us choose C such that Cy > a /K, where K is the Lipshitz continuity constant in (66). Combining
(68) with (76) leads to
1

(P18 = 0l 1) = )

8 — el an

36

(#16), 0 = 2) < (#'16), ¢ — ) +anlle — ¢]| < @] — @[6™] (79

since a = 0. Now, by the Cauchy-Schwarz inequality followed by the application of the Lipshitz continuity
of '[¢p] (66) we can write

(#1670 = 6™) < 1961l - Il < Kl — 51 0
Hence, from (79),
2[p] - Blg] < KlI6™ - ol @n
Moreover, by (53)since (] = 0,
D[] — Bl] = arllp™ - ol 2)

Using (1) and (52) we obtain
(#16™) - 2le]) - (21p"*V)

Combining (53) and (78) leads to

alel) < KlI$™ — @l —anlle™ ) ol @3

FhIe™ — el < (21p] - afe]) - (216 ] = lp]) < K1) — Il — anllg™ D — ol
e
or
1" +1 = ¢l < Bllg™ — | 85)
with
B @6

and B € Ras we chose €y > /K. Furthermore, since the sequence ("} converges monotonically to
the minimizer @ of @[] by (b) and (©). it follows that B & (0. 1). Define € i— 1 — B & (0. 1). then (85)
can be recast as

B+ — g < Cfjgt — gD @7

whereupon the claim is proven. o

B Analytic Solution for Linear-Elastic Singular Bar

As referen

. herein we provide the solution of the singular bar of Section 4.3 fc
cquilibrium equation is

).

P = a(X)AX) = const. o(X) = Be(X), e(X) = u(X), .1\'.\‘,,.x(,(7

37

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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nodal egps
2.226e+00

0.005

;

Time: 0.000000

1.1132

mﬂomnunl|||||||ll||||"m
&

0.000e+00

y-displacement EQPS

Figure above: tension specimen simulation coupling
composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.

*.i]k
L

Single Q Schwarz

Schwarz

*Mota et al. 2017; Mota et al. 2022.
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.. | Projection-Based Model Order Reduction via the POD/LSPG* Method

Full Order Model (FOM):

aq _
a_f(q)t)”)

*Least-Squares Petrov-Galerkin

1. Data Acquisition

Number of
time steps
+«—>
A
D g
, —
— S
| &g
w l
B g (TR
| 0
| D c >
| =]
i =
v

Solve ODE at different

. . Save solution data
design points

2. Learning of Reduced Basis

Proper Orthogonal Decomposition (POD):

XI IIU Z )

3. Projection-Based Reduction

Di : q=fQ@qtn

iscretize

FOM in time {
rm@suw=0,n=1,.,T

Reduce the q(t) = q(t) = Pq(t)

number of I

unknowns

Apply hyper- minimizeg || A ™ (OD; W[,

reduction and
minimize residual

=2

Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM



. | Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

Choice of domain decomposition
« Overlapping vs. non-overlapping domain decomposition?

» Non-overlapping more flexible but typically requires more Schwarz iterations
 FOM vs. ROM subdomain assignment?

» Do not assign ROM to subdomains where they have no hope of approximating solution
Snapshot collection and reduced basis construction
* Are subdomains simulated independently in each subdomains (Scenario I) or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
« Strong vs. weak BC enforcement?

» Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
« Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
* What hyper-reduction method to use?

> Application may require particular method (e.g., ECSW for solid mechanics problems)
 How to sample Schwarz boundaries in applying hyper-reduction?

> Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz



26 | Outline
1. The Alternating Schwarz Method for FOM*-ROM# and

ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation

* Numerical Examples o >r "

2. A lLagrange Multiplier-based Partitioned Scheme for \
FOM-ROM and ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation
* Numerical Examples

Q

--4~ mesh-free
model

3. Summary and Future Work

*Full-Order Model. #Reduced Order Model.

3 N
High-fidelity ~ \

(Physics3)



Model Problem I: 2D Inviscid Burgers Equation

27

Popular analog for fluid problems where shocks are possible, and
particularly difficult for conventional projection-based ROMs

ou 1/0w?) d(uv) t=0.0 t=06.2
- — — 5
5% + 2( F + 3y 0.02 exp(p,x) _ x 100

dv 1(d(vu) 9a(w?)\

6t+2( ox T oy )7 0

u0,y,t; p) = py
u(x,y,0) =v(x,y,0) =1

100

t=12.5 t =18.8
Problem setup:

« 0 =(0,100)% t € [0, 25] 75 -
« Two parameters u = (uq, U,) defining source and

. 50 ]
BC terms, respectively

2 i
FOM discretization: °

« Spatial discretization given by a Godunov-type 95 50 75 95 50 75
scheme with N = 250 elements in each dimension

« Implicit temporal discretization: trapezoidal method
with fixed At = 0.05

Figure above: solution of u
component at various times



. | Sdingle Domain Predictive ROM 0 x 100

* Uniform sampling of D = [4.25,5.50] x [0.015,0.03] by a 3 x 3 grid

. . . >\
= 9 training parameters characterized by Au,; = 0.625, Ay, = 0.0075 h
» > 200 POD modes required to capture 99% snapshot energy 8l
* Queried but unsampled parameter point u = [4.75, 0.02]
» Reduced mesh resulting from solving non-negative least squares problem defining ECSW |
gives n, = 5,689 elements (9.1% of N, = 62,500 elements). .
% SV MSE* | CPU time* [
M 0
0 50 100 150 200 Energy (%) ()
5 | ) L 95 69 1.1 138
o L | ierow 99 177 0.17 447
32 \ o — * Numbers in table are w/o hyper-reduction
-;g 0 20 10 60 80 100 10°
° 150 a 10
S 4 21
. . % @1072 I
200 {- Iy 5 |
R - 0 20 40 60 80 100 -
. . Y 107
Figure above: Reduced mesh of Figure above: HROM and FOM | | S | |
1 200 400 600 800 1000

single domain HROM results at various time steps Singular value index j



, | Schwarz Coupling Details

Choice of domain decomposition

« Overlapping DD of Q into 4 subdomains coupled via multiplicative Schwarz
« Solution in Q, is most difficult to capture by ROM

Snapshot collection and reduced basis construction

« Single-domain FOM on Q used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
» BCs imposed strongly using Method 1 of [Gunzburger et al., 2007] at indices ip;,
q(t) = q + Pq(t)
» POD modes made to satisfy homogeneous DBCs: @®(ipi.,:) =0
» BCs imposed by modifying q : q(ipi;) < x4
Choice of hyper-reduction

« Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
« All points on Schwarz boundaries are included in the sample mesh

1(|)O




. | All-ROM Coupling

- 95% Singular Value (SV) Energy Retention 99% Singular Value (SV) Energy Retention
o)
% 5.0
° () .
: QZ 3 | _ _
° O3 = 0 20 40 60 80 100 0 20 40 60 80 100
o Q4 v &
=
1SD S 9
2
I
\_‘_H/ _ —_— ———
=70 20 40 60 80 100 0 20 40 60 80 100
Y y

. . 95% SV Energy 99% SV Energy
Method converges in only 3

M MSE (%) CPUtime(s) M  MSE (%) CPU time (s)

Schwarz iterations per 0 x 100
- Errors O(1%) or less Q, 44 [1.2 56 120 | 0.18 216
Q0 24 | 1.4 43 60 |o0.16 89
« 1.47x speedup over all-FOM =
0, 32 | 1.9 61 66 | 0.25 100

coupling for 95% SV energy

retention case Total 700




.| FOM-HROM-HROM-HROM Coupling
1

g 5.0 M MSE (%) CPU time (s)
3 A~ A )
I Q, - (00 95
> 2.5 1 Q 120 0.26 26
= ® Ql 2
K :————_ . . . . . 0 Qs 60 | 0.43 17
2
0 20 40 ) 60 80 100 . 0 66 | 0.34 21
o —
3 Total
5 0
- 5 Y 4

2 ubdomain 2: PROM Reduced Mesh

D 2 ) ) 120 140

Z 15D .

|

\_E_'i === ——.,

£ 0 T T T T T T

0 20 40 60 80 100
y P

« FOMin Q, as this is “hardest” subdomain for ROM y
« HROMs in Q,, Q3, Q, capture 99% snapshot energy
* Method converges in 3 Schwarz iterations per controller time-step |
* Errors 0(0.1%) with 0 error in Q, S O
2.26x speedup achieved over all-FOM coupling

Further speedups possible via code optimizations,

additive Schwarz and reduction of # sample mesh points.




