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Abstract

This paper formulates, analyzes and demonstrates numerically a method for the explicit partitioned solution of coupled
nterface problems involving combinations of projection-based reduced order models (ROM) and/or full order models (FOMs).
he method builds on the partitioned scheme developed in Peterson et al. (2019), which starts from a well-posed formulation
f the coupled interface problem and uses its dual Schur complement to obtain an approximation of the interface flux. Explicit
ime integration of this problem decouples its subdomain equations and enables their independent solution on each subdomain.
xtension of this partitioned scheme to coupled ROM–ROM or ROM–FOM problems requires formulations with non-singular
chur complements. To obtain these problems, we project a well-posed coupled FOM–FOM problem onto a composite reduced
asis comprising separate sets of basis vectors for the interface and interior variables, and use the interface reduced basis as
Lagrange multiplier. Our analysis confirms that the resulting coupled ROM–ROM and ROM–FOM problems have provably

on-singular Schur complements, independent of the mesh size and the reduced basis size. In the ROM–FOM case, analysis
hows that one can also use the interface FOM space as a Lagrange multiplier. We illustrate the theoretical and computational
roperties of the partitioned scheme through reproductive and predictive tests for a model advection–diffusion transmission
roblem.
2023 Elsevier B.V. All rights reserved.

eywords: Partitioned scheme; Projection-based reduced order model (ROM); Interface; inf-sup condition; Proper orthogonal decomposition
POD); Galerkin method

1. Introduction

Partitioned methods are an attractive alternative to monolithic approaches for both single and multi-physics
pplications. In the first case such schemes can increase the concurrency of the simulation, improving computational
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efficiency, by using an artificial interface to split the computational domain into several subdomains. In the
second case, where the interface is physical, partitioned schemes enable both increased concurrency and reuse
of existing codes for the constituent physics components; see, e.g., [1] for an expository survey. Because each
individual component is solved independently, the codes can run at their “sweet spots” utilizing, e.g., multi-rate
time integrators [2]. Performance of partitioned schemes in both simulation contexts can be further enhanced by
replacing the full-fidelity models in one or more subdomains by computationally efficient projection-based reduced
order models (ROMs).

This work continues our efforts in [3] to extend the partitioned schemes in [4,5] to interface problems in which
projection-based ROM on one of the subdomains is coupled to either a full order model (FOM) or a ROM

n the other subdomain. In [3], we defined the subdomain ROMs by utilizing full subdomain bases obtained by
erforming proper orthogonal decomposition (POD) [6,7] on a collection of snapshots containing both the interior
nd interface degrees of freedom (DoFs). While this strategy is common in applications of domain decomposition
deas to ROM (see, e.g., [8]), it does not guarantee that the dual Schur complement system for the Lagrange

ultiplier is non-singular. Unique solvability of this system is essential for the extension of the partitioned schemes
n [4,5] because the Lagrange multiplier defines a Neumann boundary condition on the interface, which allows us
o obtain well-posed subdomain equations that can be solved independently.

The main contribution of this paper is the formulation and analysis of an alternative approach which utilizes a
omposite reduced basis, comprising independently constructed ROM bases for the interfacial and interior DoFs,
nstead of the conventional full subdomain reduced basis. To couple two ROMs across an interface, we then use
he interface part of the composite basis as a reduced order Lagrange multiplier space to enforce the interface
onditions. Our analysis reveals that this approach leads to a provably non-singular Schur complement, independent
f the underlying mesh size and/or composite reduced basis dimension. For the coupling of a ROM to a FOM,
epresented by a finite element model (FEM), this analysis indicates that one can use either the interface part of the
omposite basis from the ROM side or the interface finite element space from the FEM side of the interface as a
agrange multiplier. We provide numerical results that corroborate numerically our theoretical findings. Results are
hown on a two-dimensional (2D) time-dependent advection–diffusion problem in the advection-dominated (high
éclet) regime.

.1. Related work

During the past two decades, the idea of coupling projection-based ROMs with each other and with FOMs has
een explored by a number of authors. The bulk of the literature presents ROM–ROM or ROM–FOM coupling as
means for “gluing” or “tiling” these ROMs and/or FOMs together. The focus is hence primarily on using domain
ecomposition (DD) as a vehicle to improve the efficiency of model order reduction (MOR) for extreme scale

problems and decomposable problems. The coupling approaches in the literature fall into roughly two categories:
(1) monolithic coupling methods, and (2) iterative coupling methods. We succinctly review the literature on both
method categories in Sections 1.1.1 and 1.1.2, respectively, and then in Section 1.2 we highlight the key distinctions
and contributions of this work.

