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4 Motivation for RT3.1: coupled heterogeneous methods for         
multi-scale & multi-physics coupling

• Monolithic (Lagrange multipliers)

• Partitioned (loose) coupling

• Iterative (Schwarz, optimization)

M1 M2

M3 M4
N3

N4

N1
N2

N5

N3

N4

N5

N2N1

• Mesh-based (FE, FV, FD)

• Meshless (SPH,  MLS)

• Implicit, explicit

• Eulerian, Lagrangian…

Complex System Model Traditional Methods Coupled Numerical Model

Ocean

(MPAS-

O)

Atmos.

(EAM)

Sea Ice

(MPAS-

SI)

Land 

Ice

(MALI)

Land

(ELM)

• PDEs, ODEs

• Nonlocal integral 

• Classical DFT 

• Atomistic, …

There exist established rigorous mathematical theories for 

coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺
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DMD=N3

ROM=N4

N1
PINN=N2

UDE=N5

Traditional + Data-Driven Methods

• PINNs

• Neural ODEs

• Projection-based ROMs, …

While there is currently a big push to integrate data-driven methods into modeling & 

simulation toolchains, existing algorithmic and software infrastructures are ill-equipped to 

handle rigorous plug-and-play integration of non-traditional, data-driven models!


Motivation for RT3.1: coupled heterogeneous methods for         
multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for 

coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺
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Data-driven models: to be “mixed-and-matched” with each other and first-principles models

• Class A: projection-based reduced order models (ROMs)

• Class B: machine-learned models, i.e., Neural Networks (NNs)

• Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

• Method 1: Alternating Schwarz-based coupling

• Method 2: Coupling via generalized mortar methods (GMMs)

• Method 3: Optimization-based coupling

Coupling scenarios, models and methods

Coupling scenarios:

Scenario I: 

multi-component 

coupling with a given

domain/component 

decomposition (for 

reuse of single-

component codes)

Ocean

(MPAS-

O)

Atmos.

(EAM)

Sea Ice

(MPAS-

SI)

Land 

Ice

(MALI)

Land

(ELM)

Scenario II: 

multi-scale coupling 

where decomposition 

can be chosen to 

maximize accuracy, 

robustness & efficiency 

of coupled model
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9 Schwarz alternating method for domain decomposition (DD)

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

▪ Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

▪ Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

▪ Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs1 if Ω1⋂ Ω2≠ ∅.

Non-overlapping Schwarz: convergent with Robin-Robin2 or alternating Neumann-Dirichlet3

transmission BCs.  

z: convergent with Robin-Robin2 or alternating Neumann-Dirichlet3 transmission BCs.  1Schwarz, 1870; Lions, 1988.  2Lions, 1990.  3Zanolli et al., 1987. 



How we use the Schwarz alternating method10



• Coupling is concurrent (two-way).

• Ease of implementation into existing massively-

parallel HPC codes.

• Scalable, fast, robust (we target real engineering 

problems, e.g., analyses involving failure of bolted 

components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees1.

11

• “Plug-and-play” framework:

➢ Ability to couple regions with different non-conformal meshes, different element types

and different levels of refinement to simplify task of meshing complex geometries.

➢ Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for multiscale FOM-FOM coupling in solid mechanics1

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM


12
Schwarz extensions to FOM-(H)ROM and (H)ROM-(H)ROM couplings

12

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices 𝒊Dir
• Method I in [Gunzburger et al. 2007] is employed 

𝒖(𝑡) ≈ ഥ𝒖 + 𝜱ෝ𝒖(𝑡),   𝒗(𝑡) ≈ ഥ𝒗 + 𝜱ෝ𝒗(𝑡), 𝒂(𝑡) ≈ ഥ𝒂 + 𝜱ෝ𝒂(𝑡)