Model Problem 2: 2D Shallow Water Equations (SWE)

Hyperbolic PDEs modeling wave propagation below a pressure
surface in a fluid (e.g., atmosphere, ocean).

32

oh d(hu) Jd(hv
L) a(w) _
ot d0x dy

o) o[ , 1 _\ 0 = z
m + F (hu + > gh® | + 3y (huv) = —uv O% "

d(hv) 0 o( , 1 h: ot
m + F (huv) + 3y (hv + > gh* | = uu 110 8 3

Problem setup:

1.000

-4 -2 0 2 4

« O =(-5,5)%t€[0,10], Gaussian initial condition x x

« Coriolis parameter u € {—4,-3,—-2,—1,0} for

training, and u € {—3.5,—2.5,—1.5,—0.5} for testing Figure above: FOM solutions to SWE for u = —0.5

(left) and u = —3.5 (right).

FOM discretization:

« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 elements
in each dimension

« Implicit first order temporal discretization: backward Euler with fixed At =

* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

0.01

[Fr’FESSiO


https://github.com/Pressio/pressio-demoapps

Schwarz Coupling Details

33
Choice of domain decomposition

Green: different from Model Problem 1

* Non-overlapping DD of Qinto 4 subdomains coupled via additive Schwarz
» OpenMP parallelism with 1 thread/subdomain

Fi ight: non-
«  AllI-ROM or AllI-HROM coupling via Pressio* Isure rignt. non

Snapshot collection and reduced basis construction cells creating overlap

« Single-domain FOM on () used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

overlapping DD w/ ghost

[Ff’ressio

« BCs are imposed approximately by fictitious ghost cell states J

» Implementing Neumann and Robin BCs is challenging

* Ghost cells introduce some overlap even with non-overlapping DD

» = Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction i

» Collocation for hyper-reduction: min residual at small subset DOFs

[

]

« Assume fixed budget of sample mesh points at Schwarz boundaries

*https://github.com/Pressio/pressio-demoapps

Figure above: sample mesh
(yellow) and stencil (white) cells

Ghost
cells


https://github.com/Pressio/pressio-demoapps

. ‘ Schwarz All-ROM Domain Overlap Study

Study of Schwarz convergence for all-ROM coupling as a function of N, :=
cell width of overlap region (not including ghost cells).

Water Height
1 000 1.002 1.004 1.006 1.008 1.010 1.012 1.014 1.016 1.018 1.020 1.022 1.024
FOM Schwarz PROM, N, = 0 Schwarz PROM, N, = 20

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping
Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz
(right) for predictive SWE problem with u = —0.5. All ROMs have K =
80 POD modes.

-4 -2 0 2 4

Schwarz iterations decrease (very roughly) with
N925 (figure, right) whereas evaluating r(q) scales
with N2
» = there is no reason not to do non-
overlapping coupling for this problem

Relative £2 error

» Dirichlet-Dirichlet coupling with no-overlap

(N,= 0) performs well with no convergence [
issues (movie, left) and errors comparable to
Dirichlet-Dirichlet coupling with overlap ]

(figure below, left)

Water Height

10° —— K=20,N; =0
— K=20,N, =10 3.251
—— K=20,No=20
- K=60,No=0
—— K=60,N, =10
10-2 4 --= K =60, No =20

Average Schwarz iterations

10-51— . , . , . , . , 3.05 \/_//—‘
40 -35 -30 -25 -20 -15 -10 -05 00 o 35 30 35 3o —is i 55 oo
H u

Figures above: relative error and average # Schwarz iterations as a
function of u and N,. Black u: training, red u: testing.



. | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?




o ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height
1.000 1.002 1.004 1.006 1.008 1.010 1012 1.014 1.016 1018 1.020 1.022 1024 ':' . wr : v
¢
FOM Schwarz HPROM, N, =5 L
e - .t
b . ' L L
4 F) . .:". L . LR LI %
L
-
. L. H :..
.
*
2 .. R :..... ;. . :. d
L]
- : . : .: - ': -
- g * .
R
0 i.o s *
.
- L
.ian
. “oﬁ.o * * .: * F
* L]
-2 * & ¢ "
-
L - . .
. . | F AN
I - * . 4
_a . . gt 2 o
* s

-4 -2 0 2 4 -4 -2 0 2 4

X

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and Ny, = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 5%.



| Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height
0J J ) < v T - ‘ .. * - -
LY
e >
FOM Schwarz HPROM, N, =5 . "
‘e, o -t
e ¥ - * * -
4 ) & hd 5
£ . s T
271-.. - Lt * 0..."..0.° o L
0.' .. ..‘: * : :. o::'. +
- * -
-l - -, * - * . -
: '-"."'.:.-. I EE »; %
L oo .- L) -
0 - .o * » - s - N .
%. . *e ... * - e
0 * L * - * . .
) * ., R Y et " oene
e '.‘ - A LT -
2 * . -t et . .t . L
- . ..’0 . * . - H ’.
-2 * ¢ e - 1
L
r
- * .
- F A
1 * e w3 'n
-4 ., L3 ‘o° fe . "
4w

-4 -2 0 2 4 -4 e | 0 2 4
X

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and Ny, = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 0.

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



. | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

0 1.012 0 [ 1 n .... - Il
FOM Schwarz HPROM, N, = 5 P ‘ * ; Seen
’ SRR o s
1 L q.h Tt s
| . I SR P R
H .‘ t - I : .. . L,
0 .%.... . .. .o . ". Lt . » ...
0 s el . . ¢ ", o
24 .O * .1‘.. 0..0 .. .. .‘... . :.o.’.o..
-2 * * * ": -+ :’ P
: * . ; - !‘.
*1e - b . 4
-4 * ~..‘.. e .
-4 -2 0 2 4 -4 -2 0 2 4 b
x
. . ) Figure above: example sample
Movie above: FOM (left) and all HROM with N, = 5% (right). s P P

h with li te N, = 5%.
ROMs have K = 100 modes and Ny, = 0.5%N sample mesh points. Mmesh with sampring rate & o

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



» | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

FOM

Schwarz HPROM, N, =5
2*. * *
2 . S, o T, .
0 - :o y . : :
..'o - * .
0 * * [ *
24 . *

-4 -2 0 2 4 -4 e | 0 2 4

.
.
o‘h

X

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and Ny, = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 10%.

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



.o | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

0 3.012 0 ( . . .
Schwarz HPROM, Ny = 5 : :
. * - -t
. .
. . .
* . o . . .o "
2 w . . .t . ;
. . .
2 * .. bl :. .° - * * J‘
. - LAY - L]
o . " . > -
" ¥ . * * —. i ' *
0 . " - N ..
. . . .
R . " - . L -
] Py " s " LR - et *
. +
. .' . .

-4 -2 0 2 - -4 -2 0 2 4

FOM

X

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and Ny, = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 15%.

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



. | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

1.000 1.002 1.004 1.006 1.008 1.010 1012 1.014 1.016 1.018 1.020 1.022 1.024

FOM Schwarz HPROM, N, =5 Schwarz HPROM, N, =10

IS
L
- L] L

X

Movie above: FOM (left), all HROM with N, = 5% (middle) and all HROM with N, = 10%
(left). ROMs have K = 100 modes and N = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 10%

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior

» For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)



, | Coupled HROM Performance

Water Height Water Height, u = -0.5
107 5 —e— Mono PROM, various K
] —e— Mono HPROM, K = 80
—e— Schwarz PROM, various K
10-1 - —&— Schwarz HPROM, K = 80
. ] 1073
o 2
t ] E._} .- & ._—'
Nn:l.} 10-2 - Solid: Ns= 0.5%N o~
= ] - f
o Dashed: N, = 1%N v
2 2 /
o 103 5
& : & 10-¢
4 ..--""'f.-
10_4'_
10_5 T _r T _r T T T T T -:_1 IID I o Ill ' S |2
-40 -35 -30 -25 -20 -15 -1.0 -05 0.0 10 10 10 10
u Speedup vs. Monolithic FOM

« For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!
« There are noticeable cost savings relative to monolithic FOM!
« Accuracy similar for predictive u (red) and non-predictive u (black) cases.



