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Motivation and Role in M2dt | Alternating Schwarz-Based Coupling Ongoing and Future Work
The past decades have seen tremendous investment in simulation Approach Other Coupllng Approaches
frameworks for coupled multi-scale and multi-physics problems.
_ _ . . Basic Schwarz Algorithm for Spatial Coupling r, o Model problem: time-dependent advection-diffusion problem (1)
* Frameworks rely on established mathematical theories to couple physics o . o
components. Initialize: ) Compatibility conditions: continuity of states and flux from (2)
* Most existing coupling frameworks are based on traditional discretization  Solve PDE by any method on Q, with initial guess for . . | o ] ]
methods, i.e., full order models (FOMs) | transmission BCs on T; (or T). Overlapping Schwarz: convergent with all- Optimization-Based Coupling (OBC)
Pl N Dirichlet transmission boundary conditions
.- ) (\/J r | 7( n anlmmn 7 | Iterate until convergence: (BCs) if ;N Q, + @. Key Idea: introduce control as the shared Neumann BC on the interface I' (Figure 1) satisfying the
- el n - . * Solve PDE by any method on Q. with transmission BCs continuity of flux, and form a loss function that, when minimized, will enforce the continuity of states.
o= L on I, (or I') based on values just obtained for (). ,
. N DMD=N. ' . . n n n n n SO
A y N; L : J : =N; ¢ ’ . . . o - ) ) ) X X .
- - * Solve PDE by any method on Q4 with transmission BCs = )F L In each time-step, find (u7, uz, ") € X1 X Xz X L*(I') that minimizes The control g™ is common
on I'; (or I') based on values just obtained for (2,. \ Js(u ul, g") 1= 1 [l — ul|| + 15| g™ |2 (6) to both subdomains,
Unfortunately, existing algorithmic and software infrastructures are ill- - ONF1y H2y L 217 5 r implicitly enforcing
equipped to ha.ndlg plug-and-play integration of data-driven rlnodels Novel Idea: using Schwarz alternating method as a No;-zyerlgapbping Sclhwarz:- coanergent with subject to continuity of flux
(e.g., projection-based reduced order models or ROMs)! discretization/coupling method for solving multi-scale or 0 Ing)igcll":lqec:rtfafﬁesrr:l?st:(;gn Becusmann— . . . ) N , . i
M2DT: MULTIFACETED MATHEMATICS FOR PREDICTIVE DIGITAL TWINS multi-physics PDEs [6-8]. At (uf —uf ™ v) + (0 (), Vo) = (f,v) + (=D'(g" v)r, Y €V}, i =1, (7)
Objective (under RT3.1 of DRIVING SCIENTIFIC APPLICATIONS AREAS
T . Advanced materials and manufacturing [ Ice/ocean systems - -  We relax the constrained optimization problem with a Lagrange multiplier u;
SPLI B CIEBRVl i e INTEGRATIVE RESEARCH THRUSTS Schwarz Algorithm for Dynamics P P srane PR
prlnCIples gUIdlng assembly of RT1: D)-m;?mi.cally-integ;rz.lted RT2: l-?e(luced-or(!er & RT3: Mathen‘.lat.ics of coupling — - L(u?, ug, gn , U1, ‘Ltz) = Js (u"ll, ug, gn)+zl2=1 - (u{t — U?_l, ,Lll) + (O'i (U,?), V.Ul) = (fin’ ‘Lll) + (—1)l(gn, :ui)l"]
standard and data-driven data assimilation & decisions surrogate modeling for predictive DTs \\ At
RESEARCH SUB-THRUSTS T I, Th+1 N : : L. : : .
models in stable, accurate and e | OEDand | sochasic | nollhear | siructure | peomec’c TR 1 Tetributed [roEEE ° @ Controller time stepper and solve the optimality conditions with gradient descent and a reduced space algorithm
. . ‘da.ta . . causal optimal dimensio'nality preserving | deep learning| heterogeneou optimizat.ion model R :Eg{é:
physically consistent ways. aemibnien | drfereries °°“"°LDUC:$‘ICS‘I’\'|‘ TRAT:'::;G &Sg’l‘;g; :SEACH mom—for coupling |_memt | o & ® Time integrator for ( * This approach was developed in [12] in the setting of coupled linear elliptic PDEs, extended in [13]
£ - to coupled nonlinear parabolic PDEs, and later to fluid-structure interaction in [14]
Time integrator for (), .