➢ POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎

➢ BCs imposed by modifying ഥ𝒖, ഥ𝒗, ഥ𝒂:  ഥ𝒖 𝒊Dir ← 𝝌𝑢, ഥ𝒗 𝒊Dir ← 𝝌𝑣, ഥ𝒂 𝒊Dir ← 𝝌𝑎

Hyper-reduction considerations

• Boundary points must be included in sample mesh for DBC enforcement 

• We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al. 2015] →
preserves Hamiltonian structure for solid mechanics problems

Choice of domain decomposition (for Coupling Scenario II)

• Future work: error indicator-based or reinforcement learning-based algorithms to determine 

“optimal” domain decomposition and ROM/FOM assignment, and possibly online ROM-FOM switching

Snapshot collection and reduced basis construction (for Coupling Scenario I)

• POD results presented herein use snapshots obtained via FOM-FOM coupling on Ω = 𝑖ڂ Ω𝑖

• Future work: generate snapshots/bases separately in each Ω𝑖 [Hoang et al. 2021, Smetana et al.

2022]

HROM = hyper-

reduced ROM



13
Numerical results

13

Model Problem 1: Dynamic wave propagation in 1D nonlinear hyper-elastic beam

− Single-domain FOM solution    − Solution in Ω1 − Solution in Ω2

Predictive single-domain ROM (𝑀1= 300) Predictive FOM-HROM (𝑀2= 200)

• Non-overlapping DD of Ω = Ω1 ∪ Ω2, where Ω1 = [0, 0.6] and Ω2 = [0.6, 1.0]

• (H)ROM-(H)ROM/FOM-(H)ROM couplings for POD/Galerkin ROM with Energy-Conserving Sampling & Weighting 

(ECSW) hyper-reduction

• Prediction across initial condition (IC)

Predictive single-

domain ROM solution 

exhibits spurious 

oscillations whereas 

coupled FOM-HROM 

solution is smooth

and oscillation-free! 
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Numerical results

14

Model Problem 2: 2D inviscid Burgers equation with moving shock

Ω1

Ω2

Ω3

Ω4

1 Ω

Figure 1: solution of 𝑢 component 

at various times

Ω1

𝑥0 100

𝑦
1

0
0

0

Ω2

Ω3Ω4

Figure 2: 1D cross-sections of solution 𝑢 for 

FOM-HROM-HROM-HROM coupling

• FOM-HROM couplings of POD/LSPG ROMs w/ ECSW 

hyper-reduction, FOM in “hardest” subdomain Ω1

• Prediction across parameters 𝜇1 and 𝜇2

• Schwarz converges in 3 iterations per time-step

Subdomains
99% SV Energy

𝑀 MSE (%) CPU time (s)

Ω1 − 0.0 95

Ω2 120 0.26 26

Ω3 60 0.43 17

Ω4 66 0.34 21

Total 159

Errors O(0.1%), 2.26× speedup 

over all-FOM coupling

Figure 3: 4 overlapping subdomain DD

Further speedups possible via code 

optimizations and additive Schwarz.



Numerical results
1515

• POD/LSPG all-ROM coupling, no hyper-

reduction, prediction across initial condition

• Solution has strong gradients/shocks ⇒ POD is 

poor (linear) representation

Movie above: monolithic FOM (left), monolithic 50 mode ROM 

(middle) and 4 overlapping 50 mode subdomain all-ROM coupled 

(right) pressure solutions

DD and Schwarz coupling of ROMs stabilizes the 

solution!  Coupled ROM has comparable CPU 

time to monolithic ROM with additive Schwarz.

• Hyper-reduction is needed to achieve true 

cost savings

• Suite of test cases (e.g., shallow water 

equations) available via Pressio demo-apps 

open-source implementation*!