- ‘ Extension to PINN-PINN Coupling

: \VV [ ;(!l“ i I’I

Goal: investigate the use of the Schwarz alternating method as Aﬁ%ﬁ{’\ B
. ! . VAoV A

a means to couple Physics-Informed Neural Networks (PINNs) | w'uv/» s

a I'(lV > math > arXiv:2311.00224

Mathematics > Numerical Analysis

[Submitted on 1 Nov 2023]

Domain decomposition-based coupling of physics-informed
neural networks via the Schwarz alternating method

Will Snyder, Irina Tezaur, Christopher Wentland 1.0

0.8 4

Learnings (using Schwarz to facilitate PINN .
training for 1D advection-diffusion PDE): 7 .]

« PINNs are very difficult to train even for 1D "
linear advection-diffusion PDE, if Pe > 100! .
» Schwarz convergence is sensitive to how BCs
are enforced in the PINN. ;:
« Training can be facilitated greatly through Sos
PINN-FOM coupling. S04

« Tuning libraries like RayTune and HyperOpt -

can autotune PINN/Schwarz parameters to
improve performance.

* Could not get non-overlapping Schwarz to
work.

(1) 4\\’[&;

\ Ay
e i{’:o

Neural Network

..............................................

: \g"t’ PSSl
TGN
NG
| TSN

o i
PDE loss £,.(6) —l Mim:mize

BC loss £, (6) 2, Loss £(6) —5—’ 9'=argg1in£(9)

Data loss L,(8) 4[
Y

All PINN e
Weak BCs .- g

-~
-~
-

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8

with Will Snyder (Virginia Tech),
and Sigi Ma, Jinny Chung, Peter
Krenek (Stanford U)
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Number of Subdomains Number of Subdomains

]

[
Figures above: untuned (left) & tuned
(right) results. Gray = no convergence.
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s | Lagrange Multiplier-Based Partitioned Coupling Formulation

Model problem: time-dependent advection-diffusion problemon 2 =0, U 2, with2, NN, =0

Ci = gi
ci(x,0) = c;o(x),

¢ —V-F(c)=f;, in

on
in

Q; X [O,T

]

[; X [0, T]

Q;

i € {1,2}

* ¢;: unknown scalar solution field

* f;: body force, g;: boundary data on I;

* F;(c;) = x;V ¢; —uc;: total flux function
* k;: non-negative diffusion coefficient

u: given advection velocity field

Compatibility conditions: on interface I' X [0, T]

« Continuity of states: c;(x,t) — c,(x,t) =0

(1)

« Continuity of total flux: F;(x,t) - np = F;(x,t) - nr

= Imposed weakly using Lagrange multiplier (LM) A

Figure above: example non-
overlapping domain decomposition
(DD) of 2 =0, U N,



Lagrange Multiplier-Based Partitioned FOM-FOM Coupling
FEM-FEM coupling for high 9 ’
Peclet transport problem Plug-and-play” framework:

« Ability to couple regions with different non-conformal meshes,
different element types and different levels of refinement to
simplify task of meshing complex geometries

« Ability to use different solvers/time-integrators in different
regions’.2

« Coupling is non-iterative (single pass)

46

Method is theoretically rigorouss:
« Coupling does not introduce nonphysical artifacts

« Theoretical convergence properties/guarantees including well-
posedness of coupling force system

 Preserves the exact solution for conformal meshes

Method has been applied to several application spaces:
» Transport (unsteady advection-diffusion)

« Ocean-atmosphere coupling

« Elasticity (e.g., ALEGRA-Sierra/SM coupling)

Connors et al. 2022. 2Sockwell et al. 2023. 3Peterson et al. 2019.



s7 1 A Lagrange Multiplier-Based Partitioned Scheme

Hybrid semi-discrete coupled formulation: obtained by differentiating interface conditions in time and

discretizing hybrid problem using FEM in space

M, 0 GI o fi1—Kic,
O Mz —G’g <CZ> == (fz _Kz C2> (2)

A 0

G, -G, 0

* M;: mass matrices

 K;:= D; + A;: stiffness matrices, where D; and A; are matrices for

diffusive and advective terms, respectively
* G;: constraints matrices enforcing constraints in weak sense

Decoupling via Schur complement: equation (2) is equivalent to

Equations decouple if : _ T
using explicit or IMEX (Ml 0 ) (cl) - <f1 Ky, GlTA>
time-integration! 0 M3/ \c, f2—Kzc; + G4

(3)

Implicit Value Recovery (IVR)
Algorithm [Peterson et al. 2019]

« Pick explicit or IMEX time-
integration scheme for 2, and 2,

« Approximate LM space as trace of
FE space on 2, or ),*

« Compute matrices M;, K;, G; and
vectors f;

* For each timestep t":

» Solve Schur complement
system (4) for the LM A"

> Update the state variables ¢
by advancing (3) in time

where (G,M{1G! + G,M;*G)HA = G M (f, — K c,) — G,M;1(f, — K;c,) (4) * Ensures that dual Schur

Time integration schemes and time-steps in 2, and 2, can be different!

complement of (2) is s.p.d.




45 | Outline

1. The Alternating Schwarz Method for FOM*-ROM# and
ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation
 Numerical Examples o >r "

2. A Lagrange Multiplier-based Partitioned Scheme for L
FOM-ROM and ROM-ROM Coupling

* Method Formulation
 ROM Construction and Implementation
* Numerical Examples

Q, \
High-fidelity \
\

N\ --1= mesh-free )
model ,/
(Physics3)

3. Summary and Future Work

*Full-Order Model. #Reduced Order Model.



s | Projection-Based Model Order Reduction via the POD/Galerkin

Method

Full Order Model (FOM): M% +Ku=f
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Solve ODE at different
design points
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Save solution data

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U > v’

3. Projection-Based Reduction
Reduce the u(t) ~ ut) = Pu(t)
number of I
unknowns

Perform DTMDd X + dTK DI — T f
Galerkin dt
projection

ROM = projection-based Reduced Order Model



so | ROM-ROM Coupling: Full Subdomain Bases & Full LM Spaces

» Collect snapshots using suitable monolithic FOM solve for equation (1) and subtract DBC data on I;U T,
» Partition modified snapshots into subdomain snapshot matrices X; and X, on £, and (2,, respectively
» Calculate “full” subdomain POD bases @, and @, of dimensions M; and M, from SVD of X; and X,
« Approximate the solution as a linear combination of the POD modes in each subdomain:

() = €1 (t) =C1 + P1C1(t),  €() = C2(F) = € + D, (8) ()
» Substitute (5) into (2) and project (3) onto POD modes to obtain system of the form:

Ml 0 E’{ él Sq

~ ~ M.  — T Q. .—
0 M, _G'g a =1s, where M; = ¢i M;®D;, Gi = Gi¢i' 6
~ ~ > s;i =P f; — DPTK;®;¢; —b! K;¢c; —P! M;c; (6)
G, -G, 0 p) 0 i iJi R AL i Mg i Mg

Online ROM-ROM IVR Solution Algorithm with Full Subdomain Bases & LM Spaces: at each time step t"
> Use ¢ and ¢} to compute updated RHS st and s}
> Solve the Schur complement system for A™:
(G MG + G,M;1GY)A" = G, M{1sT — G,M;'sh

» Advance the following systems forward in time: M,¢? = s? — G;A™ and M,¢% = s% + G,A"




51 | ROM-ROM Coupling: What Could Go Wrong!?

A provably non-singular dual Schur complement requires:

1. Symmetric positive-definite projected mass matrices M;

S Computer Methods in Applied Mechanics and
) HL} Engineering

LS } Volume 417, Part B, 15 December 2023, 116398
Explicit synchronous partitioned scheme for
coupled reduced order models based on
composite reduced bases s

Amy de Castro ®® =, Pavel Bochev® 9 =, paul Kuberry ® &, Irina Tezaur © &

2. Projected constraint matrix (G, EZ)T must have full column rank



2 | ROM-ROM Coupling: What Could Go Wrong!?