2, * Here we further extend this approach to ROM-ROM and o
Coupling via Generalized Mortar Methods Vision: create a “plug-and-play” ROM-FOM coupling
Can use different framework for arbitrary mixing and * Accurate results for ROM-ROM coupling when using FEM 0.6 - A
ApproaCh Transfer from to Q; to I int ¢ ith i ) . . :
Transfer from 0, to T, Integrators Wi matching of conventional and data- adjoints (Figure 10) 0.4 - Lt | :l“
Model problem: time-dependent advection-diffusion problem on (2 = 2, U, withf2, N, = 1) {} Intermediate time steps associated to Q, d{ffgrent time Ste.ps driven models following a domain * Linear patch tests pass to the tolerance of the penalty 02 ) Lg}(f’é,:,::{{\ m
i} Intermediate time steps associated to Q, within each domain! decomposition (DD) parameter S ’ Mﬁ””'g’a ‘:‘ﬂ\\“-e..
U CF () = F i . — | : : .. . . L e "
¢ =V Filc) =fi, in Q;x[0,T], L= L2 * Ongoing work investigating alternative snapshot matrices i it :
.= . . — : . : . - =" 0.5
¢ =9u on [;x10,T], i=12 (1) onto which the adjoint equations are projected to enable :
ci(x,0) =c;o(x), in Q; i=12 : : , y 0 x
’ i L Key Features of Alternating Schwarz-Based Coupling using fewer modes
1 g . c g
Compatibility conditions: on interface I' x [0, T] (Figure 1) * Can handle both overlapping or non-overlapping DDs Elux S X Figure 10. ROM-ROM coupling at final timestep.
. . ot Ux ourrogates
 Continuity of states: c;(x,t) — c,(x,t) =0 Can Cc.)upllce arblltra?ry c?mb.lnatlo.ns of BOI\fS and F;)Ms | |
« Continuity of flux:  F,(x,t) -np = F,(x,t) - np Iterative formulation (less Intrusive to implement but can require more CPU time) Key Idea: use data-driven techniques to create efficient surrogates that approximate the dynamics of
= Imposed weakly using Lagrange multiplier (LM) A Can couple dlffererrt mesh r.esoll:ltlons and ele'men.t types . o . the interface flux. This eliminates the more expensive Schur complement solves in GMM.
- oy : : Figure 1. Non-overlapping DD of 2 = 2, U (2, . * Allows the use of different time-integrators with different time-steps in different subdomains
Semi-discrete monolithic coupled formulation: obtained by , o )
. .. L . . ) * No interface bases are required in ROM-ROM and ROM-FOM couplings ) )
discretizing weak monolithic formulation using FEM in space. : : . . . ) L . We consider two different surrogates A = F(y) for the
Note the alternative form of the constraint! Key Ingredients for Stable POD/Galerkin * Requires sequential subdomain solves in multiplicative Schwarz variant interface flux dynamics (to replace (4)) using similar states y: [
' ROM-ROM and FOM-ROM Coupling > Concurrent subdomain solves possible with additive Schwarz variant ' ?°
M, 0 GT) /¢ fi—K,c, » Calculate “split” reduced bases ®; - and * Possesses theoretical convergence properties/guarantees [6-7]. * DMD surrogate: 3;k+1 = Ay 1y of
0 M, —GI (éz) = <f2 -K, Cz) (2) D, ,, for interface and interior degrees * nODE surrogate: d—;: = f(t,y,u; 0) = feed-forward NN ? e ~
G, -G, 0 A 0 of freedom (DOFs) via the Proper . e /
, , , , , Orthogonal Decomposition (POD). Numerlcal RESUltS . :
M ;: mass matrices, K;: stiffness matrices,G;: constraint matrices . * Training data consists of both the flux (A,_41) and
* Reduce LM space tosize Npr < N + .
