

SNL progress highlights: data-driven couplings (RT3.1) and preservation of geometric structure in ROM (RT2.2)

 $\int \mathcal{M}^2 dt$

<u>Speakers</u>: Irina Tezaur and Anthony Gruber Sandia National Laboratories

> M2dt Project All-Hands Meeting Wednesday, October 25, 2023

SAND2023-10975PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. 2 Research thrust organization

 $\int \mathcal{M}^2 dt$

ħ

DRIVING SCIENTIFIC APPLICATION AREA: PREDICTIVE DIGITAL TWINS											
Testbed 1: Self-assembling thin films testbed					Testbed 2: Coupled ice shelf-ocean cavity testbed						
Alexander & Biros					Heimbach & Urban						
INTEGRATIVE RESEARCH THRUSTS											
Dynamically-integrated Ref				Reduced-order &		Mathematics of coupling					
data assimilation & decisions			surrogate modeling		for predictive DTs						
Marzouk & Leyffer			Ghattas & Tezaur		ir	Bochev & Willcox					
RESEARCH SUB-THRUSTS											
dynamic	OED and	stochastic	nonlinear	structure	geometric	coupled	distributed	optimal			
data	causal	optimal	dimensionality	preserving	deep learning	heterogeneous	optimization	model			
Marzouk	Uhler	Gunzburger	Ward/Willcox	Tezaur	Ghattas	Bochev	Levffer	Biros			
		ED	UCATION, 1	RAINING	& OUTREA	СН					
			Le	yffer & Willco	X						
ROM = reduced order model		•									
		Pa	rt 2 of talk (R	T2.2)		Part 1 of talk (RT3.1)					
			Anthony Gruber			Irina Tezaur					

Team 3

Core Sandia M2dt team

Irina Tezaur

Pavel Bochev

Anthony Gruber

Patrick Blonigan Eric Parish

Paul Kuberry

Other Sandia contributors not officially part of M2dt

Chris Eldred

Joshua Barnett

Chris Wentland

Amy de Castro

Alejandro Mota Francesco Rizzi

Collaborations within M2dt

Max Gunzburger Rudy Geelen Nicole Aretz

Motivation for RT3.1: coupled heterogeneous methods for multi-scale & multi-physics coupling

 \bigcirc

There exist established **rigorous mathematical theories** for **coupling** multi-scale and multi-physics components based on **traditional discretization methods** ("Full Order Models" or FOMs).

Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

N_1 N_2 N_4 N_3 N_5

Traditional Methods

• Mesh-based (FE, FV, FD)

- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian...

Coupled Numerical Model

Monolithic (Lagrange multipliers)

 N_{4}

 N_{\bullet}

(EAM)

Land Ice (MALI) Ocean (MPAS-

Land (ELM)

Sea Ice (MPAS-

- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

Motivation for RT3.1: coupled heterogeneous methods for multi-scale & multi-physics coupling

 \bigcirc

There exist established **rigorous mathematical theories** for **coupling** multi-scale and multi-physics components based on **traditional discretization methods** ("Full Order Models" or FOMs).

Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

Traditional Methods

• Mesh-based (FE, FV, FD)

- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian, ...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

PINNs

- Neural ODEs
- Projection-based ROMs, ...

While there is currently a big push to integrate **data-driven methods** into modeling & simulation toolchains, existing algorithmic and software infrastructures are **ill-equipped** to handle **rigorous** plug-and-play integration of **non-traditional**, **data-driven models**!

6 Coupling scenarios, models and methods

61

Data-driven models: to be "mixed-and-matched" with each other and first-principles models

- Class A: projection-based reduced order models (ROMs)
- Class B: machine-learned models, i.e., Neural Networks (NNs)
- Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

- Method 1: Alternating Schwarz-based coupling
- *Method* 2: Coupling via generalized mortar methods (GMMs)
- *Method 3*: Optimization-based coupling

7 Coupling scenarios, models and methods

Data-driven models: to be "mixed-and-matched" with each other and first-principles models

• Class A: projection-based reduced order models (ROMs)

This talk

61

- Class B: machine-learned models, i.e., Neural Networks (NNs)
- Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

- Method 1: Alternating Schwarz-based coupling
- *Method* 2: Coupling via generalized mortar methods (GMMs)
- *Method 3*: Optimization-based coupling

⁸ Coupling scenarios, models and methods

Data-driven models: to be "mixed-and-matched" with each other and first-principles models

• Class A: projection-based reduced order models (ROMs)

This talk

61

- Class B: machine-learned models, i.e., Neural Networks (NNs)
- Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

- Method 1: Alternating Schwarz-based coupling
- Method 2: Coupling via generalized mortar methods (GMMs)
- Method 3: Optimization-based coupling

This talk

- ⁹ Schwarz alternating method for domain decomposition (DD
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 . Iterate until convergence:
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .

 $\partial\Omega$

ħ

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs¹ if $\Omega_1 \cap \Omega_2 \neq \emptyset$.

Non-overlapping Schwarz: convergent with Robin-Robin² or alternating Neumann-Dirichlet³ transmission BCs.

¹Schwarz, 1870; Lions, 1988. ²Lions, 1990. ³Zanolli *et al.*, 1987.

¹⁰ How we use the Schwarz alternating method

Schwarz for multiscale FOM-FOM coupling in solid mechanics¹

• Coupling is *concurrent* (two-way).

- *Ease of implementation* into existing massivelyparallel HPC codes.
- Scalable, fast, robust (we target real engineering problems, e.g., analyses involving failure of bolted components!).
- Coupling does not introduce *nonphysical artifacts*.
- *Theoretical* convergence properties/guarantees¹.
- "Plug-and-play" framework:
 - Ability to couple regions with different non-conformal meshes, different element types and different levels of refinement to simplify task of meshing complex geometries.
 - > Ability to use *different solvers/time-integrators* in different regions.

Model Solid Mechanics PDEs:

Quasistatic:	Div $\boldsymbol{P} + \rho_0 \boldsymbol{B} = \boldsymbol{0}$ in	Ω
Dynamic:	Div $oldsymbol{P}+ ho_0oldsymbol{B}= ho_0\ddot{oldsymbol{arphi}}$ in	$\Omega imes I$

¹Mota *et al.* 2017; Mota *et al.* 2022. ² <u>https://github.com/sandialabs/LCM</u>.

² Schwarz extensions to FOM-(H)ROM and (H)ROM-(H)ROM couplings

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices i_{Dir}

• Method I in [Gunzburger *et al*. 2007] is employed

 $\boldsymbol{u}(t) \approx \overline{\boldsymbol{u}} + \boldsymbol{\Phi} \widehat{\boldsymbol{u}}(t), \quad \boldsymbol{v}(t) \approx \overline{\boldsymbol{v}} + \boldsymbol{\Phi} \widehat{\boldsymbol{v}}(t), \quad \boldsymbol{a}(t) \approx \overline{\boldsymbol{a}} + \boldsymbol{\Phi} \widehat{\boldsymbol{a}}(t)$

- > POD modes made to satisfy homogeneous DBCs: $\Phi(i_{\text{Dir}},:) = 0$
- $\succ \text{ BCs imposed by modifying } \overline{u}, \overline{v}, \overline{a}: \overline{u}(i_{\text{Dir}}) \leftarrow \chi_u, \overline{v}(i_{\text{Dir}}) \leftarrow \chi_v, \overline{a}(i_{\text{Dir}}) \leftarrow \chi_a$

Hyper-reduction considerations

- Boundary points must be included in sample mesh for DBC enforcement
- We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat *et al.* 2015] → preserves Hamiltonian structure for solid mechanics problems

Choice of domain decomposition (for Coupling Scenario II)

• *Future work*: error indicator-based or reinforcement learning-based algorithms to determine "optimal" domain decomposition and ROM/FOM assignment, and possibly online ROM-FOM switching

Snapshot collection and reduced basis construction (for Coupling Scenario I)

- POD results presented herein use snapshots obtained via FOM-FOM coupling on $\Omega = \bigcup_i \Omega_i$
- Future work: generate snapshots/bases separately in each Ω_i [Hoang *et al.* 2021, Smetana *et al.* 2022]

HROM = hyperreduced ROM

13

Model Problem 1: Dynamic wave propagation in 1D nonlinear hyper-elastic beam

- Non-overlapping DD of $\Omega = \Omega_1 \cup \Omega_2$, where $\Omega_1 = [0, 0.6]$ and $\Omega_2 = [0.6, 1.0]$
- (H)ROM-(H)ROM/FOM-(H)ROM couplings for POD/Galerkin ROM with Energy-Conserving Sampling & Weighting (ECSW) hyper-reduction
- **Prediction** across initial condition (IC)

Predictive singledomain ROM solution exhibits **spurious oscillations** whereas coupled FOM-HROM solution is **smooth** and **oscillation-free!**

14

Model Problem 2: 2D inviscid Burgers equation with moving shock

Figure 1: solution of *u* component at various times

t = 0.00

Figure 2: 1D cross-sections of solution u for FOM-HROM-HROM-HROM coupling

- FOM-HROM couplings of POD/LSPG ROMs w/ ECSW hyper-reduction, FOM in "hardest" subdomain Ω_1
- **Prediction** across parameters μ_1 and μ_2
- Schwarz converges in 3 iterations per time-step

Further **speedups** possible via **code optimizations** and **additive Schwarz**.