A provably non-singular dual Schur complement requires:

Computer Methods in Applied Mechanics and

1. Symmetric positive-definite projected mass matrices M, el engineerng

LS

® Not guaranteed a priori with full subdomain bases @, and &, Explicit synchronous partitioned scheme for

coupled reduced order models based on
composite reduced bases s

Amy de Castro ®® =, Pavel Bochev® 9 =, paul Kuberry ® &, Irina Tezaur © &

2. Projected constraint matrix (G, EZ)T must have full column rank

® Not guaranteed for “full” LM space, taken as trace of underlying FEM discretization space
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A provably non-singular dual Schur complement requires:

Computer Methods in Applied Mechanics and

AN Engineering
ELSEVIER Volume 417, Part B, 15 December 2023, 116398

1. Symmetric positive-definite projected mass matrices M;

® Not guaranteed a priori with full subdomain bases @, and &, Explicit synchronous partitioned scheme for

© Remedied by creating separate “split” reduced bases @, and  coupled reduced order models based on
P, o, for interface and interior DOFs composite reduced bases ¥

» Columns of each basis matrix will have full column rank Amy de Castro *® i, Pavel Bochev® 2, &5, paul Kuberry.® . Irina Tezaur &

2. Projected constraint matrix (G, EZ)T must have full column rank

® Not guaranteed for “full” LM space, taken as trace of underlying FEM discretization space
© Remedied by reducing LM space to ensure satisfaction of discrete inf-sup condition for (6)
> Reduce size of LM space to size Ngr < Ny 11 + N or, Where Np ;i = # POD modes in @; 1

> For now, approximate A ~ @A where @, = &, fori =1,2, so that Ny = Np;r



s | ROM-ROM Coupling: Split Bases & Reduced LM Spaces

« Consider two separate expansions for interface and interior DOFs for i = 1,2:

Cio(t) = Cio(t) = Cio + PioCio(t),  €;ir(t) = Cir(t) = Cir + Py rC;r(t)
« Substituting above expansions into (2) and projecting equations onto reduced bases gives system of the form:

Reduced LM space also &

M, m 0 =T Cir i i
helps prevent over- MarMyro o 8 GT ; S1,r Split basis + reduced LM space
. . Mior M. 0 =5 0 1,0 $1,0 guarantees ROM-ROM coupling
constraining for full O L0 Mo e My wr (s |2 s :
. . 0 . T 20—G; [| Car | T| 22T has non-singular dual Schur
subdomain basis 0 M, i1 : S0 .
: . 0 o T2 ™20 0 1o ' complement*.
implementation. G, 0 -G, 0 O v 0

Online ROM-ROM IVR Solution Algorithm with Split Bases & Reduced LM Spaces: at each time step t"
> Use ¢}, and ¢} to compute updated RHS s and s} for i = 1,2.
+ Define M, j; = ® ;M; j @iy, G; = P \G;P;r, P, :=M;r — M;roM;3M;r, for {j,k} € {0,T'} and solve:
(GPT'GT + G,P;'G))A™ = G, P (Tt — MyroMigst,) — GoP3 (851 — My roM3 585 o)

» Advance the following systems forward in time:

(Mi,r Mi,ro) (E?r) _ (S?fr + (—1)%?2”)
M;ro M;r ) \¢}, S10 * See [de Castro et al., 2023]
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Extension to ROM-FOM Coupling

Assume WLOG ROM is in Q; and FOM is in Q,, so that Schur complement
takes the form:
S =G,M{'GT + G,M;'G},

There are multiple choices for LM space that guarantee an s.p.d. Schur

complement and inf-sup stability:

> May use full LM (fLM) space, defined as trace of FE space on Q,
> May use reduced LM (rLM) space, as in ROM-ROM coupling

Computer Methods in Applied Mechanics and

L . Formulations yield provably non-
singular Schur complements,
Explicit synchronous partitioned scheme for independent of mesh size or
coupled reduced order models based on reduced basis dimension.

composite reduced bases ¥

Amy de Castro ° ® 5z, Pavel Bochev® © &, Paul Kuberry ® &, Irina Tezaur © &
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7 | Model Problem: 2D High Peclet Transmission Problem

Initial conditions at t = 0 i Mesh
0.8t
Figure left: initial
condition. 067 :
Figure right: mesh 04l
and DD. '
0.2

0.5 0 | |
: 0O 02 04 06 08 1

X

y 0 0 X

Problem setup:
- O =(0,1)?, DD into 2 subdomains (top right)

 Homogeneous source and homogeneous Dirichlet
boundary conditions

- Cone, cylinder and smooth hump initial condition ) I(';AEXtC.ranEMNiCh?_lSF;T ?iSQEﬁt;?atLOZ in ti6m7e34
. : L B B reating LM explicitly) with fixed At = 6.734 x
leﬁfa;gPagtiZ‘:veCt'°" field (0.5 — y,x = 0.5) for one 1073 for x; < 1072 and At = 9.156 x 10~ for x; =

1072
« Viscosity k; can vary across subdomains: k; # k,

FOM discretization:

« Spatial discretization given by finite element
method with N = 64 elements in each dimension



ss | POD/Galerkin ROM Setup

» Prediction across k;: training parameters
K, =k, = 1072 and k; = k, = 1078, testing
parameters x; = 107>, k, = 10™*

=g= INterior basis, 91 ]
Interior basis, §22 ]

=#=|nterface basis | |

» Snapshots collected by restricting single-
domain solution to (;

« M; =23, M, =19 interior modes and 5
interface modes capture 99% of snapshot
energy

Snapshot energy &

* Full LM (fLM) space has dimension of 63 (#
nodeson ) .

* Reduced LM (rLM) space has dimension: T
10 10 10 10 10

1
NR,iF = min {Z NR,iO’ 63} Basis Size

Figure above: snapshot energies as a function of the basis sizes.



59 1 Relative Errors and Condition Numbers

4 -l =
3 — r Y r R 14
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—
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1025,

=#=RR coupling, fLM
=#-RR coupling, rLM| |

1020 , FR coupl?ng, fLM| |
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10'°
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Composite reduced basis size

cond(S)

=#+-RR coupling, rLM | |

FR coupling, fLM
=+ +FR coupling, rLM
=-=FF coupling

10"] |
l’ '“‘.— -,
Ir T, .h\ |
_af — \ |
rs
l‘ i
f
'a -~
e
PP TE T
10' 10? 10°
Composite reduced basis size
RR = ROM-ROM
FR = FOM-ROM
FF = FOM-FOM

fLM = full LM space
rLM = reduced LM space

Figure above left: relative errors at final time 27 w.r.t. single-domain FOM solution.
Figure above right: Schur complement condition numbers for RR, FR and FF couplings.

« All stable couplings converge with basis refinement

* FR-rLM formulation has much larger errors for small basis sizes (left figure)
« Using rLM space improves condition number (right figures)

« Condition nhumber of stable couplings with rLM is O(1) independent of the reduced basis size

| D 43 I .
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FOM-FOM coupling

Provably-stable ROM-ROM (and FOM-ROM) formulations deliver artifact-
free solutions unlike naive (unstable) coupling formulations!




61 ‘ Comparison of Interface States at Final Time
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The label “m/n modes” corresponds to m

interior and n interface modes.

1

All formulations converge to monolithic
solution with basis refinement

Oscillations in FR-rLM formulations with
“small” basis sizes are due to
accumulation of interface errors during
time-integration caused by the
approximate enforcement of the
coupling condition

Model CPU time (s)

Monolithic FOM 90.79

FOM-FOM 105.89

ROM-ROM, rLM, 90/60 modes 45.57

ROM-ROM, rLM, 60/40 modes 25.36

ROM-ROM, rLM, 15/10 modes 10.19

Accurate ROM-ROM couplings offer 1.99-
3.58x% speedup w.r.t. monolithic FOM!



Ongoing Work: Approximation of Interface Flux with Data-

Driven Surrogates

Bottleneck in GMM-based coupling approach is solving the Schur system given by § := 6, M{G! + G,M,;'G?,

especially when coupling involves FOMs

Key idea: use data-driven techniques to create efficient
surrogates that approximate the dynamics of the interface
flux, to avoid expensive Schur complement solves in GMM.

