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Objective (under RT3.1 of 
M2dt): discover mathematical 
principles guiding assembly of 

standard and data-driven
models in stable, accurate and 

physically consistent ways.

• Frameworks rely on established mathematical theories to couple physics 
components.

• Most existing coupling frameworks are based on traditional discretization 
methods, i.e., full order models (FOMs)

The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

Unfortunately, existing algorithmic and software infrastructures are ill-
equipped to handle plug-and-play integration of data-driven models 

(e.g., projection-based reduced order models or ROMs)!
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Approach

Numerical Results

Other Coupling Approaches

M2dt: Multifaceted Mathematics for Predictive Digital Twins

Initialize:

• Solve PDE by any method on Ω1 with initial guess for 
transmission BCs on Γ1 (or Γ).

Iterate until convergence:

• Solve PDE by any method on Ω2 with transmission BCs 
on Γ2 (or Γ) based on values just obtained for Ω1.

• Solve PDE by any method on Ω1 with transmission BCs 
on Γ1 (or Γ) based on values just obtained for Ω2.

Basic Schwarz Algorithm for Spatial Coupling

Non-overlapping Schwarz: convergent with 
Robin-Robin or alternating Neumann-

Dirichlet transmission BCs.  

Overlapping Schwarz: convergent with all-
Dirichlet transmission boundary conditions 

(BCs) if Ω1⋂ Ω2≠ ∅.

Novel Idea: using Schwarz alternating method as a 
discretization/coupling method for solving multi-scale or 

multi-physics PDEs [6-8].

Time integrator for Ω2

Time integrator for Ω1

Controller time stepper

Can use different 
integrators with 

different time steps
within each domain!

Schwarz Algorithm for Dynamics

Vision: create a “plug-and-play” 
framework for arbitrary mixing and 
matching of conventional and data-

driven models following a domain 
decomposition (DD).

• Can handle both overlapping or non-overlapping DDs
• Can couple arbitrary combinations of ROMs and FOMs
• Iterative formulation (less intrusive to implement but can require more CPU time)
• Can couple different mesh resolutions and element types 
• Allows the use of different time-integrators with different time-steps in different subdomains
• No interface bases are required in ROM-ROM and ROM-FOM couplings
• Requires sequential subdomain solves in multiplicative Schwarz variant

➢Concurrent subdomain solves possible with additive Schwarz variant
• Possesses theoretical convergence properties/guarantees [6-7].

Key Features of Alternating Schwarz-Based Coupling

Model problem: Riemann problem for the 2D unsteady Euler equations
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• Homogeneous Neumann BCs on system boundaries of Ω × [0, T] = 0,1 × 0,1 × [0,0.8].
• FOM discretization: 100 × 100 Cartesian grid, 1st order finite volume scheme, BDF1 time integration, Δ𝑡 = 0.005.
• ROM discretization: POD/Least-Squares Petrov-Galerkin (LSPG) projection [9] with no hyper-reduction 

➢ Solution has strong gradients/shocks ⇒ poor linear representation
➢ ROMs evaluated in the predictive regime
➢ Snapshots collected by running monolithic FOM at testing parameters

• Coupling specifications:

➢ Four subdomain overlapping DD: Ω = 𝑖=1ڂ
4 Ω𝑖 (Figure 5)

➢ Dirichlet BCs on Schwarz boundaries enforced weakly
➢ Fixed parameters: 𝜌1 = 1.5, 𝑢1 = 𝑣1 = 0, 𝑝3 = 0.029
➢ Varied parameters: 𝑝1, initial condition from compatibility relations [10]

❖ 𝑝1,train ∈ 1.0, 1.25, 1.5, 1.75, 2.0

❖ 𝑝1,test ∈ 1.125, 1.375, 1.625, 1.875

Figure 6: monolithic FOM (left), monolithic ROM (middle) and four subdomain 
coupled ROM (right) solutions at initial time.  ROM solutions have 𝐾 = 50 modes.

Figure 7: monolithic FOM (left), monolithic ROM (middle) and four subdomain 
coupled ROM (right) solutions at final time.  ROM solutions have 𝐾 = 50 modes.

Figure 8: relative 𝑙2 error in ROM solutions w/ 
and w/o DD as a function of the basis size 𝐾.

Figure 9: Pareto plots for various ROMs and 
alternating Schwarz-based couplings.