Figure 3: 4 overlapping subdomain DD

	99% SV Energy					
Subdomains	М	MSE (%)	CPU time (s)			
Ω_1	_	0.0	95			
Ω_2	120	0.26	26			
Ω_3	60	0.43	17			
Ω_4	66	0.34	21			
Total			159			

Errors O(0.1%), 2.26× **speedup** over all-FOM coupling

15

Model Problem 3: Riemann problem for 2D Euler equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (E+p)u \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (E+p)v \end{bmatrix} = 0$$
$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho (u^2 + v^2) \right)$$

- POD/LSPG all-ROM coupling, no hyperreduction, prediction across initial condition
- Solution has strong gradients/shocks ⇒ POD is poor (linear) representation

DD and Schwarz coupling of ROMs **stabilizes** the solution! Coupled ROM has **comparable CPU time** to monolithic ROM with additive Schwarz.

- Hyper-reduction is needed to achieve true cost savings
- Suite of test cases (e.g., shallow water equations) available via **Pressio demo-apps** open-source implementation*!

Movie above: monolithic FOM (left), monolithic 50 mode ROM (middle) and 4 overlapping 50 mode subdomain all-ROM coupled (right) pressure solutions

^{*} https://github.com/Pressio/pressio-demoapps

¹⁶ Lagrange multiplier-based partitioned coupling formulation

Model problem: time-dependent **advection-diffusion** problem on $\Omega = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \Omega_2 = \emptyset$

$$\begin{aligned} \dot{c}_i - \nabla \cdot F_i(c_i) &= f_i, & \text{in} \quad \Omega_i \times [0, T] \\ c_i &= g_i, & \text{on} \quad \Gamma_i \times [0, T] \\ c_i(\mathbf{x}, 0) &= c_{i,0}(\mathbf{x}), & \text{in} \quad \Omega_i \end{aligned}$$
 (1)

- $i \in \{1,2\}$
- c_i: unknown scalar solution field
- f_i : body force, g_i : boundary data on Γ_i
- $F_i(c_i) \coloneqq \kappa_i \nabla c_i uc_i$: total flux function
- κ_i : non-negative diffusion coefficient
- *u*: given advection velocity field

Compatibility conditions: on interface $\Gamma \times [0, T]$

- **Continuity of states:** $c_1(x,t) c_2(x,t) = 0$
- Continuity of total flux: $F_1(x,t) \cdot n_{\Gamma} = F_1(x,t) \cdot n_{\Gamma}$
- \Rightarrow Imposed weakly using Lagrange multiplier (LM) λ

Figure 4: example non-overlapping DD of $\Omega = \Omega_1 \cup \Omega_2$

A Lagrange multiplier-based partitioned scheme

Hybrid semi-discrete coupled formulation: obtained by differentiating interface conditions in time and discretizing hybrid problem using FEM in space

$$\begin{pmatrix} \boldsymbol{M}_1 & \boldsymbol{0} & \boldsymbol{G}_1^T \\ \boldsymbol{0} & \boldsymbol{M}_2 & -\boldsymbol{G}_2^T \\ \boldsymbol{G}_1 & -\boldsymbol{G}_2 & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{c}}_1 \\ \dot{\boldsymbol{c}}_2 \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 - \boldsymbol{K}_1 \boldsymbol{c}_1 \\ \boldsymbol{f}_2 - \boldsymbol{K}_2 \boldsymbol{c}_2 \\ \boldsymbol{0} \end{pmatrix}$$
(2)

- *M_i*: mass matrices
- $K_i := D_i + A_i$: stiffness matrices, where D_i and A_i are matrices for diffusive and advective terms, respectively
- G_i: constraints matrices enforcing constraints in weak sense

Decoupling via Schur complement: equation (2) is equivalent to

Equations decouple if using explicit or IMEX time-integration!

$$\begin{pmatrix} \boldsymbol{M}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}_2 \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{c}}_1 \\ \dot{\boldsymbol{c}}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_1 - \boldsymbol{K}_1 \boldsymbol{c}_1 - \boldsymbol{G}_1^T \boldsymbol{\lambda} \\ \boldsymbol{f}_2 - \boldsymbol{K}_2 \boldsymbol{c}_2 + \boldsymbol{G}_2^T \boldsymbol{\lambda} \end{pmatrix}$$
(3)

where $(\boldsymbol{G}_1 \boldsymbol{M}_1^{-1} \boldsymbol{G}_1^T + \boldsymbol{G}_2 \boldsymbol{M}_2^{-1} \boldsymbol{G}_2^T) \boldsymbol{\lambda} = \boldsymbol{G}_1 \boldsymbol{M}_1^{-1} (\boldsymbol{f}_1 - \boldsymbol{K}_1 \boldsymbol{c}_1) - \boldsymbol{G}_2 \boldsymbol{M}_2^{-1} (\boldsymbol{f}_2 - \boldsymbol{K}_2 \boldsymbol{c}_2)$ (4)

Time integration schemes and **time-steps** in Ω_1 and Ω_2 can be **different**!