We consider two different surrogates A = F(y) for the
interface flux dynamics (to replace (4)) using similar states y:

DMD surrogate: y; ., = Ay
 nODE surrogate: % = f(t,y,u; 0) = feed-forward NN

Training data consists of both the flux (4;_;) and patches of the
states near the interface

DMD or nODE trained to learn the mapping from y,_; :=

T
(Ak—lr Uk (61), Uy gk (52)) to yi

Preliminary results indicate that the new DMD approach is more
accurate than lumped mass GMM approach and around 20x times
cheaper than a consistent mass GMM approach (Figure 11)

ariv-

cs > arXiv:2402.03560

Computer Science > Computational Engineering, Finance, and Science

[Submitted on 5 Feb 2024] I
Dynamic flux surrogate-based partitioned methods for interface
problems

Pavel Bochev, Justin Owen, Paul Kuberry

—IVR(C)
— VR
DMD-FS

normalized time
2 o 8 o @

Normalized wall clock time Relative error
= . 2

‘L [—wRE)
—IVR(L)
DMD-FS

"""""

Figure above: CPU times (left) and relative errors (right) for
GMM method with consistent mass (IVR(C)), lumped mass

(IVR(L)) and a DMD surrogate (DMD-FS)
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e« I Summary

« Two domain decomposition-based methods for coupling projection-based ROMs with
each other and with conventional full order models have been proposed

> An iterative coupling formulation based on the Schwarz alternating method and an
overlapping or non-overlapping DD

> A Lagrange multiplier-based single-pass (non-iterative) partitioned scheme based on
non-overlapping DD
« Numerical results show promise in using the proposed methods to create heterogeneous
coupled models comprised of arbitrary combinations of ROMs and/or FOMs

» Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings
» Coupling introduces no numerical artifacts into the solution

Opinion: hybrid FOM-ROM models are the future!

 FOM-ROM and ROM-ROM have potential to improve the predictive viability of projection-
based ROMs, by enabling the spatial localization of ROMs (via DD) and the online
integration of high-fidelity information into these models (via FOM coupling)
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Alternating Schwarz-based Coupling ['- l', I‘ESSIO

Ongoing & Future Work

Complete study involving Euler Riemann problem with moving shocks
Journal article in preparation
Rigorous analysis of why Dirichlet-Dirichlet BC “work” when employing non-overlapping Schwarz with
discretizations that employ ghost cells
Extension to coupling of non-intrusive ROMs (dynamic mode decomposition or DMD, operator inference or
OpInf, neural networks or NNs)

> With lan Moore (summer intern starting May 2024, from Virginia Tech)

Lagrange Multiplier-Based Partitioned Coupling

Extension to nonlinear problems with hyper-reduction
Alternate constructions for reduced Lagrange multiplier space (e.g., from snapshots of fluxes)
DMD or nODE flux surrogates to reduce computational cost of Schur complement interface problem

General

Numerical comparison of alternating Schwarz and LM-based partitioned coupling methods

Development of smart domain decomposition approaches, to determine optimal placement of ROM and FOM
in a computational domain (including on-the-fly ROM-FOM switching)

Development of “bottom-up” subdomain ROMs that are trained separately
Application to other problems, including multi-physics problems, and Sandia production applications
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* Sandia is a multidisciplinary national lab and Federally Funded Research &
Development Center (FFRDC).

e Contractor for U.S. DOE’s National Nuclear Security Administration (NNSA).

 Two main sites: Albuquerque, NM and Livermore, CA




N ‘ Careers at Sandia National Labs

Students: please consider Sandia and other national labs as a
potential employer for summer internships and when you graduate!

* Sandia is a great place to work!

>
>

>

* Opportunities at/with Sandia:

>

>
>

Very collaborative environment

Lots of interesting problems that require fundamental research in applied
math/computational science and impact mission-critical applications.

Great work/life balance.

Interns (summer, year-round)

Post docs
Several prestigious post doctoral fellowships (von
Neumann, Truman, Hruby, Collis)

Staff

Please see: www.sandia.gov/careers for info
about current opportunities.
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Problem setup:

0.2

71 I Model Problem 3:2D Euler Equations Riemann Problem [Fr’ressio |
p pu pv )
afpul, @ put+p | o P | _ 0 = e
ot\ PV dx puv ay ,0772 + p B 0.8 " ) *
pE (E +p)u (E +p)v
1- 0.6 - E ] OE
p=U-1) (pE — 5P+ v2)> =S |

« O =(0,1)?t€][0,0.8], homogeneous Neumann BCs

* Fixp; =15,u;, =v; =0, p; =0.029

« Vary p;; IC from compatibility conditions®
» Training: p, € [1.0,1.25,1.5,1.75,2.0]
> Testing: p; € [1.125,1.375,1.625,1.875]

FOM discretization:

« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 orN

N = 100 elements in each dimension

0.00
0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

X X

Figure above: FOM solutions to Euler Riemann
problem for p; = 0.875 (left) and p; = 1.5 (right).

Preliminary results (WIP)

« Implicit first order temporal discretization: backward Euler with fixed At = 0.005

* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

*Schulz-Rinne, 1993.
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_ | Schwarz Coupling Details

7
Choice of domain decomposition Q4 Q,
« Overlapping and non-overlapping DD of () into 4 subdomains coupled IN,
via additive/multiplicative Schwarz q q
1 2
* All-ROM or All-HROM coupling via Pressio* E’ressio

Snapshot collection and reduced basis construction Figure above: DD of Q into 4

+ Single-domain FOM on () used to generate snapshots/POD modes subdomains
Enforcement of boundary conditions (BCs) in ROM at Schwarz  Monalnc
boundaries —

— 4

- BCs are imposed approximately by fictitious ghost cell states

- Dirichlet-Dirichlet BCs for both overlapping and non-overlapping

0.1

Residual POD energy, %

Choice of hyper-reduction

» Collocation and gappy POD for hyper-reduction o011 . - > ~ )

 Assume fixed budget of sample mesh points at Schwarz boundaries # POD modes
Figure above: Slow decay of POD

energy for Euler problem

*https://github.com/Pressio/pressio-demoapps
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Model Problem 3: All-ROM Coupling + Overlapping Schwarz

For smaller basis sizes and larger p;, monolithic ROM is
unstable whereas Schwarz ROM gives accurate solution!

Increased overlap degrades accuracy (top right)

Shock transmission error significantly increases with overlap
~4.4 average # Schwarz iterations with additive Schwarz vs.
~3.6 for multiplicative Schwarz

With additive Schwarz, can achieve lower error than
monolithic ROM for same CPU time (bottom right)

Pressure

T T
14 16 18 2.0

0.8 J
Schwarz PROM, N, =4

1.0 12
Monolithic PROM

0.2 0.4 0.6 0.8

Movie above: FOM (left), K = 50 monolithic ROM (middle), and K =
50 overlapping Schwarz ROM with N, = 4 (left) for p; = 1.875.

Relative £2 error

Relative £2 error

100 5

1071

10-21

10°24

10-2‘

10721

Pressure, K = 60

—— Monolithic
No =4

No = 10
No = 20

W/

1.0 1125 125 1375 15 1625 175 1875 2.0
u

Pressure, u = 1.875, Np = 4

—e— Monolithic PROM
—e— Multiplicative

—e— Additive

-® Additive (theoretical)

1'

"-___
o’

0 2 4 6 8 10 12

Runtime (FOM runs)

14



Model Problem 3: All-HROM Coupling + Non-Overlapping Schwarz

74

» Hyper-reduction via collocation works better than gappy POD
» Schwarz can give improved accuracy relative to monolithic ROM

» Achieving cost-savings w.r.t. monolithic FOM is WIP

Pressure

Mono. LSPG, K = 200, Ns = 5.0% Schwarz LSPG, K = 200, Ns = 5.0%

Movie above: FOM (left), HROM (middle) and Schwarz All-HROM (right) solution.
HROMs have 5% sampling rate and 200 POD modes.

Preliminary results (WIP)

Pressure

10°7 — identity
—— gappy_pod

1071

Relative £2 error

=
o
|

]

0.500 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
P1

Figure above: collocation and gappy POD
relative errors for K=200, 1% sampling rate.

Pressure, N; = 5.0%

— K = 200, mono.
—— K = 300, mono.
--- K =200, decomp.

.
5]
e

Relative £2 error

10—3_

0.500 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
P1

Figure above: monolithic vs. decomposed HROM
errors with 5% sampling rate no overlap.