Model Problem 3: Riemann problem for 2D Euler equations

* https://github.com/Pressio/pressio-demoapps

Blow up!

https://github.com/Pressio/pressio-demoapps


16 Lagrange multiplier-based partitioned coupling formulation16

Model problem: time-dependent advection-diffusion problem on 𝛺 = 𝛺1 ∪ 𝛺2 with 𝛺1 ∩ 𝛺2 = ∅

ሶ𝑐𝑖 − 𝛻 ∙ 𝐹𝑖 𝑐𝑖 = 𝑓𝑖,  in    Ω𝑖 × 0, 𝑇
𝑐𝑖 = 𝑔𝑖 , on Γ𝑖× 0, 𝑇
𝑐𝑖 𝒙, 0 = 𝑐𝑖,0 𝑥 , in Ω𝑖

• 𝑖 ∈ 1,2

• 𝑐𝑖: unknown scalar solution field

• 𝑓𝑖: body force, 𝑔𝑖: boundary data on Γ𝑖

• 𝐹𝑖 𝑐𝑖 ≔ 𝜅𝑖𝛻 𝑐𝑖 − 𝒖𝑐𝑖: total flux function

• 𝜅𝑖: non-negative diffusion coefficient

• 𝒖: given advection velocity field

Compatibility conditions: on interface 𝛤 × 0, 𝑇

Ω1

Ω2

Γ1
Γ2

Γ

• Continuity of states: 𝑐1 𝒙, 𝑡 − 𝑐2 𝒙, 𝑡 = 0

• Continuity of total flux: 𝐹1 𝒙, 𝑡 ∙ 𝒏Γ = 𝐹1 𝒙, 𝑡 ∙ 𝒏Γ

⇒ Imposed weakly using Lagrange multiplier (LM) 𝜆

Figure 4: example non-overlapping DD 

of 𝛺 = 𝛺1 ∪ 𝛺2

(1)
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Hybrid semi-discrete coupled formulation: obtained by differentiating interface conditions in time and 

discretizing hybrid problem using FEM in space

𝑴1 𝟎 𝑮1
𝑇

𝟎 𝑴2 −𝑮2
𝑇

𝑮1 −𝑮2 𝟎

ሶ𝒄1
ሶ𝒄2
𝝀

=
𝒇1 − 𝑲1𝒄1
𝒇2 −𝑲2 𝒄2

𝟎

• 𝑴𝑖: mass matrices

• 𝑲𝑖 ≔ 𝑫𝑖 + 𝑨𝑖: stiffness matrices, where 𝑫𝑖 and 𝑨𝑖 are matrices for 

diffusive and advective terms, respectively

• 𝑮𝑖: constraints matrices enforcing constraints in weak sense

Decoupling via Schur complement: equation (2) is equivalent to 

(2)

𝑴1 𝟎
𝟎 𝑴2

ሶ𝒄1
ሶ𝒄2

=
𝒇1 −𝑲1𝒄1 − 𝑮1

𝑇𝝀

𝒇2 −𝑲𝟐𝒄2 + 𝑮2
𝑇𝝀

A Lagrange multiplier-based partitioned scheme 

where (𝑮1𝑴1
−1𝑮1

𝑇 + 𝑮2𝑴2
−1𝑮2

𝑇)𝝀 = 𝑮1𝑴1
−1 𝒇1 −𝑲1𝒄1 − 𝑮2𝑴2

−1 𝒇2 −𝑲2𝒄2

Implicit Value Recovery (IVR) 

Algorithm [Peterson et al. 2019]

• Pick explicit or IMEX time-

integration scheme for 𝛺1 and 𝛺2

• Approximate LM space as trace of 

FE space on 𝛺1 or 𝛺2*

• Compute matrices 𝑴𝑖 , 𝑲𝑖, 𝑮𝑖 and 

vectors 𝒇𝑖

• For each timestep 𝑡𝑛: 

➢ Solve Schur complement 

system (4) for the LM 𝝀𝑛

➢ Update the state variables 𝒄𝑖
𝑛

by advancing (3) in time
(3)

(4)

Equations decouple if 

using explicit or IMEX

time-integration!