Implicit Value Recovery (IVR) Algorithm [Peterson *et al*. 2019]

- Pick explicit or IMEX timeintegration scheme for Ω_1 and Ω_2
- Approximate LM space as trace of FE space on Ω_1 or Ω_2^*
- Compute matrices M_i , K_i , G_i and vectors f_i
- For each timestep t^n :
 - > Solve Schur complement system (4) for the LM λ^n
 - Update the state variables cⁿ_i
 by advancing (3) in time

* Ensures that dual Schur complement of (2) is s.p.d.

Lagrange multiplier-based partitioned FOM-FOM coupling

ħ

FEM-FEM coupling for high Peclet transport problem

Coupling of nonconforming meshes

Patch test (ALEGRA-Sierra/SM coupling)

"Plug-and-play" framework:

- Ability to couple regions with different non-conformal meshes, different element types and different levels of refinement to simplify task of meshing complex geometries
- Ability to use *different solvers/time-integrators* in different regions^{1,2}
- Coupling is *non-iterative* (single pass)

Method is theoretically rigorous³:

- Coupling does not introduce *nonphysical artifacts*
- **Theoretical convergence** properties/guarantees including wellposedness of coupling force system
- **Preserves** the **exact solution** for conformal meshes

Method has been applied to several application spaces:

- Transport (unsteady advection-diffusion)
- Ocean-atmosphere coupling
- *Elasticity* (e.g., ALEGRA-Sierra/SM coupling)

¹Connors et al. 2022. ²Sockwell et al. 2023. ³Peterson et al. 2019.

¹⁹ ROM-ROM/ROM-FOM coupling: split bases & reduced LM spaces

Consider two separate expansions for interface and interior DOFs for i = 1,2:

 $\boldsymbol{c}_{i,0}(t) \approx \tilde{\boldsymbol{c}}_{i,0}(t) \coloneqq \bar{\boldsymbol{c}}_{i,0} + \boldsymbol{\Phi}_{i,0} \hat{\boldsymbol{c}}_{i,0}(t), \ \boldsymbol{c}_{i,\Gamma}(t) \approx \tilde{\boldsymbol{c}}_{i,\Gamma}(t) \coloneqq \bar{\boldsymbol{c}}_{i,\Gamma} + \ \boldsymbol{\Phi}_{i,\Gamma} \hat{\boldsymbol{c}}_{i,\Gamma}(t)$

• Substituting expansions into (2) and projecting PDEs onto RBs gives:

Split basis + reduced LM space guarantees ROM-ROM/ROM-FOM coupling has **non-singular dual** Schur complement*.

$$\begin{pmatrix} \widetilde{M}_{1,\Gamma} \ \widetilde{M}_{1,\Gamma0} \ 0 \ 0 \ \widetilde{G}_{1}^{T} \\ \widetilde{M}_{1,0\Gamma} \ \widetilde{M}_{1,0} \ \widetilde{M}_{2,\Gamma} \ \widetilde{M}_{2,\Gamma0} - \widetilde{G}_{2}^{T} \\ 0 \ 0 \ \widetilde{M}_{2,0\Gamma} \ \widetilde{M}_{2,0} \ 0 \\ \widetilde{G}_{1} \ 0 \ - \widetilde{G}_{2} \ 0 \ 0 \end{pmatrix} \begin{pmatrix} \dot{\widehat{c}}_{1,\Gamma} \\ \dot{\widehat{c}}_{1,0} \\ \dot{\widehat{c}}_{2,\Gamma} \\ \dot{\widehat{c}}_{1,0} \end{pmatrix} = \begin{pmatrix} s_{1,\Gamma} \\ s_{1,0} \\ s_{2,\Gamma} \\ s_{2,0} \\ 0 \end{pmatrix}$$

ELSEVIEF

Explicit synchronous partitioned scheme for coupled reduced order models based on composite reduced bases 🖈

Amy de Castro ^{a b} 🖂 , <u>Pavel Bochev ^b 🝳 🖾 , Paul Kuberry ^b 🖾 , Irina Tezaur ^c 🖂</u>

Online ROM-ROM IVR Solution Algorithm with Split Bases & Reduced LM Spaces: at each time step t^n