Main takeaways: DD and Schwarz coupling of ROMs 
stabilizes the solution!  Coupled ROM has comparable CPU 

time to monolithic ROM with additive Schwarz.  Hyper-
reduction is needed to achieve true cost savings (WIP).

Suite of test cases (e.g., shallow water 
equations, compressible flow equations, 

etc.) available via Pressio demo-apps 
[11] open-source implementation*!

Figure 5: four subdomain overlapping DD.

* The Pressio demo-apps library is available on github: https://github.com/Pressio/pressio-demoapps.

Blow up!
References

Model problem: time-dependent advection-diffusion problem on 𝛺 = 𝛺1 ∪ 𝛺2 with 𝛺1 ∩ 𝛺2 = ∅

ሶ𝑐𝑖 − 𝛻 ∙ 𝐹𝑖 𝑐𝑖 = 𝑓𝑖,  in    Ω𝑖 × 0, 𝑇 , 𝑖 = 1,2
𝑐𝑖 = 𝑔𝑖 , on Γ𝑖× 0, 𝑇 , 𝑖 = 1,2
𝑐𝑖 𝒙, 0 = 𝑐𝑖,0 𝑥 , in Ω𝑖 , 𝑖 = 1,2

Figure 1. Non-overlapping DD of 𝛺 = 𝛺1 ∪ 𝛺2 .

Compatibility conditions: on interface 𝛤 × 0, 𝑇 (Figure 1)

• Continuity of states: 𝑐1 𝒙, 𝑡 − 𝑐2 𝒙, 𝑡 = 0
• Continuity of flux: 𝐹1 𝒙, 𝑡 ∙ 𝒏Γ = 𝐹2 𝒙, 𝑡 ∙ 𝒏Γ

⇒ Imposed weakly using Lagrange multiplier (LM) 𝜆

Semi-discrete monolithic coupled formulation: obtained by 
discretizing  weak monolithic formulation using FEM in space. 

Note the alternative form of the constraint!
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• Calculate “split” reduced bases 𝜱𝑖,Γ and 

𝜱𝑖,0, for interface and interior degrees 
of freedom (DOFs) via the Proper 
Orthogonal Decomposition (POD).

• Reduce LM space to size 𝑁𝑅,Γ < 𝑁𝑅,1Γ +

𝑁𝑅,2Γ, where 𝑁𝑅,𝑖Γ = # POD modes in 

𝜱𝑖,Γ, and approximate 𝝀 ≈ 𝜱LM
෠𝝀 where 

𝜱LM = 𝜱𝑖,Γ for 𝑖 = 1,2, so that 

𝑁𝑅,Γ = 𝑁𝑅,𝑖Γ.

Key Ingredients for Stable POD/Galerkin
ROM-ROM and FOM-ROM Coupling

ROM-ROM coupling with reduced LM space
guaranteed to have non-singular dual Schur 

complement if underlying FOM-FOM 
coupling satisfies conditions in [1]. 

(3)

After solving Schur complement problem (4), 
the subdomain problems in (3) decouple.

• Based on a non-overlapping DD (ideal for transmission/multi-physics problems)
• Effective for coupling conventional models (FOM) and reduced order models (ROM)
• Monolithic formulation (more intrusive to implement but more efficient)
• Can couple different mesh resolutions and discretization types 
• Allows the use of different time-integrators with different time-steps [3,4]

➢ Explicit time-integrators enable concurrent subdomain solves
• Possesses theoretical convergence properties/guarantees [1,2]

Key Features of GMM-Based Coupling

• High Peclet advection-diffusion transmission problem (1) on Ω = 0,1 × 0,1
with cone, cylinder and smooth hump initial condition, Dirichlet BCs, rotating 
advection field, run for 1 full rotation (Figure 4)

• FOM discretization: finite elements in space (ℎ =
1

64
), Crank-Nicholson in time 

with (Δ𝑡 = 6.734 × 10−3)
• ROM discretization: POD/Galerkin method

• ROMs evaluated in predictive regime, with prediction across 𝜅𝑖
• Snapshots collected by running monolithic FOM at testing parameters

• Coupling specifications:

• Two subdomain non-overlapping DD with Ω split at 𝑥 =
1

2

• Dirichlet BCs on system boundaries imposed strongly in ROMs [5]
• Training parameters: 𝜅1 = 𝜅2 = 10−5

• Testing parameters: 𝜅1 = 10−5, 𝜅2 = 10−4

• Full LM space has dimension 63

• Reduced LM space has dimension 𝑁𝑅,𝑖Γ = min
1

4
𝑁𝑅,𝑖0, 63

(1)

Figure 4: coupled solutions to the targeted transmission problem at the final time.  Naïve ROM-ROM 
coupling (left), provably-stable ROM-ROM coupling (middle) and FOM-FOM coupling (left).