1.1.1. Monolithic coupling methods
The majority of monolithic coupling methods in the MOR community employ Lagrange multipliers to enforce

compatibility constraints. Among the earliest works exploring DD to perform coupling of POD-based ROMs in
an effort to improve the predictive accuracy is the work of Lucia et al. [9]. Another early monolithic method for
DD-based coupling of ROMs, this time constructed using the Reduced Basis Element (RBE) method, is the work
Maday et al. [8,10]. These methods are different from ours in that they rely on Lagrange multipliers represented by
low-order polynomials (vs. POD modes) for imposing compatibility in a mortar-type method that “glues” together
non-overlapping subdomains. In [11], Wicke et al. present an approach for stitching together “composable” ROM
“tiles”, precomputed given specific boundary conditions, with the promise that the tiles can be assembled in arbitrary
ways at runtime. Continuity between tiles is enforced by duplicating the DoFs on the interfaces and constraining
their normal components to be equal. The Reduced basis method with DD and Finite elements (RDF) [12] is a
conceptually similar, non-overlapping DD approach for gluing together networks of repetitive blocks. RDF uses
standard finite element bases on the interfaces between the ROM domains to both enforce continuity and provide a
2
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sort of finite element enrichment. In [13], Hoang et al. present an algebraically non-overlapping method for coupling
Least-Squares Petrov–Galerkin (LSPG) ROMs with each other. This approach shares some commonality with the
method developed herein, in that it considers several different types of subdomain and interface bases. Unlike our
approach, [13] explores the use of both strong or weak compatibility conditions imposed at the subdomain interfaces
using Lagrange multipliers.

It is also possible to effect monolithic couplings without Lagrange multipliers through a judicious construction
f the underlying discrete solution spaces. While these formulations are fundamentally different from our Lagrange
ultiplier-based approach, we succinctly review several methods falling into this category here for completeness.
he works [12,14] propose monolithic DD-based strategies for ROM–ROM and FOM–ROM coupling via local

educed order bases, which are carefully constructed to ensure automatic solution continuity across different
ubdomains. Another recent work that accomplishes monolithic ROM–FOM coupling without Lagrange multipliers
s [15]. Unlike our approach, which does not require that any specific discretization method be used to discretize
he governing PDE in space, the method in [15] is based on a discontinuous Galerkin (DG) formulation, in which
oupling is achieved through the definition of numerical fluxes at discrete cell boundaries.

It is interesting to remark that several DD-based ROM–ROM and ROM–FOM coupling methods with on-the-fly
asis and/or DD adaptation have been proposed in recent years. While online model adaptation goes beyond the
cope of the present manuscript, it may be considered in a future publication. In [16,17], Corigliano et al. develop a
on-overlapping Lagrange multiplier-based coupling method for nonlinear elasto-plastic and multi-physics problems,
n which on-the-fly ROM adaptation and ROM/FOM switching is performed through a plastic check during the
educed analysis. Hybrid ROM–FOM coupling in the context of solid mechanics applications is considered also
n [18,19], where a local/global model reduction strategy for the simulation of quasi-brittle fracture is developed.
n adaptive sub-structuring (domain decomposition) non-overlapping approach for ROM–ROM and ROM–FOM

oupling in solid mechanics is also presented in [20]. This method not only enables on-the-fly adaptation of the
OM basis, but also on-the-fly substructuring/DD changes. Furthermore, in the pre-print [21], Huang et al. develop
component-based modeling framework that can flexibly integrate ROMs and FOMs for different components or

omain decompositions, towards modeling accuracy and efficiency for complex, large-scale combustion problems.
t is demonstrated that accuracy can be enhanced by incorporating basis adaptation ideas from [22,23].

Finally, it is worth mentioning that another recent direction for hybrid ROM–FOM and ROM–ROM coupling
nvolves the integration of ideas from machine learning into the coupling formulation. For example, in [24], Ahmed
t al. present a hybrid ROM–FOM approach in which a long short-term memory network is introduced at the
nterface and subsequently used to perform the multi-model coupling.

.1.2. Iterative coupling methods
While iterative coupling methods are fundamentally different from the monolithic couplings developed in the

resent work, we overview several recent efforts falling into the iterative coupling category here for completeness.
he majority of iterative methods for ROM–ROM and ROM–FOM coupling are based on the Schwarz alternating
ethod [25]. Iterative coupling methods have the advantage that they are often less intrusive to implement in existing

igh-performance computing (HPC) codes [26,27]; however, the methods’ iterative nature can add to the total CPU
ime required to complete a simulation.

Among the earliest Schwarz-based DD approaches for coupling FOMs with ROMs is the work of Buffoni
t al. [28], which focuses on Galerkin-free POD ROMs developed for the Laplace equation and the compressible
uler equations. Galerkin-free FOM–ROM and ROM–ROM couplings are also considered by Cinquegrana et al.