* Ensures that dual Schur 

complement of (2) is s.p.d.

Time integration schemes and time-steps in 𝛺1 and 𝛺2 can be different! 



Schwarz

“Plug-and-play” framework:

• Ability to couple regions with different non-conformal meshes, 

different element types and different levels of refinement to 

simplify task of meshing complex geometries

• Ability to use different solvers/time-integrators in different 

regions1,2

• Coupling is non-iterative (single pass)

Method is theoretically rigorous3: 

• Coupling does not introduce nonphysical artifacts

• Theoretical convergence properties/guarantees including well-

posedness of coupling force system

• Preserves the exact solution for conformal meshes

Method has been applied to several application spaces: 

• Transport (unsteady advection-diffusion)

• Ocean-atmosphere coupling

• Elasticity (e.g., ALEGRA-Sierra/SM coupling)

Lagrange multiplier-based partitioned FOM-FOM coupling

FEM-FEM coupling for high 

Peclet transport problem

1Connors et al. 2022.  2Sockwell et al. 2023.  3Peterson et al. 2019.

Coupling of nonconforming meshes

ALEGRA: 10x10x50

Sierra :  15x15x50

Patch test (ALEGRA-Sierra/SM coupling)

18



1919 ROM-ROM/ROM-FOM coupling: split bases & reduced LM spaces

• Consider two separate expansions for interface and interior DOFs for 𝑖 = 1,2:

𝒄𝑖,0(𝑡) ≈ 𝒄𝑖,0(𝑡) ≔ ത𝒄𝑖,0 + 𝜱𝑖,0ො𝒄𝑖,0 𝑡 , 𝒄𝑖,Γ(𝑡) ≈ 𝒄𝑖,Γ(𝑡) ≔ ത𝒄𝑖,Γ + 𝜱𝑖,Γො𝒄𝑖,Γ(𝑡)
, 

• Substituting expansions into (2) and projecting PDEs onto RBs gives: 

෩𝑴1,Γ

෩𝑴1,0Γ

𝟎
𝟎
෩𝑮1

෩𝑴1,Γ0

෩𝑴1,0

𝟎
𝟎
𝟎

𝟎
𝟎
෩𝑴2,Γ

෩𝑴2,0Γ

−෩𝑮2

𝟎
𝟎

෩𝑴2,Γ0

෩𝑴2,0

𝟎

෩𝑮1
𝑇

𝟎
−෩𝑮2

𝑇

𝟎
𝟎

ሶො𝒄1,Γ
ሶො𝒄1,0
ሶො𝒄2,Γ
ሶො𝒄1,0
𝝀

=

𝒔1,Γ
𝒔1,0
𝒔2,Γ
𝒔2,0
𝟎

Online ROM-ROM IVR Solution Algorithm with Split Bases & Reduced LM Spaces: at each time step 𝑡𝑛

• Use ො𝒄𝑖,0
𝑛 and ො𝒄𝑖,Γ

𝑛 to compute updated RHS 𝒔𝑖,0
𝑛 and 𝒔𝑖,Γ

𝑛 for 𝑖 = 1,2. 

• Define ෩𝑴𝑖,𝑗𝑘 ≔ 𝜱𝑖,𝑗
𝑇 𝑴𝑖,𝑗𝑘𝜱𝑖,𝑘 , ෩𝑮𝑖 ≔ 𝜱LM

𝑇 𝑮𝑖𝜱𝑖,Γ, ෩𝑷𝑖 ≔ ෩𝑴𝑖,Γ − ෩𝑴𝑖,Γ0𝑴𝑖,0
−1 ෩𝑴𝑖,Γ0 for 𝑗, 𝑘 ∈ 0, Γ and solve: 