- Use $\hat{c}_{i,0}^n$ and $\hat{c}_{i,\Gamma}^n$ to compute updated RHS $s_{i,0}^n$ and $s_{i,\Gamma}^n$ for i = 1,2.
- Define $\widetilde{M}_{i,jk} \coloneqq \Phi_{i,jk}^T M_{i,jk} \Phi_{i,k}$, $\widetilde{G}_i \coloneqq \Phi_{LM}^T G_i \Phi_{i,\Gamma}$, $\widetilde{P}_i \coloneqq \widetilde{M}_{i,\Gamma} \widetilde{M}_{i,\Gamma 0} M_{i,0}^{-1} \widetilde{M}_{i,\Gamma 0}$ for $\{j,k\} \in \{0,\Gamma\}$ and solve:

 $(\widetilde{\boldsymbol{G}}_{1}\widetilde{\boldsymbol{P}}_{1}^{-1}\widetilde{\boldsymbol{G}}_{1}^{T}+\widetilde{\boldsymbol{G}}_{2}\widetilde{\boldsymbol{P}}_{2}^{-1}\widetilde{\boldsymbol{G}}_{2}^{T})\widehat{\boldsymbol{\lambda}}^{n}=\widetilde{\boldsymbol{G}}_{1}\widetilde{\boldsymbol{P}}_{1}^{-1}(\boldsymbol{s}_{1,\Gamma}^{n}-\widetilde{\boldsymbol{M}}_{1,\Gamma0}\boldsymbol{M}_{1,0}^{-1}\boldsymbol{s}_{1,0}^{n})-\widetilde{\boldsymbol{G}}_{2}\widetilde{\boldsymbol{P}}_{2}^{-1}(\boldsymbol{s}_{2,\Gamma}^{n}-\widetilde{\boldsymbol{M}}_{2,\Gamma0}\boldsymbol{M}_{2,0}^{-1}\boldsymbol{s}_{2,0}^{n})$

• Advance the following systems forward in time:

$$\begin{pmatrix} \widetilde{\boldsymbol{M}}_{i,\Gamma} & \widetilde{\boldsymbol{M}}_{i,\Gamma0} \\ \widetilde{\boldsymbol{M}}_{i,\Gamma0} & \widetilde{\boldsymbol{M}}_{i,\Gamma} \end{pmatrix} \begin{pmatrix} \dot{\widehat{\boldsymbol{c}}}_{i,\Gamma}^n \\ \dot{\widehat{\boldsymbol{c}}}_{i,0}^n \end{pmatrix} = \begin{pmatrix} \boldsymbol{s}_{i,\Gamma}^n + (-1)^i \widetilde{\boldsymbol{G}}_i^T \widehat{\boldsymbol{\lambda}}^n \\ \boldsymbol{s}_{i,0}^n \end{pmatrix}$$

* If conditions in [Peterson *et al.*, 2019] are satisfied for underlying FOM-FOM coupling.

Model Problem: 2D advection-diffusion transmission problem (TP)

- Cone, cylinder & smooth hump IC
- Non-overlapping DD w/ Γ at x = 0.5
- Rotating advection field (0.5 y, x 0.5) for one full rotation
- High Peclet predictive problem: $\kappa_1 = \kappa_2 = 10^{-5}$ for training, $\kappa_1 = 10^{-5}$ and $\kappa_2 = 10^{-4}$ for prediction
- Provably-stable methods maintain condition number of O(1) regardless of basis size and converge with basis refinement

FOM-FOM

"Naïve" ROM-ROM coupling

²¹ Motivation for RT2.2: structure-preserving ROM (SP-ROM)

Motivation

• To be **reliable predictive tools**, ROMs & surrogates must preserve **key properties** of underlying PDEs (e.g., Hamiltonian structure, conservation, energy/entropy-stability, physical bounds, etc.)

ROMs in general will *NOT* automatically inherit the properties of the FOMs from which they are constructed!

Above: bounds-preserving (left) vs. bounds-violating (right) tracer-transport solution [Peterson et al., 2014]. *Below:* energy-stable (left) vs. unstable (right) compressible flow pressure solutions [Tezaur et al., 2017].

High Fidelity n Solution - Spanshot #16

Objective

 Develop new property-preserving nonlinear dimensionality reduction methods that will support new classes of compatible ROMs mirroring the properties of established compatible discretization methods for FOMs

²² SP-ROM: research themes & methods

We have identified three research themes, informed by many years of research in discretization and geometric methods communities. Structure preservation related to one or more of these themes is a prerequisite for the stable, accurate and physically-consistent solution of PDEs underpinning the M2dt exemplars.

