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Motivation and Role in M2dt Ongoing and Future Work

M2dt: Multifaceted Mathematics for Predictive Digital Twins

• In order to be reliable predictive tools within digital twin workflows, reduced order 
models (ROMs) & surrogates must preserve key properties of underlying PDEs

ROMs in general do NOT automatically inherit these properties!

Objective (under RT2.2 of M2dt): 
develop new property-preserving 

MOR methods to mirror the 
properties of established compatible 

discretization methods for FOMs

3 research themes are pursued using the following 6 methods and their combination:

Potential Impact

Geometric Property Preservation: Hamiltonian SP-MOR

Hamiltonian system: ሶ𝒙 = 𝒙, 𝐻(𝒙) = 𝑳 𝐱 ∇H 𝐱 Drawing courtesy of P. J. Morrison.
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Energy-stable dynamical system:

Geometric Property Preservation: Energy-Stable MOR

Traditional MOR approaches are NOT automatically energy-stable [1].

Technical details: learn a ROM of the form

Key idea: construct −෡𝐀 to be positive definite by parametrizing it with a skew-symmetric 
and a  symmetric positive definite (SPD) matrix

• Resulting ROMs are provably stable since  

Learning approach:  parameterize the operators with neural networks [3-4]

Skew-symmetric SPD

• Scalar potential 𝐻
• Skew-symmetric Poisson operator 𝑳𝑇 = −𝑳

Guarantees that flow is perpendicular to ∇𝐻 and 

energy is conserved

ሶ𝐻 𝒙 = ሶ𝒙 ⋅ ∇𝐻 = 𝑳∇𝐻 ⋅ ∇𝐻 = −𝑳∇𝐻 ⋅ ∇𝐻 = 0.

Examples: Incompressible Euler, Maxwell, shallow water, 

Monge-Ampere, sine-Gordon, nonlinear Schrodinger, … 

Casimirs 𝐶 satisfying 𝑳𝛻𝐶 = 𝟎 also conserved

• Mass, momentum, etc.

Question: can we design a ROM which respects this structure?

Canonical and Noncanonical Hamiltonian Operator Inference

Example: Korteweg-de Vries (KdV) equation,  𝑥𝑡 = 𝛼𝑥𝑥𝑠 + 𝜌𝑥𝑠 + 𝛾𝑥𝑠𝑠𝑠

Non-intrusive method for learning Hamiltonian ROMs
• Stable by construction

• Converge to intrusive ROMs in the limit of infinite data

For snapshots 𝑿 ≈ 𝑼𝚺𝑽𝑇 and ෡𝑴 = 𝑼𝑇𝑴, solve: 

Learning Poisson structure ෠𝑳 is noncanonical inference
• Produces conservative ROM with known quantity 𝐻 as Hamiltonian

Learning 𝑨 = ∇𝐻 is canonical inference
• Produces conservative ROM with known Poisson structure 𝑳

Predicts correct dynamics well outside of training region.  Conserves 𝐻, 𝐶 by construction.

Petrov-Galerkin Hamiltonian OpInf for Canonical Systems

State-of-the-art Hamiltonian ROMs require more than just Galerkin projection
• Usually Galerkin projection + (formal) least-squares solve

• Additional projection can destroy accuracy.  Can we fix this?

Canonical systems imply 𝑳 = 𝑱 is full rank, so use 𝑱𝑼 as a test basis!  If ෥𝒙 = 𝑼ෝ𝒙,

ሶ෥𝒙 = 𝑱𝛻 ෡𝐻(෥𝒙) implies ෠𝑱𝑇 ሶෝ𝒙 = 𝑼𝑇𝑱𝑇𝑼ෝ𝒙 = 𝑼𝑻𝑱𝑻𝑱∇𝐻 𝑼ෝ𝒙 = ∇෡𝐻(ෝ𝒙).

Provably Hamiltonian: energy is conserved.
• Removes the need for an extra column-space projection 𝑼𝑼𝑇

• Amenable to non-intrusive OpInf as before.  Problem is convex with a global minimum

Error is bounded in reproductive case
• First term is projection error similar to Galerkin ROM

• Second term is “deviation from symplecticity” error

Example: 3D linear elasticity equations

• Galerkin projection only is 

not enough

• Petrov-Galerkin ROM errors 

decay smoothly with 

increasing basis size

• “Positive-definite” velocity, 
• Building block of many physical systems

➢ Fluid flows, solid dynamics, climate

Positive-definite operator inference (OpInf)

Non-intrusive method for learning “positive-definite” operators
• Extension of classical non-intrusive OpInf [2]