29] and Bergmann et al. [30]. The former approach [29] considers overlapping DD in the context of a Schwarz-
ike iteration scheme, but, unlike our approach, requires matching meshes at the subdomain interfaces. The latter
pproach [30], termed zonal Galerkin-free POD, defines an optimization problem which minimizes the difference
etween the POD reconstruction and its corresponding FOM solution in the overlapping region between a ROM and
FOM domain. A true POD-Greedy/Galerkin non-overlapping Schwarz method for the coupling of projection-based
OMs developed for the specific case of symmetric elliptic PDEs is presented by Maier et al. in [31]. A more general
OD/Galerkin ROM–ROM and ROM–FOM coupling method based on the overlapping or non-overlapping Schwarz
ethod is developed in [32]. This work is an extension of an alternating Schwarz-based concurrent multi-scale
OM–FOM coupling method developed earlier in [26,27]. A recent work by Iollo et al. [33] on component-based

odel reduction via overlapping alternating Schwarz shows that, for linear elliptic PDEs, the latter can be interpreted

3
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as an optimization-based coupling [34]. By solving the optimization problem directly, one obtains a “One-Shot
Schwarz” procedure.

Alternative ROM–FOM approaches include the domain decomposition non-intrusive reduced-order model
DDNIR) [35]. Here, a radial basis function interpolation method is used to construct a set of hypersurfaces for
terative solution transfer between neighboring subdomains.

While our focus is restricted to projection-based ROMs, it is worth noting that the Schwarz alternating method
as recently been extended to DD coupling of Physics Informed Neural Networks (PINNs) in [36,37]. The methods
roposed in these works, termed D3M [37] and DeepDDM [36], inherit the benefits of DD-based ROM–ROM
ouplings, but are developed primarily for the purpose of improving the efficiency of the neural network training
rocess and reducing the risk of over-fitting, both of which are due to the global nature of the neural network “basis
unctions”. The Schwarz alternating method has also been used for online coupling of independently pre-trained
ubdomain-localized neural network-based models, e.g. in [38], which develops a transferable framework for solving
oundary value problems (BVPs) via deep neural networks that can be trained once and used forever for various
nseen domains and boundary conditions (BCs).

.2. Differentiating contributions and organization

The partitioned schemes for coupled ROM–ROM and ROM–FOM problems in this paper have some commonal-
ty with both the monolithic Lagrange multiplier-based coupling approaches described succinctly in Section 1.1.1,
.g., [8,10,12,13,39], and the iterative coupling schemes summarized in Section 1.1.2 in the sense that they all focus
n couplings between ROMs and/or ROMs and FOMs. However, the work presented here differs from both of these
ypes of methods in several important ways.

Compared to the methods in Section 1.1.1, our main focus is on improving the simulation efficiency for
oth single and multi-physics problems through explicit partitioned solution of their coupled ROM–ROM and
OM–FOM formulations, rather than on improving the efficiency of the model order reduction process through
omain-decomposition ideas. Second, although both DD-ROM methods and our partitioned scheme utilize Lagrange
ultipliers, the variational setting for the coupled ROM–ROM and ROM–FOM formulations in this paper differs

rom the one in a typical DD-based ROM; this is because ours is designed to provide a provably non-singular
chur complement when the coupled ROM–ROM or ROM–FOM problems are discretized by an explicit time

ntegrator. As explained in Remark 7, this makes our setting more “forgiving” to variational crimes and results in
chur complements whose conditioning is independent of the mesh size underpinning the FOM or the size of the
omposite reduced basis defining the ROM.

Insofar as the iterative coupling methods are concerned, both our partitioned schemes and the methods utilizing
he Schwarz alternating algorithm perform independent solves of decoupled subdomain problems. Additionally, in
oth cases, the decoupling is effected by specifying boundary conditions on the interface that “close” the subdomain
quations and make their independent solution possible. However, in the case of the Schwarz alternating method,
ne usually starts with an initial guess for the boundary condition and iterates until the subdomain solutions have
onverged sufficiently. The rate of convergence generally depends on the size of the overlap between the subdomains,
hich makes this type of methods more difficult to extend to multiphysics problems where different subdomains
ay have different sets of governing equations. In contrast, our partitioned schemes define the interface boundary

onditions by solving a Schur complement equation that provides a highly accurate estimate of the interface flux.
onceptually, this approach is similar to the techniques in [40] where one solves an additional problem to obtain
ore accurate approximation of the boundary flux than afforded by simply inserting the finite element solution into