Theme A. Geometric Property Preservation

- A.1. Symplectic structure
- A.2. Metriplectic structure
- A.3. Energy/entropy stability

Theme B. Topological property preservation

- **B.1**. Hodge decomposition
- **B.2.** de Rham complex

Theme C. Qualitative properties

- C.1. Bounds/positivity
- C.2. Monotonicity, max principle
- C.3. Total Variation Diminishing (TVD)

Themes are crucial to many applications, including solid mechanics/material design (Testbed 1) & ice/ocean flow (Testbed 2).

The above three research themes will be pursued using the following methods and their combination:

Method (i). Structure-preserving Operator Inference (OpInf) learning methods

Method (ii). Nonlinear manifold structure-preserving ROMs

Method (iii). Structurepreserving hyper-reduction

Method (iv). Conservation and energy-/entropy-stability

Method (v). Structurepreservation in multiphysics/multi-component ROMs

Method (vi). Optimization-based methods

²³ SP-ROM: research themes & methods

We have identified three research themes, informed by many years of research in discretization and geometric methods communities. Structure preservation related to one or more of these themes is a prerequisite for the stable, accurate and physically-consistent solution of PDEs underpinning the M2dt exemplars.

Theme A. Geometric Property Preservation

- A.1. Symplectic structure
- A.2. Metriplectic structure
- A.3. Energy/entropy stability

Theme B. Topological property preservation

B.1. Hodge decomposition
B.2. de Rham complex

Theme C. Qualitative properties

- C.1. Bounds/positivity
- C.2. Monotonicity, max principle
- C.3. Total Variation Diminishing (TVD)

Themes are crucial to many applications, including solid mechanics/material design (Testbed 1) & ice/ocean flow (Testbed 2).

The above three **research themes** will be pursued using the following in this talk heir combination:

Method (i). Structure-preserving Operator Inference (OpInf) learning methods

Method (iii). Structure- (for discussion of other od (v). Structurepreserving hypethemes/methods, see next talk by Pavel) multiphysics/multi-component ROMs

Method (ii). Nonlinear manifold structure-preserving ROMs

Method (iv). Conservation and energy-/entropy-stability

Method (vi). Optimization-based methods

²⁴ Hamiltonian Operator Inference (H-OpInf)

- Hamiltonian systems $\dot{x} = \{x, H(x)\} = L(x)\nabla H(x)$ are archetypically conservative.
 - Governed by scalar potential H and skewsymmetric matrix operator L.
- *L* defines (potentially degenerate) Poisson bracket $\{F, G\} = \nabla F \cdot L \nabla G$.
 - > Satisfies Jacobi identity: $\{F, \{G, H\}\} + \{G, \{H, F\}\} + \{H, \{F, G\}\} = 0.$
- Guarantees that flow is perpendicular to ∇H and energy is conserved.

$$\dot{H}(\boldsymbol{x}) = \dot{\boldsymbol{x}} \cdot \nabla H = \boldsymbol{L} \nabla H \cdot \nabla H = -\boldsymbol{L} \nabla H \cdot \nabla H = 0.$$

Examples: Incompressible Euler, Maxwell, shallow water, Monge-Ampere, sine-Gordon, nonlinear Schrodinger, ...

Illustration courtesy of P. J. Morrison

²⁵ Hamiltonian Operator Inference (H-OpInf)

- Naïve Galerkin ROM: $\dot{\hat{x}} = \boldsymbol{U}^T \boldsymbol{L} \nabla H(\boldsymbol{U} \hat{\boldsymbol{x}})$
 - \succ Data matrix $X \approx U\Sigma V^{\mathrm{T}}$
 - > POD approximation $\tilde{x} = U\hat{x}$
- Not Hamiltonian! $(\boldsymbol{L}^T \boldsymbol{U})^T = \boldsymbol{U}^T \boldsymbol{L} \neq -\boldsymbol{L}^T \boldsymbol{U}$
 - (energy not conserved)
- Not symplectic!
 - (no Jacobi identity)
- Conversely, Hamiltonian ROM satisfies both*
 - > Solve overdetermined system $U^T L = \hat{L} U^T$.
 - Evolution equation:
 - $\dot{\widehat{x}} = \widehat{L} \nabla \widehat{H}(\widehat{x}) = U^T L(U\widehat{x}) U^T \nabla H(U\widehat{x})$
 - Closed orbits are preserved.
 - * When *L* is *x*-independent

²⁸ Hamiltonian Operator Inference (H-OpInf)

- Non-intrusive case: operator inference
 - > Solve a minimization for RO operators \widehat{L} , \widehat{A} :

$$\underset{\widehat{A} \text{ or } \widehat{L}}{\operatorname{argmin}} \left| \widehat{X}_{t} - \widehat{L} \widehat{A} \widehat{X} \right|^{2}, \qquad \widehat{L}^{T} = -\widehat{L}, \ \widehat{A}^{T} = \widehat{A}.$$

- Reduces to a single linear solve.
- Converges to intrusive ROM in the limit of infinite data.
- If *L* is known, this is "canonical inference".
 - Extends previous work (H. Sharma,
 - B. Kramer, Z. Wang, 2022)
 - ✤ To arbitrary basis U
 - ***** To arbitrary $\nabla H(\mathbf{x}) = \mathbf{A}\mathbf{x} + \nabla f(\mathbf{x})$
- If *A* is known, this is noncanonical inference.
 - Poisson structure is learned instead.