(෩𝑮1෩𝑷1
−1෩𝑮1

𝑇 + ෩𝑮2෩𝑷2
−1෩𝑮2

𝑇)𝝀𝑛 = ෩𝑮1෩𝑷1
−1 𝒔1,Γ

𝑛 − ෩𝑴1,Γ0𝑴1,0
−1𝒔1,0

𝑛 − ෩𝑮2෩𝑷2
−1 𝒔2,Γ

𝑛 − ෩𝑴2,Γ0𝑴2,0
−1𝒔2,0

𝑛

• Advance the following systems forward in time:

෩𝑴𝑖,Γ
෩𝑴𝑖,Γ0

෩𝑴𝑖,Γ0
෩𝑴𝑖,Γ

ሶො𝒄𝑖,Γ
𝑛

ሶො𝒄𝑖,0
𝑛

=
𝒔𝑖,Γ
𝑛 + (−1)𝑖෩𝑮𝑖

𝑇 𝝀𝑛

𝒔𝑖,0
𝑛

Split basis + reduced LM 

space guarantees ROM-

ROM/ROM-FOM coupling 

has non-singular dual 

Schur complement*. 

* If conditions in [Peterson et 

al., 2019] are satisfied for 

underlying FOM-FOM coupling.

For details, see: 



Numerical results

Model Problem: 2D advection-diffusion transmission problem (TP)

20

• Cone, cylinder & smooth hump IC

• Non-overlapping DD w/ Γ at 𝑥 = 0.5

• Rotating advection field (0.5 − 𝑦, 𝑥 − 0.5) for one 

full rotation

• High Peclet predictive problem: 𝜅1 = 𝜅2 = 10−5

for training, 𝜅1= 10−5 and 𝜅2 = 10−4 for prediction

• Provably-stable methods maintain condition 

number of O(1) regardless of basis size and 

converge with basis refinement

“Naïve” ROM-ROM coupling Provably-stable ROM-ROM coupling FOM-FOM



21 Motivation for RT2.2: structure-preserving ROM (SP-ROM)

Motivation

• To be reliable predictive tools, ROMs & surrogates 

must preserve key properties of underlying PDEs 

(e.g., Hamiltonian structure, conservation, 

energy/entropy-stability, physical bounds, etc.)

ROMs in general will NOT automatically inherit the 

properties of the FOMs from which they are constructed!

Objective

• Develop new property-preserving nonlinear dimensionality 

reduction methods that will support new classes of compatible 

ROMs mirroring the properties of established compatible 

discretization methods for FOMs

Above: bounds-preserving (left) vs. bounds-violating 

(right) tracer-transport solution [Peterson et al., 2014].

Below: energy-stable (left) vs. unstable (right) 

compressible flow pressure solutions [Tezaur et al., 2017].

Physical 

bounds



22 SP-ROM: research themes & methods

Theme A. Geometric Property 
Preservation

• A.1. Symplectic structure

• A.2. Metriplectic structure

• A.3. Energy/entropy stability

Theme B. Topological 
property preservation

• B.1. Hodge decomposition

• B.2. de Rham complex

Theme C. Qualitative properties

• C.1. Bounds/positivity

• C.2. Monotonicity, max principle

• C.3. Total Variation Diminishing (TVD)

Method (i). Structure-preserving 
Operator Inference (OpInf) 

learning methods

Method (ii). Nonlinear manifold 
structure-preserving ROMs

Method (iii). Structure-
preserving hyper-reduction

Method (iv). Conservation and 
energy-/entropy-stability

Method (v). Structure-
preservation in multi-

physics/multi-component ROMs

Method (vi). Optimization-based 
methods

We have identified three research themes, informed by many years of research in discretization and geometric 

methods communities.  Structure preservation related to one or more of these themes is a prerequisite for 

the stable, accurate and physically-consistent solution of PDEs underpinning the M2dt exemplars.

Themes are crucial to many applications, including solid mechanics/material design (Testbed 1) & ice/ocean flow (Testbed 2).

The above three research themes will be pursued using the following methods and their combination:



23 SP-ROM: research themes & methods

Theme A. Geometric Property 
Preservation

• A.1. Symplectic structure

• A.2. Metriplectic structure

• A.3. Energy/entropy stability

Theme B. Topological 
property preservation

• B.1. Hodge decomposition

• B.2. de Rham complex

Theme C. Qualitative properties

• C.1. Bounds/positivity

• C.2. Monotonicity, max principle

• C.3. Total Variation Diminishing (TVD)

Method (i). Structure-preserving 
Operator Inference (OpInf) 

learning methods

Method (ii). Nonlinear manifold 
structure-preserving ROMs

Method (iii). Structure-
preserving hyper-reduction

Method (iv). Conservation and 
energy-/entropy-stability

Method (v). Structure-
preservation in multi-

physics/multi-component ROMs

Method (vi). Optimization-based 
methods

We have identified three research themes, informed by many years of research in discretization and geometric 

methods communities.  Structure preservation related to one or more of these themes is a prerequisite for 

the stable, accurate and physically-consistent solution of PDEs underpinning the M2dt exemplars.

Themes are crucial to many applications, including solid mechanics/material design (Testbed 1) & ice/ocean flow (Testbed 2).

The above three research themes will be pursued using the following methods and their combination:Deep dive in this talk

(for discussion of other 

themes/methods, see next talk by Pavel)
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• Hamiltonian systems ሶ𝒙 = 𝒙, 𝐻(𝒙) = 𝑳(𝐱)∇H(𝐱)

are archetypically conservative.

➢ Governed by scalar potential 𝐻 and skew-

symmetric matrix operator 𝑳.

• 𝑳 defines (potentially degenerate) Poisson 

bracket 𝐹, 𝐺 = ∇𝐹 ⋅ 𝑳∇𝐺.

➢ Satisfies Jacobi identity:

𝐹, 𝐺, 𝐻 + 𝐺, 𝐻, 𝐹 + 𝐻, 𝐹, 𝐺 = 0.

• Guarantees that flow is perpendicular to ∇𝐻

and energy is conserved.
•

ሶ𝐻 𝒙 = ሶ𝒙 ⋅ ∇𝐻 = 𝑳∇𝐻 ⋅ ∇𝐻 = −𝑳∇𝐻 ⋅ ∇𝐻 = 0.

Illustration courtesy of P. J. Morrison
Examples: Incompressible Euler, Maxwell, shallow water, 

Monge-Ampere, sine-Gordon, nonlinear Schrodinger, … 



Hamiltonian Operator Inference (H-OpInf)25

• Naïve Galerkin ROM:   ሶෝ𝒙 = 𝑼𝑇𝑳𝛻𝐻(𝑼ෝ𝒙)

➢ Data matrix  𝑿 ≈ 𝑼𝚺𝐕T

➢ POD approximation  𝒙 = 𝑼ෝ𝒙

• Not Hamiltonian!   𝑳𝑇𝑼 𝑇 = 𝑼𝑇𝑳 ≠ −𝑳𝑇𝑼

➢ (energy not conserved)

• Not symplectic!

➢ (no Jacobi identity)

• Conversely, Hamiltonian ROM satisfies both∗

➢ Solve overdetermined system 𝑼𝑇𝑳 = 𝑳𝑼𝑇.

➢ Evolution equation:

ሶෝ𝒙 = 𝑳∇𝐻 ෝ𝒙 = 𝑼𝑇𝑳(𝑼ෝ𝒙)𝑼𝑼𝑇𝛻𝐻(𝑼ෝ𝒙)

➢ Closed orbits are preserved.

* When 𝑳 is 𝒙-independent
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• Non-intrusive case:  operator inference

➢ Solve a minimization for RO operators 𝑳, 𝑨:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑨 or 𝑳

𝑿𝒕 − 𝑳𝑨𝑿
𝟐
, 𝑳𝑇 = −𝑳, 𝑨𝑇 = 𝑨.