. . ST Model problem: Riemann problem for the 2D unsteady Euler equations [ . patches of the states near the interface e
Decoupling via Schur complement: equation (2) equivalent to Ng,2r, where Ng ;i = # POD modes in ' r’ressuj « DMD or nODE trained to learn the mapping from =
. . ®; -, and approximate A ~ @, A where . T
(Ml ' )(C1) = (fl ket Gll) (3) @ v = P;rfori =12, sothat 0 ,0 0 gu 0 puv 1 Y=t = (Ak‘l’ul"‘((sl)’uz"‘((SZ)) 0 Yk “ =
0 MaJAc f2—Kzez + Gg/l Ngr = Npg,r. — p:}t —| P u;l; p + — ,02 =0, p=(Q—-1) (pE _ _p(uz 4 v2)> * Preliminary results indicate that the new DMD :
AT AT _1 ot\ P 0x P dy \ PV" +D 2 approach is more accurate than lumped mass GMM = -
where (G1M7° Gy + GoM; " G3)A = G M7~ (f1 — (4) pE (E +plu (E +p)v :
_1 : : approach and around 20X times cheaper than a ,
K.c,)—G,M;"(f, — K,c,) ROM-ROM coupling with reduced LM space . . — S
) _ consistent mass GMM approach (Figure 11) a e e @ e om e ow oW e OO O O
guaranteed to have non-singular dual Schur * Homogeneous Neumann BCs on system boundaries of Q x [0, T] = (0,1) x (0,1) x [0,0.8]. "
After solving Schur complement problem (4), complement if underlying FOM-FOM  FOM discretization: 100 X 100 Cartesian grid, 1t order finite volume scheme, BDF1 time integration, At = 0.005. FigUfe 11. CPU times (left) and relative errors (right) for GMM method with
the subdomain problems in (3) decouple. coupling satisfies conditions in [1]. * ROM discretization: POD/Least-Squares Petrov-Galerkin (LSPG) projection [9] with no hyper-reduction consistent mass (IVR(C)), lumped mass (IVR(L)) and a DMD surrogate (DMD-FS)
> Solution has strong gradients/shocks = poor linear representation Additional Future Work
Key Features of GMM-Based Coupling » ROMs evaluated in the predlictlve regn.ne. | o . | | |
> Snapshots collected by running monolithic FOM at testing parameters * Development of error indicator-based or reinforcement learning-based algorithm to determine
e Based on a non-overlapping DD (ideal for transmission/multi-physics problems) » Coupling specifications: Q, Q, “optimal” DD and ROM/FOM assighment
* Effective for coupling conventional models (FOM) and reduced order models (ROM) > Four subdomain overlapping DD: Q = U?_, Q; (Figure 5) * Development of algorithms for on-the-fly ROM-FOM switching to improve predictive capabilities of
* Monolithic formulation (more intrusive to implement but more efficient) > Dirichlet BCs on Schwarz boundaries enforced weakly the resulting hybrid model
 Allows the use of different time-integrators with different time-steps [3,4] > Va’rIEd parameters: p,, initial condition from compatibility relations [10] . Development/coupling of “bottom-up” subdomain ROMs that are trained separately
» Explicit time-integrators enable concurrent subdomain solves ** P1train € [1.0,1.25,1.5,1.75, 2.0] » Extension of coupling approaches to DMD and non-intrusive operator inference ROMs
* Possesses theoretical convergence properties/guarantees [1,2] * Pitest € [1.125,1.375,1.625,1.875]
Figure 5: four subdomain overlapping DD.
Numerical Results :
10 == =i ooing. ] ----—PrEEsurE _ : = — Pressure, K = 60 POte nt I a I I m p a Ct
* High Peclet advection-diffusion transmission problem (1) on Q = (0,1) x (0,1) VT e Fow Monolithic PROM Schwarz PROM, N, = 4 Al I
with cone, cylinder and smooth hump initial condition, Dirichlet BCs, rotating § ] \‘ E — Ne-20 * New coupling methodologies enable the rigorous integration of data-driven
advection field, run for 1 full rotation (Figure 4) '\.‘ 5 models into modeling & simulation toolchains in a “plug-and-play” fashion for
o . 1 . - PP~ P : - - : -
* FOM discretization: finite elements in space (h = a), Crank-Nicholson in time Sseo : both multi- and mono-physics problems, including M2dt exemplars (land ice-
with (At = 6.734 x 10~3) Ny " ocean interaction, self-assembly of block copolymers)
* ROM discretization: POD/Galerkin method B  New DD-based couplings can improve trustworthiness and predictive capabilities =/ [_l_;si)
g . ; : 107 ‘ , ‘ ‘ ‘ . . . . . . -
« ROMs evaluated in predictive regime, with prediction across K; Figure Z.t}r]elatlge er;ot:s a_s a.functlon of | 02 04 06 08 i . . . 10 12 e s 18 20 of data-driven models by enabllng spatlal localization of ROMs (Vla DD) and ?’-_\"9///
: cep : e reduced basis size. x . . ) . 2 . , . » .
* Snapshots collected by running monolithic FOM at testing parameters § , online integration of high-fidelity information into these models (via FOM ,/.” s
» Coupling specifications: T T T e Figure 6: monolithic FOM (left), monolithic ROM (middle) and four subdomain Figure 8: relative [“ error in ROM solutions w/ : .’._-/
: | oS ] _ , R , > . o coupling). .o oy
1 -+ FR couping, L coupled ROM (right) solutions at initial time. ROM solutions have K = 50 modes. and w/o DD as a function of the basis size K. -
. bd i - lappi ith Q spli = = S Nl 7
Two subdomain non-overlapping DD wit split at x .
* Dirichlet BCs on system boundaries imposed strongly in ROMs [5] % B Pressure, i = 1.875, No = 4
.« o - 107 ] B e e T T Y P B — 10 —e— Monolithic PROM
* Training parameters: k; = k, = 107° ) " foMm Monolithic PROM Schwarz PROM, No=4 —= Multpicatve
+ Testing parameters: =.1O"5, K, = 1074 mo,._......._._._.‘-‘_-» o sow uo! | : ¢ Addiive (theoretica References
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