Hamiltonian Operator Inference (H-OpInf)
 Model Problem 2: 3D transient solid mechanics¹

- Noticed mixed results for larger, 3D problems.
 - > Linear elasticity with material parameters of steel:

$$\rho \ddot{\boldsymbol{q}} = \nabla \cdot \boldsymbol{\sigma} = \nabla \cdot (\lambda \operatorname{tr}(\boldsymbol{\epsilon}) \boldsymbol{I} + 2\mu \boldsymbol{\epsilon})$$
$$\boldsymbol{\epsilon} = \frac{1}{2} \left(\nabla \boldsymbol{q} + (\nabla \boldsymbol{q})^{\mathsf{T}} \right)$$
$$H(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \int_{\Omega} \left(\rho \left| \dot{\boldsymbol{q}} \right|^2 + \lambda \operatorname{tr}(\boldsymbol{\epsilon})^2 + 2\mu \left| \boldsymbol{\epsilon} \right|^2 \right) dV$$

• After discretization, system looks like²:

$$\begin{pmatrix} \hat{\hat{q}} \\ \hat{\hat{p}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & I \\ -I & \mathbf{0} \end{pmatrix} \begin{pmatrix} \hat{K} & \mathbf{0} \\ \mathbf{0} & \widehat{M^{-1}} \end{pmatrix} \begin{pmatrix} \hat{q} \\ \hat{p} \end{pmatrix},$$
$$\widehat{M^{-1}} = U^T M^{-1} U, \qquad \widehat{K} = U^T K U.$$

bany-LCM¹

¹Albany-LCM HPC code: <u>https://github.com/sandialabs/LCM</u>. ²Data/matrices: <u>https://github.com/sandialabs/HamiltonianOpInf</u>.

Hamiltonian Operator Inference (H-OpInf) 32 10^{0} Lagrangian G-ROM Lagrangian H-ROM Model Problem 2: 3D transient solid mechanics Neither Hamiltonian nor Galerkin ROM worked well. • e L² erroi Lagrangian ROM* and equivalent Hamiltonian ROM were 10^{-1} stable, but not much better. *Galerkin projection from Lagrangian FOM. Opinf solutions do not match intrusive due to closure error. ٠ (actually beneficial in this case) \succ 10-2 20 40 60 100 80 basis size n Ordinary POD (one shot) Cotangent Lift POD Block (q,p) POD 10¹ 100 10^{-1} error relative L² 10^{-2} 10^{-3} Intrusive G-ROM (MC Intrusive G-ROM (MC 10^{-4} Intrusive H-ROM (MC) Intrusive H-ROM (MC G-OpInf ROM (no MC) G-Opinf ROM (no MC) -Opinf ROM (no MC NC-H-OpInf ROM (MC) NC-H-OpInf ROM (MC) IC-H-OpInf ROM (MC C-H-OpInf ROM (no MC) C-H-OpInf ROM (no MC) C-H-OnInf BOM (no MC) 10^{-5} 80 100 100 100 20 40 60 0 20 40 60 80 0 20 40 60 80

basis size n

basis size n

basis size n

³³ Hamiltonian Operator Inference (H-OpInf)

Model Problem 2: 3D transient solid mechanics

- Projection errors are reasonable.
 - \succ A good ROM should be possible.
- Latest thinking uses a Petrov-Galerkin (PG) projection:
 - Linear elasticity has a canonical Hamiltonian form
 So, JU is a valid test basis, implying:

 $\hat{J}^T \hat{x} = U^T J^T U \hat{x} = U^T J^T J \nabla H(U \hat{x}) = \nabla \hat{H}(\hat{x})$

- Provably Hamiltonian: energy/symplecticity are conserved.
- Removes the need for an extra column-space projection UU^{T} .

Improved accuracy without harming generalizability.