• If 𝑳 is known, this is “canonical inference”. 

➢ Extends previous work (H. Sharma,

B. Kramer, Z. Wang, 2022)

❖ To arbitrary basis 𝑼

❖ To arbitrary ∇𝐻 𝒙 = 𝑨𝒙 + ∇𝑓 𝑥

• If 𝑨 is known, this is noncanonical inference.

➢ Poisson structure is learned instead.

• Reduces to a single linear solve.

• Converges to intrusive ROM in the limit of infinite 

data.

Model Problem 1: 1D Korteweg-De Vries 

(KdV) equation
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• Noticed mixed results for larger, 3D problems.

➢ Linear elasticity with material parameters of steel:

ሶෝ𝒒
ሶෝ𝒑
=

𝟎 𝑰
−𝑰 𝟎

𝑲 𝟎

𝟎 𝑴−1

ෝ𝒒
ෝ𝒑

,

𝑴−𝟏 = 𝑼𝑇𝑴−𝟏𝑼, 𝑲 = 𝑼𝑇𝑲𝑼.

• After discretization, system looks like2:

Model Problem 2: 3D transient solid mechanics1

1Albany-LCM HPC code: https://github.com/sandialabs/LCM.  2Data/matrices: https://github.com/sandialabs/HamiltonianOpInf.   

1

https://github.com/sandialabs/LCM
https://github.com/sandialabs/HamiltonianOpInf
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• Neither Hamiltonian nor Galerkin ROM worked well.

➢ Lagrangian ROM* and equivalent Hamiltonian ROM were 

stable, but not much better.

❖ *Galerkin projection from Lagrangian FOM.

• Opinf solutions do not match intrusive due to closure error.

➢ (actually beneficial in this case)

Model Problem 2: 3D transient solid mechanics 
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• Projection errors are reasonable.

➢ A good ROM should be possible.

• Latest thinking uses a Petrov-Galerkin (PG) projection:

➢ Linear elasticity has a canonical Hamiltonian form

❖ So, 𝑱𝑼 is a valid test basis, implying:

𝑱𝑇ෝ𝒙 = 𝑼𝑇𝑱𝑇𝑼ෝ𝒙 = 𝑼𝑻𝑱𝑻𝑱∇𝐻 𝑼ෝ𝒙 = ∇𝐻(ෝ𝒙)

• Provably Hamiltonian: energy/symplecticity are conserved.

• Removes the need for an extra column-space projection 𝑼𝑼T. 

➢ Improved accuracy without harming generalizability.

• Can show that error (in reproductive case) is balanced 

between:

➢ POD projection error | 𝐈 − 𝑼𝑼𝑇 𝒙|

➢ Max eigenvalue of  𝑱𝑇𝑱 − 𝑰

Model Problem 2: 3D transient solid mechanics 
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Takeaways:

• Structure-preservation is necessary but not 

sufficient for good predictive accuracy.

• The best Hamiltonian ROM balances projection 

error and symplecticity error.

➢ Explains why “cotangent lift” basis is best 

when projection error is low.

• More work to do to extend to noncanonical

systems.

➢ PG projection not full rank…

Need to understand structure present in exemplars to 

see if similar techniques are useful there.

For details on new 

H-OpInf ROM 

approach, see: 



35 Progress in relation to project plan milestones

☺ Created set of model problems to develop RT3.1 and RT2.2 methods on

 Still need to better define connections to driving testbeds

☺ Defined research roadmap for various tasks (see Pavel & Chris’s talk)

 Interested in improving cross-institution collaboration and integration across subthrusts

☺ Opportunity: collaboration on nonlinear manifold ROMs (RT2.1) and use of ROMs to enable   

cccOED/optimal control (RT1)

☺ Developed ROM formulations that preserve Hamiltonian and energy-/entropy-stability structure

 Discussing and defining structure relevant to exemplars would be worthwhile

☺ Formulated ROM formulations that preserve topological structure (see Pavel & Chris’s talk)

☺ Ahead of schedule: developed monolithic and iterative DD-based ROM-ROM and ROM-FOM coupling methods

☺ 3 proceedings papers and 5 journal articles partially or fully funded by M2dt have been published during 

FY23, with others submitted/in review and in preparation.

