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Motivation and Role in M2dt Geometric Property Preservation: Hamiltonian SP-MOR Ongoing and Future Work

* In order to be reliable predictive tools within digital twin workflows, reduced order Hamiltonian system: % = {x, H(x)} = L(x)VH(x)
models (ROMs) & surrogates must preserve key properties of underlying PDEs '

Topological Property Preservation

Drawing courtesy of P. J. Morrison.

* Scalar potential H Finite Element Exterior Calculus (= Single deRham Complex)

o _ . . T — _
ROMs in general do NOT automatically inherit these properties! Skew-symmetric Poisson operator L L .
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« A.2. Metriplectic structure - B.2. de Rham complex » €.2. Monotonicity, max principle I . ] ] ] P . . : .
+ A.3. Energy/entropy stability » C.3. Total Variation Diminishing (TVD) Question: can we design a ROM which respects this structure: The existence of a discrete Hodge deRham (HdR) complex is essential for
: : : : constructing topological structure-preserving FOM discretizations [7-8].
T — o i st T —— Canonical and Noncanonical Hamiltonian Operator Inference
Operator Inference (Oplnf) . : reservation in multi- . . . . .
learning methods Preserving fypereduction physics/muit-companent ROMs Non-intrusive method for learning Hamiltonian ROMs Question: can we design ROMs that preserve a discrete HdR complex?
) . . L » Stable by construction
Method (ii). Nonlinear manifold Method (iv). Conservation and Method (vi). Optimization-based
structure-preserving ROMs energy-/entropy-stability methods  Converge to intrusive ROMs in the limit of infinite data HdR FOM (General Theorl)— HdR ROM |dea
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Geometric Property Preservation: Energy-Stable MOR argmin | X¢ — LAX) [T=-1,AT=A
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Energy-stable dynamical system: — T f@p) =0, 5—- <0 Learning Poisson structure L is noncanonical inference ~- v g g
. *  Produces conservative ROM with known quantity H as Hamiltonian Ak d Ak—|-1 Ak d Ak:—l—l
* “Positive-definite” velocity, " f(z,p) =0 _ . o h 7 h h 7 h
- Building block of many physical systems Learning A = VH is canonical inference
» Fluid flows, solid dynamics, climate  Produces conservative ROM with known Poisson structure L * Bounded commuting projection operator: * |ldea: define ROM projection operators
mk: Ak - A¥ satisfies dm® = kt1d ftk: A — A¥ and ROM spaces A* c A* such
ol . i i i - PRE . dak — ak+1
Traditional MOR approaches are NOT automatically energy-stable [1]. Unlike other Hamiltonian SP-MOR methods, e.g., [5], our approach [6] can - Fundamental object is the inner product that this diagram commutes: di™ = 71%""d
o o _ handle canonical and non-canonical Hamiltonian systems. (-,-), which induces the Hodge star * and the * This will give a ROM with the same properties
Positive-definite operator inference (Oplnf) codifferential § = (—1)™*+"*1x d * as the FOM, e.g., annihilation, integration by
Non-intrusive method for learning “positive-definite” operators Example: Korteweg-de Vries (KdV) equation, x; = axx, + pxs + YXges * Main examples are compatible Galerkin parts, Hodge decomposition/cohomology
. Extension of classical non-intrusive Oplinf [2] I methods [7-8]: finite element exterior calculus * Often we are given %and A%, e.g., from
a . . . . o, o .
* Learns “positive-definite” operators to build reduced-models endowed with energy stability ry = LVH(x), L=0s, H= / (EZIZS + gw2 — %mi) dx. (FEEC)'th:m_e“C Galer1I:<|.n dlfffr:egces ('MGtD')’ PI’OI.OetC.OI’thOgona-I Dtecomdpfs?o;\/GalerkT
compadatipie iIsogeometric methods, mimetic rojection, sO we jJust need to 1ind commutin
 Neural network formulation naturally handles parametric variability and non-polynomial non- 0 p 'tpd'ff 2 MFED Ekil ) ino AR+ 2
inearities  We consider the non-canonical form of the KdV equation, which is bi-Hamiltonian inite differences ( ) """ and corresponding
+  Relies only on solution snapshots o e N R = KdV ROM Errors (Predictive)
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Technical details: learn a ROM of the form ~;; — Az, p)x 2 | 1 PERE i el N T S Other Planned Research Directions
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and a symmetric positive definite (SPD) matrix e | R g S . Quadratic Hamiltonian SP-ROMs
] S W = R e e * Development of efficient SP-ROMs for metriplectic systems and systems
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sof UL NP /8| 504 \[ X7 I 2| S0 I\ 1075 . . . . . . . . 5 . \’
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* Resulting ROMs are provably stable since & X L S . , . /)
2 > v — e Applications of methods to M2dt exemplar problems (ice sheet-ocean '-'\o,:;-////a
Learning approach: parameterize the operators with neural networks [3-4] Predicts correct dynamics well outside of training region. Conserves H, C by construction. interaction, self-assembling block copolymers) and within OED workflows ™ —
Petrov-Galerkin Hamiltonian OplInf for Canonical Systems
‘ . b\
- W ot AN S . . . . :
T %::%:\Qg?\ T z:zw}fz )Q‘g?\ S State-of-the-art Hamiltonian ROMs require more than just Galerkin projection Potential Impact
X«* ?;:;é %.ég.. &'}0‘\{'/}\“?)  Usually Galerkin projection + (formal) least-squares solve . o . . . . . .
\\'M.//A‘ o o . Additional projection can destroy accuracy. Can we fix this? * This work is pioneering new property-preserving nonlinear dimension reduction
R fJ _ | . | _ R methods that will support new classes of compatible ROMs mirroring the properties
Canonical systems imply L = J is full rank, so use JU as a test basis! If X = UX, of established compatible discretization methods for FOMs

 Gradients are easily computed via back-propagation in modern ML codes ~ e P : a2 ~ ~ 2PN , , ,
X = JVH(X) implies J"x = UTJTUx = U"]"JVH(U%) = VH(%). * The three different types of structures are relevant to numerous problems in science

e State-of-the-art training approaches handle over-parameterization . _ . .
and engineering, including the M2dt exemplar problems

* Parametrized dynamical systems are handled by adding parameters to the network inputs Provably Hamiltonian: energy is conserved. | | | | N
S Remeves e ieed for o ogiE celri-eeacs srejeaion W » Geometric structure: Hamiltonian, metriplectic, energy-/entropy-stability, etc.
Example: Shallow ice approximation (future state prediction) . Amenable to non-intrusive Oplnf as before. Problem is convex with a global minimum » Topological structure: HdR complex, cohomology, etc.
9H Jor A . R 2 R R > Qualitative properties: maximum principle, monotonicity, positivity, etc.
— 4+ V. [—FH”“Ws\”_le] =m ) — 4+ f(x,p) =g argmin |J'X; —AX —Vf (X)| , st. AT=A C .. .
ot dt AcRnxn Structure preservation is a pre-requisite for generating stable and accurate
Spatial discretization 1 VH (CU) — Ax +V f (33) « e . . .
e Non-polynomial non-linearities o o < bounded duct reduced order models for predictive digital twins.
* Compare to classic OpInf methods (linear and quadratic) Positive-definite” operator Error is bounded in reproductive case
* First term is projection error similar to Galerkin ROM
 Second term is “deviation from symplecticity” error
* Linear OpInf ROMs not o References
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