- Can show that error (in reproductive case) is balanced between:
 - > POD projection error $|(\mathbf{I} \boldsymbol{U}\boldsymbol{U}^T)\boldsymbol{x}|$
 - > Max eigenvalue of $\hat{J}^T \hat{J} I$

³⁴ Hamiltonian Operator Inference (H-OpInf)

Takeaways:

- Structure-preservation is necessary but not sufficient for good predictive accuracy.
- The best Hamiltonian ROM balances projection error and symplecticity error.
 - Explains why "cotangent lift" basis is best when projection error is low.
- More work to do to extend to noncanonical systems.
 - PG projection not full rank...

Galerkin OpInf ROM, Time: 0.000100

Hamiltonian OpInf ROM, Time: 0.000100

Need to *understand structure present in exemplars* to see if similar techniques are useful there.

- ³⁵ Progress in relation to project plan milestones
- © Created set of model problems to develop RT3.1 and RT2.2 methods on
 - Still need to better define **connections** to driving testbeds
- © Defined **research roadmap** for various tasks (see Pavel & Chris's talk)
 - ⊖ Interested in improving **cross-institution collaboration** and **integration across subthrusts**
 - Opportunity: collaboration on nonlinear manifold ROMs (RT2.1) and use of ROMs to enable OED/optimal control (RT1)
- Developed ROM formulations that preserve Hamiltonian and energy-/entropy-stability structure
 Discussing and defining structure relevant to exemplars would be worthwhile
- © Formulated ROM formulations that preserve **topological structure** (see Pavel & Chris's talk)
- ③ *Ahead of schedule*: developed monolithic and iterative DD-based ROM-ROM and ROM-FOM coupling methods
- ③ 3 proceedings papers and 5 journal articles partially or fully funded by M2dt have been published during FY23, with others submitted/in review and in preparation.
- © 16 conference/workshop/seminar talks were given on M2dt work during FY23 (U Reno, SIAM CS&E, ARIA ROM Workshop, CoDA, CFC, INI workshop, COUPLED, USNCCM, MMLDE-CSET, NA G-ROMs seminar, etc.). Abstracts are being submitted for FY24 presentations.

Start of Backup Slides

³⁷ Motivation for reduced order & surrogate modeling

Despite improved algorithms and powerful supercomputers, "high-fidelity" models are often too expensive for use in a design or analysis setting.

• Testbed 1: self-assembling block copolymer thin films in nanomaterials. material design involves multi-component compositions and is extremely highdimensional; optimal experimental design & optimal control under uncertainty requires reduced order models (ROMs).

- **Testbed 2: ice-ocean coupling.** decadal-century scale simulations can require millions of CPU-hours; high-fidelity simulations are too costly for UQ; Bayesian inference of high-dimensional parameter fields is intractable
- Numerous other DOE DT application areas require reduced order & surrogate modeling, e.g.,

Additive manufacturing [Shephard et al., 2019]

Turbulent reacting flows [Chan et al., 2017]

Approaches to reduced order: Projection-Based Model Order Reduction (MOR)

Full Order Model (FOM): $\frac{dx}{dt} = f(x, t; \mu)$

38

Approaches to reduced order modeling: Non-intrusive Operator Inference (OpInf)

Non-intrusive Operator Inference (OpInf) blends the perspectives of projection-based MOR and machine learning.

1. A **physics-based model** Typically described by PDEs or ODEs

39

2. Lens of **projection** to define the form of a structure-preserving low-dimensional model

Define the structure of the reduced model $\dot{\widehat{\mathbf{x}}} = \widehat{\mathbf{A}}\widehat{\mathbf{x}} + \widehat{\mathbf{B}}\mathbf{u} + \widehat{\mathbf{H}}(\widehat{\mathbf{x}}\otimes\widehat{\mathbf{x}})$

Non-intrusive learning by inferring reduced operators from simulation data [Peherstorfer & W., 2016]

minimum residual formulation leads to linear least squares

Comparison of Methods

40

Alternating Schwarz-based Coupling Method

- Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
- Overlapping or non-overlapping DD
- **Iterative** formulation (less intrusive but likely requires more CPU time)
- Can couple different mesh resolutions and element types
- Can use **different time-integrators** with **different time-steps** in different subdomains
- No interface bases required
- Sequential subdomain solves in multiplicative Schwarz variant
 - Parallel subdomain solves possible with additive Schwarz variant (not shown)
- Extensible in straightforward way to PINN/DMD data-driven model

Lagrange Multiplier-Based Partitioned Coupling Method

- Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
- Non-overlapping DD
- **Monolithic** formulation requiring hybrid formulation (more intrusive but more efficient)
- Can couple different mesh resolutions and element types
- Can use different explicit time-integrators with different time-steps in different subdomains
- Provably convergent variant requires interface bases
- **Parallel subdomain solves** if explicit or IMEX time-integrator is employed

• Extensions to PINN/DMD data-driven models are not obvious