he flux function.
The remainder of this paper is organized as follows. Section 2 introduces the bulk of the notation used in the

aper. In Section 3, we describe our model transmission problem (a transient scalar advection–diffusion problem)
nd define the coupled FOM–FOM formulation, which provides the basis for the development of the coupled ROM–
OM and ROM–FOM problems. For convenience, in Section 3.2, we also briefly summarize the partitioned Implicit
alue Recovery (IVR) scheme [4]. Section 4 overviews projection-based model reduction using the POD/Galerkin
ethod and introduces the reduced order basis spaces that will be used in the paper. Section 5 is the core of this

aper, where we use the composite reduced basis idea to formulate the IVR scheme for the partitioned solution
f two ROMs coupled across an interface. Next, in Section 6, we describe how the IVR scheme can be extended
4
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Fig. 1. Example partitioning of 2D domain Ω into two non-overlapping subdomains, Ω1 and Ω2, with interface boundary γ .

to the partitioned solution of coupled ROM–FOM problems. In Section 7, we use variational techniques to prove
that the coupled ROM–ROM and ROM–FOM formulations have non-singular Schur complements, which is the key
prerequisite for the extension of the IVR scheme to these couplings. Numerical results demonstrating the proposed
scheme’s accuracy and efficiency for reproductive as well as predictive ROMs are presented in Section 8. Finally,
conclusions are offered in Section 9.

2. Notation

For the convenience of the reader and ease of reference, this section summarizes the bulk of the notation
used throughout the paper. We consider a bounded region Ω ∈ Rν , ν = 2, 3 divided into two1 non-overlapping
subdomains Ω1 and Ω2 by an interface γ , as shown in Fig. 1. Without a loss of generality, we assume that the unit
normal nγ points towards Ω2, and set Γi := ∂Ωi\γ , i = 1, 2.

We use the standard notation L2(Ωi ) for the space of all square integrable functions in Ωi with norm and inner
roduct denoted by ∥·∥0,Ωi and (·, ·)0,Ωi , respectively. Likewise, H 1(Ωi ) will denote the Sobolev space of all square
ntegrable scalar functions on Ωi whose first derivatives are also square integrable and H 1

D(Ωi ) will be the subspace
f H 1(Ωi ) whose elements vanish on Γi . Restrictions of H 1(Ωi ) functions to γ form the fractional Sobolev space

H 1/2(γ ), with dual H−1/2(γ ) and duality pairing ⟨·, ·⟩γ .
In this paper we consider quasi-uniform partitions Ω h

i of Ωi with mesh parameter hi , vertices xi,r , and elements
Ki,s . We assume that each subdomain is meshed independently and denote the finite element partition of the interface
nduced by Ω h

i as γ h
i . To avoid technicalities that are not germane to the subject of this paper, we shall assume

hat γ h
1 and γ h

2 are spatially coincident; however, their vertices are not required to match. Similarly, Γ h
i will be the

nite element partition of the Dirichlet boundary induced by Ω h
i .

emark 1. If a node xi,r lies on both Γi and γ , it is treated as belonging to the finite element partition Γ h
i of

he Dirichlet boundary rather than that of the interface; see Fig. 2. The reason for this is that the DoFs at these
odes are assigned the nodal values of the boundary data and they contribute to the right-hand sides of the discrete
quations, i.e., these DoFs are not unknown solution coefficients.

In what follows, Sh
i will denote the lowest-order nodal C0 conforming finite element subspace of H 1(Ωi ), defined

ith respect to Ω h
i ; see, e.g., [41]. We equip Sh

i with a standard Lagrangian basis {Ni,r }, i.e., Ni,r (xi,s) = δrs , where
rs is the Kronecker δ-symbol. We denote the subspace of Sh

i comprising all finite element functions that vanish
n Γi by Sh

i,D . This subspace is a conforming approximation of the Sobolev space H 1
D(Ωi ). Let ni,Γ , ni,γ and ni,0

enote the numbers of mesh nodes on the Dirichlet boundary Γi , the interface γ , and the interior of the subdomain
i , respectively; see Fig. 2. Thus, ni,D = ni,0 + ni,γ and ni = ni,D + ni,Γ = ni,0 + ni,γ + ni,Γ .

1 This configuration of the model transmission problem possesses all the characteristics relevant for the development of the partitioned
schemes. Extension of these schemes to transmission problems with more than two domains is conceptually similar to the case of two
subdomains.
5
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Fig. 2. Node partitions of the finite element mesh. Solid disks depict Dirichlet nodes forming the space Sh
i,Γ ; circles depict interior and

nterface nodes forming the space Sh
i,D ; diamonds depict interface nodes forming the spaces Sh

i,γ and Gh
i . