Sandia National Laboratories

M2dt: Multifaceted Mathematics for Predictive Digital Twins **Structure-Preserving Model Order Reduction (SP-MOR)**

I. Tezaur¹, P. Bochev¹, P. Kuberry¹, A. Gruber¹, C. Eldred¹, E. Parish¹, P. Blonigan¹

Motivation and Role in M2dt

 $\mathcal{M}^2 dt$

• In order to be **reliable predictive tools** within **digital twin** workflows, reduced order models (ROMs) & surrogates must preserve key properties of underlying PDEs

ROMs in general do **NOT** automatically inherit these properties!

	N	/2DT: MU	LTIFACET	ED MATHEM	ATICS FC	R PREDIC	TIVE DIGIT	AL TWINS	
Objective (under RT2.2 of M2dt):			DRIVI	NG SCIENTI	FIC APPL	CATIONS A	REAS		
develop new property-preserving	Adva	anced mate	rials and ma	nufacturing			ce/ocean syst	tems	
develop new property preserving			IN	TEGRATIVE	RESEARC	CH THRUST	S		
MOR methods to mirror the	RT1: Dy	namically-i	ntegrated	RT2: F	Reduced-or	der &	RT3: Mathe	ematics of c	oupling
properties of established compatible	data assi	milation &	decisions	surrog	gate mode	ling	for pro	edictive DTs	5
properties of established compatible	1.00	WARD N		RESEARC	H SUB-TI	HRUSTS	1.00	1000 000 00	1000
discretization methods for FOMs	dynamic data assimilation	OED and causal inference	stochastic optimal control	nonlinear dimensionality reduction	structure preserving ROMs	geometric deep learning surrogates	coupled heterogeneous models	distributed optimization for coupling	optimal model mgmt
			ED	UCATION. T	RAINING	& OUTREA	СН		

Geometric Property Preservation: Hamiltonian SP-MOR

C= const

M

Hamiltonian system: $\dot{x} = \{x, H(x)\} = L(x)\nabla H(x)$ Drawing courtesy of P. J. Morrison.

• Scalar potential *H*

• Skew-symmetric Poisson operator $\boldsymbol{L}^T = -\boldsymbol{L}$

Guarantees that flow is perpendicular to ∇H and energy is conserved

 $\dot{H}(\boldsymbol{x}) = \dot{\boldsymbol{x}} \cdot \nabla H = \boldsymbol{L} \nabla H \cdot \nabla H = -\boldsymbol{L} \nabla H \cdot \nabla H = 0.$

Casimirs C satisfying $L\nabla C = 0$ also conserved • Mass, momentum, etc.

Ongoing and Future Work

Topological Property Preservation

Finite Element Exterior Calculus (= Single deRham Complex)

Integration by parts: $\delta = (-1)^{nk+n+1} \star d \star \rightarrow \langle \alpha, d\beta \rangle + \langle \delta \alpha, \beta \rangle = \langle \alpha, \beta \rangle_{\partial \Omega}$ **Exact sequence:** d d = 0. Hodge decomposition: $\alpha = d\psi + \delta\phi + h$.

3 research themes are pursued using the following **6 methods** and their combination:

Preservation	Theme B. Topological property preservation	Theme C. Qualitative properties		
 A.1. Symplectic structure A.2. Metriplectic structure A.3. Energy/entropy stability 	 <i>B.1</i>. Hodge decomposition <i>B.2</i>. de Rham complex 	 C.1. Bounds/positivity C.2. Monotonicity, max principle C.3. Total Variation Diminishing (TVD) 		
Method (i). Structure-preserving Operator Inference (OpInf) learning methods	<i>Method (iii).</i> Structure- preserving hyper-reduction	<i>Method (v).</i> Structure- preservation in multi- physics/multi-component ROMs		
Method (i). Structure-preserving Operator Inference (OpInf) learning methods	<i>Method (iii).</i> Structure- preserving hyper-reduction	<i>Method (v).</i> Structure- preservation in multi- physics/multi-component ROMs		

Geometric Property Preservation: Energy-Stable MOR

Energy-stable dynamical system: $\frac{dx}{dt} + f(x, \mu) = 0, \quad \frac{1}{2}\frac{dx^2}{dt} \le 0$

• "Positive-definite" velocity, $\boldsymbol{x}^T \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\mu}) \geq 0$

• Building block of many physical systems > Fluid flows, solid dynamics, climate

Traditional MOR approaches are **NOT** automatically **energy-stable** [1].

Positive-definite operator inference (OpInf)

Non-intrusive method for learning "positive-definite" operators

- Extension of classical non-intrusive OpInf [2]
- Learns "positive-definite" operators to build reduced-models endowed with energy stability
- Neural network formulation naturally handles parametric variability and non-polynomial non-

Examples: Incompressible Euler, Maxwell, shallow water, Monge-Ampere, sine-Gordon, nonlinear Schrodinger, ...

Question: can we design a ROM which respects this structure?

Canonical and Noncanonical Hamiltonian Operator Inference *Non-intrusive* method for learning Hamiltonian ROMs

Stable by construction

- Converge to intrusive ROMs in the limit of infinite data
- For snapshots $X \approx U\Sigma V^T$ and $\widehat{M} = U^T M$, solve:

 $rgmin_{\hat{m{L}} \, \mathrm{or}\, \hat{m{A}}} \left| \hat{m{X}}_t - \hat{m{L}} \hat{m{A}} \hat{m{X}}
ight|^2 \quad \hat{m{L}}^\intercal = -\hat{m{L}}, \hat{m{A}}^\intercal = \hat{m{A}}$

- Learning Poisson structure \hat{L} is *noncanonical* inference
- Produces conservative ROM with known quantity *H* as Hamiltonian

Learning $\mathbf{A} = \nabla H$ is *canonical* inference

• Produces conservative ROM with known Poisson structure *L*

Unlike other Hamiltonian SP-MOR methods, e.g., [5], our approach [6] can handle **canonical** and **non-canonical Hamiltonian systems**.

Example: Korteweg-de Vries (KdV) equation, $x_t = \alpha x x_s + \rho x_s + \gamma x_{sss}$

$$x_t = L\nabla H(x), \quad L = \partial_s, \quad H = \int_0^L \left(\frac{\alpha}{6}x^3 + \frac{\rho}{2}x^2 - \frac{\gamma}{2}x_s^2\right) dx$$

• We consider the non-canonical form of the KdV equation, which is bi-Hamiltonian

The existence of a **discrete Hodge deRham (HdR) complex** is **essential** for constructing **topological structure-preserving** FOM discretizations [7-8].

Question: can we design ROMs that preserve a discrete HdR complex?

HdR FOM (General Theory)

HdR ROM Idea

- Bounded commuting projection operator: $\pi^k : \Lambda^k \to \Lambda^k_h$ satisfies $d\pi^k = \pi^{k+1} d$
- Fundamental object is the inner product $\langle \cdot, \cdot \rangle$, which induces the Hodge star \star and the codifferential $\delta = (-1)^{nk+n+1} \star d \star$
- Main examples are **compatible Galerkin** methods [7-8]: finite element exterior calculus (FEEC), mimetic Galerkin differences (MGD), compatible isogeometric methods; mimetic finite differences (MFD)
- Idea: define ROM projection operators $\hat{\pi}^k \colon \Lambda_h^k \to \widehat{\Lambda}_h^k$ and ROM spaces $\widehat{\Lambda}^k \subset \Lambda^k$ such that this diagram commutes: $d\hat{\pi}^k = \hat{\pi}^{k+1}d$ • This will give a ROM with the same properties
- as the FOM, e.g., annihilation, integration by parts, Hodge decomposition/cohomology
- Often we are given $\hat{\pi}^k$ and $\hat{\Lambda}^k$, e.g., from Proper Orthogonal Decomposition/Galerkin projection, so we just need to find commuting $\hat{\pi}^{k+1}$ and corresponding Λ^{k+1}

- linearities
- Relies only on solution snapshots

Technical details: learn a ROM of the form $\frac{d\hat{x}}{dt} = \hat{A}(\hat{x}, \mu)\hat{x}$

Key idea: construct $-\widehat{A}$ to be positive definite by parametrizing it with a skew-symmetric and a symmetric positive definite (SPD) matrix

- Gradients are easily computed via back-propagation in modern ML codes
- State-of-the-art training approaches handle over-parameterization
- Parametrized dynamical systems are handled by adding parameters to the network inputs

Example: Shallow ice approximation (future state prediction)

 $\frac{\partial H}{\partial t} + \nabla \cdot \left[-\Gamma H^{n+2} |\nabla s|^{n-1} \nabla s \right] = m \quad \blacksquare$

Predicts correct dynamics well outside of training region. Conserves H, C by construction.

 G-OpInf (no MC) NC-H-OpInf (MC)

Petrov-Galerkin Hamiltonian OpInf for Canonical Systems

State-of-the-art Hamiltonian ROMs require *more* than just Galerkin projection

• Usually Galerkin projection + (formal) least-squares solve

• Additional projection can destroy accuracy. Can we fix this?

Canonical systems imply L = J is full rank, so use JU as a test basis! If $\tilde{x} = U\hat{x}$,

 $\dot{\widetilde{x}} = J \nabla \widehat{H}(\widetilde{x})$ implies $\hat{J}^T \dot{\widehat{x}} = U^T J^T U \widehat{x} = U^T J^T J \nabla H(U \widehat{x}) = \nabla \widehat{H}(\widehat{x}).$

Provably Hamiltonian: energy is conserved.

- Removes the need for an extra column-space projection $\boldsymbol{U}\boldsymbol{U}^T$
- Amenable to non-intrusive OpInf as before. Problem is convex with a global minimum

Other Planned Research Directions

• Entropy-stable hyper-reduction for MOR of hyperbolic systems

• Quadratic Hamiltonian SP-ROMs

- Development of efficient SP-ROMs for metriplectic systems and systems with dissipation
- Optimization-based property (e.g., bounds, positivity, monotonicity, maximum principle, total variation diminishing, etc.) preservation for ROMs • Extensions of SP-MOR methods to **multi-physics problems**
- Applications of methods to M2dt exemplar problems (ice sheet-ocean interaction, self-assembling block copolymers) and within **OED workflows**

Potential Impact

- This work is **pioneering new property-preserving nonlinear dimension reduction** methods that will support new classes of compatible ROMs mirroring the properties of established compatible discretization methods for FOMs
- The three different types of structures are relevant to **numerous problems** in science and engineering, including the M2dt exemplar problems
 - > Geometric structure: Hamiltonian, metriplectic, energy-/entropy-stability, etc.
 - > **Topological structure**: HdR complex, cohomology, etc.
 - > Qualitative properties: maximum principle, monotonicity, positivity, etc.

 $\arg\min\left|\hat{J}^{\mathsf{T}}\hat{X}_{t} - \hat{A}\hat{X} - \hat{\nabla}f\left(X\right)\right|^{2}, \quad \text{s.t.} \quad \hat{A}^{\mathsf{T}} = \hat{A}$ $\hat{A} \in \mathbb{R}^{n imes n}$ $\nabla H(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} + \nabla f(\boldsymbol{x})$

Error is bounded in reproductive case

• First term is projection error similar to Galerkin ROM

• Second term is "deviation from symplecticity" error

Provide States **Example:** 3D linear elasticity equations POD Projection Error Galerkin projection only is not enough • Petrov-Galerkin ROM errors $\frac{10}{2}$ 10 Ordinary POD (no MC) decay smoothly with 10⁻¹⁰ - Cotangent Lift (no MC) Cotangent Lift (MC) Intrusive G-ROM (MC) increasing basis size 10-13 - --- qp Block Basis (no MC) -- OpInf G-ROM (MC, reprojected) ★ qp Block Basis (MC) Intrusive H-ROM (MC, consistent) ----- OpInf H-ROM (MC, reprojected) 10 20 30 40 50 60 70 basis size n basis size n

Structure preservation is a **pre-requisite** for generating **stable** and **accurate** reduced order models for predictive digital twins.

andia National Laboratories is a multimission laboratory managed and operated by National Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

¹ Sandia National Laboratories.