• Learns “positive-definite” operators to build reduced-models endowed with energy stability

• Neural network formulation naturally handles parametric variability and non-polynomial non-

linearities

• Relies only on solution snapshots

”Positive-definite” operator
• Non-polynomial non-linearities
• Compare to classic OpInf methods (linear and quadratic)

• Gradients are easily computed via back-propagation in modern ML codes

• State-of-the-art training approaches handle over-parameterization

• Parametrized dynamical systems are handled by adding parameters to the network inputs

Truth Positive-definite OpInf

Linear OpInf Quadratic OpInf

Spatial discretization

• Linear OpInf ROMs not 

expressive enough

• Quadratic OpInf ROMs 

go unstable w/o 

significant 

regularization

• Linear and Quadratic 

OpInf ROMs have 

noticeable artifacts

Example: Shallow ice approximation (future state prediction)

• We consider the non-canonical form of the KdV equation, which is bi-Hamiltonian

Unlike other Hamiltonian SP-MOR methods, e.g., [5], our approach [6] can 
handle canonical and non-canonical Hamiltonian systems.
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Positive-definite OpInf ROMs are stable and 2-3× more 

accurate than other ROMs for all basis dimensions!

Finite Element Exterior Calculus (= Single deRham Complex)

Integration by parts: 𝛿 = (−1)𝑛𝑘+𝑛+1⋆ d ⋆ → 𝛼, 𝑑𝛽 + 𝛿𝛼, 𝛽 = 𝛼, 𝛽 𝜕Ω

Exact sequence: d d = 0. Hodge decomposition: 𝛼 = 𝑑𝜓 + 𝛿𝜙 + ℎ.

Question: can we design ROMs that preserve a discrete HdR complex?

• Bounded commuting projection operator: 

𝜋𝑘: Λ𝑘 → Λℎ
𝑘 satisfies d𝜋𝑘 = 𝜋𝑘+1d

• Fundamental object is the inner product 
∙,∙ , which induces the Hodge star ⋆ and the 

codifferential 𝛿 = (−1)𝑛𝑘+𝑛+1⋆ d ⋆

• Main examples are compatible Galerkin
methods [7-8]: finite element exterior calculus 
(FEEC), mimetic Galerkin differences (MGD), 
compatible isogeometric methods; mimetic 
finite differences (MFD)

• Idea: define ROM projection operators 

ො𝜋𝑘: Λℎ
𝑘 → ෡Λℎ

𝑘 and ROM spaces ෡Λ𝑘 ⊂ Λ𝑘 such 
that this diagram commutes: dො𝜋𝑘 = ො𝜋𝑘+1d

• This will give a ROM with the same properties 
as the FOM, e.g., annihilation, integration by 
parts, Hodge decomposition/cohomology

• Often we are given ො𝜋𝑘and ෡Λ𝑘, e.g., from 
Proper Orthogonal Decomposition/Galerkin
projection, so we just need to find commuting 
ො𝜋𝑘+1 and corresponding Λ𝑘+1

The existence of a discrete Hodge deRham (HdR) complex is essential for 
constructing topological structure-preserving FOM discretizations [7-8]. 

HdR FOM (General Theory)

Topological Property Preservation

Other Planned Research Directions

• Entropy-stable hyper-reduction for MOR of hyperbolic systems

• Quadratic Hamiltonian SP-ROMs

• Development of efficient SP-ROMs for metriplectic systems and systems                
with dissipation

• Optimization-based property (e.g., bounds, positivity, monotonicity,                
maximum principle, total variation diminishing, etc.) preservation for ROMs

• Extensions of SP-MOR methods to multi-physics problems

• Applications of methods to M2dt exemplar problems (ice sheet-ocean 
interaction, self-assembling block copolymers) and within OED workflows

• The three different types of structures are relevant to numerous problems in science 
and engineering, including the M2dt exemplar problems

➢ Geometric structure: Hamiltonian, metriplectic, energy-/entropy-stability, etc.

➢ Topological structure: HdR complex, cohomology, etc.

➢ Qualitative properties: maximum principle, monotonicity, positivity, etc.

• This work is pioneering new property-preserving nonlinear dimension reduction 
methods that will support new classes of compatible ROMs mirroring the properties 
of established compatible discretization methods for FOMs

Structure preservation is  a pre-requisite for generating stable and accurate 
reduced order models for predictive digital twins.
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HdR ROM Idea

Λℎ
0 ⊂ 𝐻1 Λℎ

1 ⊂ 𝐻(curl) Λℎ
2 ⊂ 𝐻(div) Λℎ

3 ⊂ 𝐿2
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