Other Ongoing Work: Optimization-Based Coupling (OBC)

Key Idea: introduce control as the shared Neumann BC on the interface T satisfying the continuity

of flux, and form a loss function that, when minimized, will enforce the continuity of states.

In each time-step, find (ul,u?, g™) € X' x X3 x L?(TI") that minimizes

1 The control g™ is common to
n., n ny._— _ n__ .,njii2 - ny|2
]5(u1; Uz, g ) i 2 ||u1 Uz ”F + 2 5' |g ”F both subdomains, lmphC]t[y
subject to enforcing continuity of flux

Ait(“? —ul L v) + (o), V) = (", v) + (1) (g™ v)r, YW EV, i =12

We relax the constrained optimization problem with a Lagrange multiplier 06
Ui 0:2:
Past related work extended [Gunzburger, 1999; Gunzburger, 2000; Kuberry, 9

2013] to ROM-ROM and ROM-FOM coupling
Accurate results for ROM-ROM coupling when using FEM adjoints
Linear patch tests pass to the tolerance of the penalty parameter § Figure above: ROM-ROM

Ongoing work investigating alternative snapshot matrices onto which the coupling at final timestep.
adjoint equations are projected to enable using fewer modes
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Comparison of Methods

Alternating Schwarz-based Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Overlapping or non-overlapping DD

Iterative formulation (less intrusive but likely
requires more CPU time)

Can couple different mesh resolutions and
element types

Can use different time-integrators with
different time-steps in different subdomains

No interface bases required

Sequential subdomain solves in multiplicative
Schwarz variant

> Parallel subdomain solves possible with
additive Schwarz variant

Extensible in straightforward way to PINN/DMD
data-driven model

Lagrange Multiplier-Based Partitioned Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Non-overlapping DD

Monolithic formulation requiring hybrid
formulation (more intrusive but more efficient)

Can couple different mesh resolutions and
element types

Can use different explicit time-integrators with
different time-steps in different subdomains

Provably convergent variant requires interface
bases

Parallel subdomain solves if explicit or IMEX
time-integrator is employed

Extensions to PINN/DMD data-driven models are
not obvious



77 I Numerical Examples: |D Dynamic Wave Propagation Problem

» Basis sizes M; and M, vary from 60 to 300
> Larger ROM used in Q,, since solution has steeper gradient here
» For couplings involving FOM and ROM/HROM, FOM is placed in 24, since solution has steeper gradient here

* Non-negative least-squares optimization problem for ECSW weights solved using MATLAB’s Isqnonneg function
with early termination criterion (solution step-size tolerance = 10™%)

» Ensures all HROMs have consistent termination criterion w.r.t. MATLAB implementation
> However, relative error tolerance of selected reduced elements will differ

% Switching to termination criterion based on relative error is work in progress and expected to improve
HROM results

» Convergence tolerance determines size of sample mesh N, ;
» Boundary points must be in sample mesh for application of Schwarz BC

Figure left: sample sample mesh for

0 50 100 150 200 250 300 350 400 1D wave propagation problem
nz =130

J. Barnett, |. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of
nonlinear reduced order models and full order models”, in Computer Science Research Institute
Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R,
Sandia National Laboratories, 2022, pp. 31-55. (https://arxiv.org/abs/2210.12551)



https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://arxiv.org/abs/2210.12551

o Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

= S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

= P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone
elliptic problems using max principle.

S.G. Mikhlin
(1908 — 1990)

= A. Mota, |. Tezaur, C. Alleman (2017): proved convergence of the

alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate.

cp[¢]=j A(F,Z)dV—j B-dv
B B
V-P+B=0

A. Mota, |. Tezaur, C. Alleman
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A Mora, 1 Tezaw, €. Alleman . e

2 Formulation of the Schwarz Alternating Method

We start by defining the standard finite deformation variatonal formulation t establish notaion before
prescating the formultion of the coupling method.

21 Variational Formulation on a Single Domain

c e 82 = p(X): 0 R

X 12, Assume that the boundary of the body is 962 2,2 - with unit normal N, where 2,61

is a displacement boundary, 372 is a raction boundary, and 72 1 72 = i. The prescribed boundary
5. The preseribed

N o ooy LT G e o i, 1
Bt i e
e o sy

solie [aEDav— [ [ 1

inwhich A(F, Z) i the Helmholty fee-cnergy density and Z is a colletion of intemal variabes. The wesk
form ofthe problem s obained by minimizing the energy functional | over he Sobolev space I13(0)

S P e WD) g~ xon ) @
ana
Vio (€2 WHA) €= 0on 2,0} &
here € Vi st fonction. The ottt ey s i ad oty ] < 3 ] for i
£cVamace kit e i of 1) < St
D116~ [ pocmagar [ ameav— [ gis—o
where P = 04/0F ! s T Eer .

e varitional statement (4) s

A Mot I Tezau, C. Aleran

) -

Fgrer: Jwar,

thatisi = 1and] = 2if n isodd,andi = 2and] = 1if n iseven. Introduce the following defntions for
exch subdomain |-

+ Closwe = %[ @

+ Dirichiet bounday: @ B01= @ 094 .
* Neuman boundary: @ = @ B\ .
* Sehwiarz boundiry: = @9\ 1%,

Note thet with these definitions we querantee thet @ 9\ @ 5= 1. @\ I = and @\ T, =
Now define the spaces

S={ 2WHE) = X @ = Pay [ (F)onl ]
a
V= {2 W) = 0@l T ®
Pay [
P
sections. oper
projectafidd”

“The soluion {0 forthe

A Mota 1 Tezaur, . Alleman Schwar: Mechanics

155, 34,11 Although
hod.

ofthe

we offer some numerical 4 heir convergence in Section 4
Consider the energy functional @] defined i (1). We will denote by () the usual L? imner product
over 0, hats,

8= [ v )
for, v € W) [}

REp—
2. ] s Fréchetdiffscmible it ] denotin it Féchet derivatve.
3.l s sictly convex

4. 0] s lower semicontinuous

5. 0[] i niformly continuous on K, where

Kni={peS: gl < RRERR <) a6

in S (property ) provided
hat e Vil femo_onoes Aot ALR. S 8 R R ]

A Mota, L Tezaur, C. Alleman

Remark that [30]

VAT for @D eduy = an

Theorem 1. Assune that 1

ove. €.
Then

2 defined by ©9)-C

(@) BE0] > B{E0] 2 oo 2 0] 2 0] 2 - > D], where o isthe minimizer of Bg]

(5) thesequence {8} defined n (39) converges 1o the minimizer  of ¥1]inS.

(e) the Shware B
from any iniial guess B0
@ i ¥l in {e)
ricall o the minimizer .
Proof. See Appendix A o
Finally. while most of sis for

The caseo
specifcally in Lions [15], Badea 1. nd Li-Shan and Evans [1:].

4 Numerical Examples

I this section, we present the behavior of
different impler Firu, onein MATLAB and the other

1 Next
the mumerial examples. Then, we continue with four examples that demonsizat diferent features. of the
method and eular bar. s

the four . Section 2.4

body of square base,sims to study the cfect o the size of the overlap region on the canvergence of the
thod in e resuls
e

Thel

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) [@pD] = o[V = ... > O[] = O[] = ... > D[], where @ is the minimizer of ®[@] over S.
(b) The sequence {95(”) } defined in (39) converges to the minimizer @ of @[] in S.

(c) The Schwarz minimum values ®[@"™] converge monotonically to the minimum value ®[p) in S starting from any

initial guess @

Remark | i i i
i functionalover S exists, .. the minimizton of (¢] i wel-posed

Remark 2 By Belins €8 such
hat

(#lel&- )20 on
forall g < 5.