☺ 16 conference/workshop/seminar talks were given on M2dt work during FY23 (U Reno, SIAM CS&E, ARIA ROM 

Workshop, CoDA, CFC, INI workshop, COUPLED, USNCCM, MMLDE-CSET, NA G-ROMs seminar, etc.).  Abstracts 

are being submitted for FY24 presentations. 
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Start of Backup Slides



37 Motivation for reduced order & surrogate modeling

Despite improved algorithms and powerful supercomputers, “high-fidelity” 

models are often too expensive for use in a design or analysis setting.

• Testbed 2: ice-ocean coupling. decadal-century scale simulations can require 

millions of CPU-hours; high-fidelity simulations are too costly for UQ; Bayesian 

inference of high-dimensional parameter fields is intractable

• Testbed 1: self-assembling block copolymer thin films in nanomaterials.

material design  involves multi-component compositions and is extremely high-

dimensional; optimal experimental design & optimal control under uncertainty 

requires reduced order models (ROMs).

• Numerous other DOE DT application areas require reduced order & surrogate modeling, e.g., 

Hypersonic vehicles

[Tencer et al., 2020]

Additive manufacturing

[Shephard et al., 2019]
Turbulent reacting flows

[Chan et al., 2017]

...
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Approaches to reduced order: Projection-Based Model Order 
Reduction (MOR)

38

Full Order Model (FOM): 
𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝑡; 𝝁)

Unsupervised Learning of Reduced Basis (via Proper Orthogonal 

Decomposition, Nonlinear Manifold Learning, …):

Solve ODE at different 

design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 

time steps

N
u
m

b
e
r 

o
f 

S
ta

te
 

V
a
ri

a
b
le

s
Save solution data

Reduce the 

number of 

unknowns

Perform 

Galerkin

projection

𝜱𝑇𝜱
𝑑2ෝ𝒙

𝑑𝑡2
= 𝜱𝑇𝒇(𝜱ෝ𝒙, 𝑡; 𝝁)

Hyper-reduce 

nonlinear 

terms

𝒇(𝜱ෝ𝒙, 𝑡; 𝝁) ≈ 𝑨 𝒇int 𝜱ෝ𝒙

Hyper-reduction/sample mesh
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Approaches to reduced order modeling: Non-intrusive Operator 
Inference (OpInf)

Non-intrusive Operator Inference (OpInf) blends the perspectives of 

projection-based MOR and machine learning. 
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Comparison of Methods

40

Alternating Schwarz-based Coupling Method Lagrange Multiplier-Based Partitioned Coupling Method

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling

• Non-overlapping DD

• Monolithic formulation requiring hybrid 

formulation (more intrusive but more efficient)

• Can couple different mesh resolutions and 

element types

• Can use different explicit time-integrators with 

different time-steps in different subdomains

• Provably convergent variant requires interface 

bases

• Parallel subdomain solves if explicit or IMEX 

time-integrator is employed

• Extensions to PINN/DMD data-driven models are 

not obvious

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling

• Overlapping or non-overlapping DD 

• Iterative formulation (less intrusive but likely 

requires more CPU time)

• Can couple different mesh resolutions and 

element types 

• Can use different time-integrators with 

different time-steps in different subdomains

• No interface bases required

• Sequential subdomain solves in multiplicative 

Schwarz variant

➢ Parallel subdomain solves possible with 

additive Schwarz variant (not shown)

• Extensible in straightforward way to PINN/DMD 

data-driven model
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