Figure 2: relative errors as a function of 
the reduced basis size.

Figure 3: condition #s of (4) as a 
function of the reduced basis size.

(4)

Main takeaway: provably-stable ROM-ROM GMM method delivers artifact-free solution, maintains 
Schur complement condition # of O(1) regardless of basis size, and converges with basis refinement!
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Model problem: time-dependent advection-diffusion problem (1)

Compatibility conditions: continuity of states and flux from (2)

Key Idea: introduce control as the shared Neumann BC on the interface Γ (Figure 1) satisfying the 
continuity of flux, and form a loss function that, when minimized, will enforce the continuity of states.

Key Idea: use data-driven techniques to create efficient surrogates that approximate the dynamics of 
the interface flux. This eliminates the more expensive Schur complement solves in GMM. 

• We relax the constrained optimization problem with a Lagrange multiplier 𝜇𝑖

The control 𝑔𝑛 is common 
to both subdomains, 
implicitly enforcing
continuity of flux

• Here we further extend this approach to ROM-ROM and 
ROM-FOM coupling

• Accurate results for ROM-ROM coupling when using FEM 
adjoints (Figure 10)

• Linear patch tests pass to the tolerance of the penalty 
parameter 𝛿

• Ongoing work investigating alternative snapshot matrices
onto which the adjoint equations are projected to enable 
using fewer modes

• Training data consists of both the flux (𝝀𝑘−1) and 
patches of the states near the interface

• DMD or nODE trained to learn the mapping from 

𝒚𝑘−1 ≔ 𝝀𝑘−1, 𝒖1,𝑘 𝛿1 , 𝒖2,𝑘 𝛿2
𝑇

to 𝒚𝑘

• Preliminary results indicate that the new DMD 
approach is more accurate than lumped mass GMM 
approach and around 20× times cheaper than a 
consistent mass GMM approach (Figure 11)

Figure 10. ROM-ROM coupling at final timestep.

Optimization-Based Coupling (OBC)
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and solve the optimality conditions with gradient descent and a reduced space algorithm

ℒ 𝑢1
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• This approach was developed in [12] in the setting of coupled linear elliptic PDEs, extended in [13] 
to coupled nonlinear parabolic PDEs, and later to fluid-structure interaction in [14]

Flux Surrogates

We consider two different surrogates 𝝀 = ℱ 𝒚 for the                    
interface flux dynamics (to replace (4)) using similar states 𝒚:

• DMD surrogate: 𝒚𝑘+1 = 𝐴𝒚𝑘

• nODE surrogate: 
𝑑𝒚

𝑑𝑡
= 𝑓(𝑡, 𝒚, 𝑢; 𝜃) = feed-forward NN

Figure 11.  CPU times (left) and relative errors (right) for GMM method with 
consistent mass (IVR(C)), lumped mass (IVR(L)) and a DMD surrogate (DMD-FS)

Additional Future Work
• Development of error indicator-based or reinforcement learning-based algorithm to determine 

“optimal” DD and ROM/FOM assignment
• Development of algorithms for on-the-fly ROM-FOM switching to improve predictive capabilities of 

the resulting hybrid model
• Incorporation of structure preservation into couplings
• Development/coupling of “bottom-up” subdomain ROMs that are trained separately
• Extension of coupling approaches to DMD and non-intrusive operator inference ROMs

• New coupling methodologies enable the rigorous integration of data-driven 
models into modeling & simulation toolchains in a “plug-and-play” fashion for 
both multi- and mono-physics problems, including M2dt exemplars (land ice-
ocean interaction, self-assembly of block copolymers)

• New DD-based couplings can improve trustworthiness and predictive capabilities
of data-driven models by enabling spatial localization of ROMs (via DD) and 
online integration of high-fidelity information into these models (via FOM 
coupling).
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