Remark 3 Recal that the srct convexity property of ] can be witen as

] - W] - (@) ¥~

0 &)

Wy, € 5. From (36),remark that if ] i ety convex over § ¥ € R such that R < o, we can find
an g > 0 such that apy 5, € K we have

] 2=l &)

] - (@[] 02 — ) =

Remmark 4 By propeny . e unform coninuty o &, ther
K Kot

A modulus of continuity > 0, with
119(90) - #' (2} < ol
1.2 € K. By defniion, w(e) —+ 0 a5+ 0.

el -9

Remark § 1 was shown in [15] that i the case €, 1102; # 0, Vi € S, there exist ¢ € 5y and Gy € 5,
such that
PG 9
and
masx (il G2l < Callel 56
forsome C > 0 independent of .
Remark 6 Note that (39) can be wrtten a5

@[E]E9) =0, for g € 8, v €5, 7
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S

Remark 7 Let ") < S, and et § & . By Remark 5, ther exist ¢ € S, and Gy € S such that

([6),€) = ([5G + o). Y

u

‘Again using (57) and also (38 n (60) leads to

R0 = 150, ) = 1€ < [#157)] - F1 - 6) o
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(@t 1'[5] - @@ V)l| - g1l (62)
vees
Remark 8 For part () o Theorem |, recll he defnitionofgeometic comerzence
Fuoi € CE, e
€ (01,2, forsome € > 0, where
T )

continuiy thatif /] s ) e . then

H

mark 9
there exsts a constant K > 0 such that

)

Considering ha ] = O sinc i the minimizes of g, (69 s equivalent to

W< K g (©)

Proof of Theorem |

e of ] over &
i e

a, ©)
forn € (123} N
anique. Hence ) <

be the minimizer of blg] over S. Since the problem is wellposed ¢ s
foralln € {1,2,3,...) o

D=0, )

er of Bl on S By (53) with ¥, = o and

Il = @117 < - {alyl - @ig™] - (#76,— )} a0

Since g s the mimimum of gl by

it i) < B, I follows

gl = Bl = (#1600~ ) < - (P - ) = (VI e ) an
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»
L e ) )
Now by (62 (Remark 7,

(166 - o) = Call#(")

G116 - gl )

Substtuting 73 into (72) leads to

118" = | = —[|9'[¢"™] — '[! (14)
Applying the uniform continuity sssumpion (54, we obain
o, (16 _ o)

[ < o (1™ - g 01) as
By (69), [[¢") ~ @"~V|| > 0as m » oc. From this we oblain the result, namely that @) —+  as.
oo o
o

Proofof(d). By (), for large enough , tere exsssome pendent of r such that
18 gl < Cillgtr+ a0

Letus choose C such that € > o/ I, where K is the Lipshitz continuity consant in (66). Combining
(69) with (76) leads 0

= (01 - 9l ) > g

R
_ars L @
Sz d

36

e S U T R R o e )

since e > 0. Now, by the Cauchy y y thel
of /(] (66) we can write

(¥1Ew - @) < [ lle - 6 < Kl - 2| 30
Hence, from ()
[ #lg] < K8 . @n
Morcover by (53 since ¢ =
o) - ale) > anllp” - . @
Using (51 nd (52) w obtsin
(161 = #le]) - (o6 - #le]) < K116 — @ll* = anllg™ ) — gl @83

Combining (53) and (75 leads to

T — gl = (81 - #lel) - (3160 - ¥ig]) < Kl — i - anllg™*) - gl
0

116+ ol < Bl — il )

with

B )
hose C; > g/ K. Furth .

the minimizer ¢ of &[] by (1) and (c), it follows that 1= B € (0,1), then (85)

1l @) < € ] &

whereupon the lsim i proven. o

B Analytic Solution for Linear-Elastic Singular Bar
As reerence, herein we provide the soluion of the singular bar of Section 4.3 for linear clsiciy. The
equilirium equation i

E

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

Well-posedness for the dynamic problem requires that action functional S[¢] =

I, I, L (@, @)dVdt be strictly convex or strictly concave, where L(¢, @) = T(p) + V(¢) is the
Lagrangian.

> This is studied by looking at its second variation §25[¢},]

We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

5%S[py]=x"

(BAt )ZM—K]x

> 62S[@] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



s1 I Numerical Examples: Linear Elastic Wave Propagation Problem

» Linear elastic clamped beam with Gaussian initial condition.

« Simple problem with analytical exact solution but very stringent test for discretization/coupling
methods.

« Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

« ROMs are reproductive and based on the 0.01 diplecement. snopshot 1, tne = 0
POD/Galerkin method. 0.008 i
» 50 POD modes capture ~100% snapshot 0T /
energy | |
0.002 | ,f \\
b A

-0.002 |
-0.004 |
-0.006 |

-0.008 -

Above: 3D rendering of clamped beam with Gaussian initial condition. | | | |
Right: Initial condition (blue) and final solution (red). Wave profile is 00 0.2 0.4 0.6 0.8 1
negative of initial profile at time T = 1.0e-3.
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ROM Couplings

Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.

o1 displacement, snaishot 1, time=0

-0.01
0

0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0

2001

0 0.2 0.4 0.6 0.8 1
«107 acceleration, snapshot 1, time =0

Single Domain FOM

-0.01
0

0

Q

1

"Implicit 40 mode POD ROM, At=1e-6, Ax=1.25e-3
ZImplicit FOM, At =1e-6, Ax =8.33e-4
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

0.01 displacement, snaishot 1, time =0

0.2 0.4 0.6 0.8
velocity, snapshot 1, time =0

200

0 0.2 0.4 0.6 0.8
%107 acceleration, snapshot 1, time = 0

L L { L L
0 0.2 0.4 0.6 0.8

3 overlapping subdomain
ROM'-FOMZ-ROM3

0.01 displacement, snapshot 1, time = 0
A T T ﬁ ‘ s

-0.01

1 1 1
0 0.2 0.4 0.6
velocity, snapshot 1, time =0

1
0.8 1

1 1 1
0 0.2 0.4 0.6

%107 acceleration, snapshot 1, time =0

1
0.8

[

0 0.2 0.4 0.6

0.8 1

2 non-overlapping subdomain

FOM4-ROMS (6 = 1)

0

0.3

0 Q 05
! ' 0,

—
0.25 3 0.75

—s

1

—
Q1 -

Q2

0.3

1

JImplicit FOM, At =2.25e-7,
Ax =1e-6

“Explicit 50 mode POD ROM,
At =2.25e-7, Ax =1e-6



3 | Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.

| disp MSE®| velo MSE | acce MSE_

Overlapping ROM'-FOM2-ROM3  1.05e-4 1.40e-3  2.32e-2
Non-overlapping FOM*-ROM?> 2.78e-5  2.20e-4  3.30e-3

"Implicit 40 mode POD ROM, At =1e-6, Ax =1.25e-3
ZImplicit FOM, At =1e-6, Ax =8.33e-4

3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3
“Implicit FOM, At =2.25e-7, Ax =1e-6

Explicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

N N
6MSE= mean squared error = \l Z Hﬁn(ﬂ) —u" (ﬂ)”;/\l Z Hu”(p]Hi
n=1 n=1



s« I Linear Elastic Wave Propagation Problem: ROM-ROM Couplings

ROM-ROM coupling gives errors < 0O(1e-6) & speedups over FOM-FOM coupling for basis sizes > 40.

MSE in displacement for 2 CPU times for 2 subdomain ROM-ROM Average # Schwarz iterations for 2
subdomain ROM-ROM coupling coupling normalized by FOM-FOM CPU time subdomain ROM-ROM coupling
cc\l GN 80 qN 80 .
E E 70 E 70 R
é il { é 60 % 50
o O s o . {25
S S g
) 4 [ 40 40
o E
8 8 30 (a B 30
BSS + 20 * 20
: 10 E_ 10 — * - ;
B ) : " 0 =7 % : 20 40 60 80 00
# POD modes in Q, # POD modes in Q, # POD modes in Q

* Smaller ROMs are not the fastest: less accurate & require more Schwarz iterations to converge.

» All couplings converge in < 4 Schwarz iterations on average Overlapping implicit-implicit coupling
(FOM-FOM coupling requires average of 2.4 Schwarz iterations). with Q, = [0,0.75], Q, = [0.25, 1]



s | Linear Elastic Wave Propagation Problem: FOM-ROM Couplings

FOM-ROM coupling shows convergence with basis refinement. FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

CPU times for 2 subdomain

MSE for 2 subdomain FOM-ROM coupling normalized ~ Average # Schwarz iterations for 2
FOM-ROM coupling by FOM-FOM CPU time subdomain couplings
10" - ' ' . . . : , | | ]
.é’ —djsp]a_cemenl W 3.6+ ( — ror-romM 1 WIP. .
e T veloay £ — FOMFOM understanding &
2 acceleration | | — 2t v . )
c " S s34 1 | improving FOM-
2 D = .
=2 8 N ol | ROM coupling
~ - P s performance.
. v 2
o N c .l
> 10 s A
o 1.1 .
Lol £ *+ Overlapping
2 o O gl .
= 10 c on 28 implicit-
o U 105 C implicit
& £ 0 pret.
s = I 26] coupling with
2 ° 0, = [0,0.75],
. ! S S R Y O W Q,= [0.25,1]

( - i i i i
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

# POD modes in Q, # POD modes in Q, # POD modes in Q,



Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-

ROM Couplings

Inaccurate model + accurate model # accurate model.

= IMPLICIT FOM = EXPLICIT ROM

Z 0.01 2 0.01

w w

= =
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Figures above: O, = [0,0.75], Q,=[0.25,1]

20 mode POD - FOM

Observation suggests need for
“smart” domain decomposition.

Accuracy can be improved by “gluing”
several smaller, spatially-local models
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7 | Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

e (q, t) = WTr(i, t)
= Z WTL r, (L,+1, t)
eet

e L, €{0,1}4*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ €{0,1}9*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and ® represents an added node to
enable the full representation of the
computational stencil at the selected
node/element
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ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snapshots u;,i € 1, ...,n; used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
Ce = WTLLT, (Lot (trey +V VT (s = Urer) ) t) € R
d, =nr(ii,t) € R", s=1,..,ny
We can then form the system
C11 ClNe dl
Cnhl CnhNe dnh
Where C& = d, & € RMe, § = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
¢ = arg min,cgn||Cx — d||, subjecttox > 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector &



Numerical Examples: ID Dynamic Wave Propagation Problem

« Alternating Dirichlet-Neumann Schwarz BCs with no relaxation (6 = 1) on Schwarz boundary I'

(. (+1) _ Min # Max # Total #
Div P} +pB(t;) =0, in(, Schwarz Schwarz Schwarz

) (p§n+1) =¥, on a0\l Iters Iters Iters
(p§n+1) Ay on T Q, = - 1.10 3 9 59,258
1.00 1 4 24,630

(Div PU*Y 4 pB(t) =0, inQ, \ 0.99 1 5 35,384
LoD =y, on 9Q,\T - 0.95 3 6 45,302
kPgnﬂ)n = p"*y, on T Apir =09 + (1= 0)A,,0n T,forn =1 0.90 3 8 56,114

> A parameter sweep study revealed 6 = 0 gave best performance (min # Schwarz iterations)

 All couplings were implicit-implicit with At; = At, = AT = 107 and Ax; = Ax, = 1073
» Time-step and spatial resolution chosen to be small enough to resolve the propagating wave

» All reproductive cases run on the same RHEL8 machine and all predictive cases run on the same RHEL7
machine, in MATLAB

* Model accuracy evaluated w.r.t. analogous FOM- JZ 37 — w2
FOM coupling using mean square error (MSE): =1 2

enseg (W) =

Zea i



‘ Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

« 0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx=1e-3.

<1074 displacement, snpshot 1, time=0

0 0.2 0.4 0.6 0.8
velocity, snapshot 1, time =0
10 N T T T T
0
10+
-20
-30E L 1 1 1
0 0.2 0.4 0.6 0.8
& %108 acceleration, snapshot 1, time = 0
4 =
2
0
-2
-4

Multiplicative Schwarz

30kt 1 1 1 1 i
0 0.2 0.4 0.6 0.8 1
- x10° acceleration, snapshot 1, time =0
= T T T T 1
4+ i
2
0
-2
-4

0.2

0.4 0.6 0.8 1

Additive Schwarz



# Schwarz iters
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Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Overlapping, Henky MM « 0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM

coupling, dt = 1e-7, dx=1e-3.

« Additive Schwarz requires slightly more Schwarz
iterations but is actually faster.

« Solutions agree effectively to machine precision
in mean square (MS) sense.

_ Additive Multiplicative

0.2 0.4

=

time

0.6

py— Total # Schwarz iters 24495 24211
- CPU time 2.03e3s 2.16e3
| MS difference in disp 6.34e-13/6.12e-13
0.8 1 MS difference in velo 1.35e-11/1.86e-11
= 10

MS difference in acce 5.92e-10/1.07e-9



Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

« (0 =10,0.3]U[0.25,0.75]U[0.7,1], implicit-implicit-explicit
FOM-FOM-FOM coupling, dt = 1e-7, dx = 0.001.

3In'1|:|ll-ln'1|:||I-EJ|c|:|nI FOM-FOM-FOM, Overlapping, Henky MM

» Solutions agree effectively to machine precision in

[T |
28} i | mean square (MS) sense.
| |
2.6} I
. i | | « Additive Schwarz has slightly more Schwarz iterations
o | : but is slightly faster than multiplicative.
= 2.2 |
: L]
) | Additive | Multiplicative
1.6}
iy Total # Schwarz iters 26231 25459
1ol CPU time 1.89e3s 2.05e3s
1 - . - - MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13
. 4 . . 1
time <1073 MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11

MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



‘ Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Q =[0,0.3]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx = 1e-3.

10 x10™* displacement, snapshot 1, time =0
T T A T T
I /\ |
Qe = - - - —— = = =" / \\ = —_
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time = 0
T T T T
10+ .
0 meameenmempemeismenEEm—— — e _—— = = — — — — —
10 | i
201 i
30kt 1 1 Il 1 .
0 0.2 0.4 0.6 0.8 1
" x10° acceleration, snapshot 1, time =0
= T T T T -
4t i
2+ — .
0 memmennemeonseammmmr — — =~ | [ mo— — —
2t \V !
4 1 1
0 0.2 0.4 0.6 0.8 1|

Multiplicative Schwarz

10 x10™* displacement, snapshot 1, time =0
T T ‘\ T T
_ TARY |
Qe = - - - —— = = =" / \\ = —_
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time = 0
T T T T
10+ .
0 meameenmempemeismenEEm—— — e _—— = = — — — — —
10 | i
201 i
30kt 1 1 Il 1 .
0 0.2 0.4 0.6 0.8 1
" x10° acceleration, snapshot 1, time =0
= T T T T -
4t i
2+ N 1
0 memmennemeonseammmmr — — =~ | [ mo— — —
2t \V 1
4 1 1
0 0.2 0.4 0.6 0.8 1|

Additive Schwarz



# Schwarz iters

3]
T

Ln
T

i
T

Lad
T

Non-overlapping Coupling, Nonlinear

Impl-lmpl FOM-FOM, Non-Overlapping, Henky MM

Additive
— — — Multiplicative

0.2 0.4 0.6 0.8

Henky MM, 2 Subdomains

QO =[0,0.3]U[0.3,1], implicit-implicit FOM-FOM
coupling, dt = 1e-7, dx = 1e-3.

Additive Schwarz requires 1.81x Schwarz
iterations (and 1.9x CPU time) to converge.
CPU time could be reduced through added
parallelism of additive Schwarz.

> Note blue square for additive Schwarz...

Additive and multiplicative solutions differ in
mean square (MS) sense by O(1e-5).

Total # Schwarz iters 44895 24744

MS difference in disp
MS difference in velo
MS difference in acce

CPU time 1.87e3s 982.5s
4.26e-5/2.74e-5
1.02e-5/5.91e-6
5.84e-5/1.21e-5



# Schwarz iters

Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

« (0 =10,0.3]U[0.3,0.7]U[0.7,1], implicit-implicit-

Impl-Imp-Expl FOM-FOM-FOM, Non-overlapping, Henky MM explicit FOM-FOM-FOM coupling, dt = 1e-7, dx =
0.001.
Additive * Additive Schwarz has about 1.94x number Schwarz

— — — Multiplicative

iterations and is about 2.06x slower - similar to 2
subdomain variant of this problem. No “blue
square”.
> Results suggest you could win with additive
Schwarz if you parallelize and use enough
domains.

1 » Additive/multiplicative solutions differ by O(1e-
| : } 5), like for 2 subdomain variant of this problem.

| : I |
) ' ' ' ' | Additive | Multiplicative
0 0.2 0.4 0.6 0.8 1
time <1073 Total # Schwarz iters 53413 27509
CPU time 5.91e3s 2.87e3s

MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06
MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06
MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05
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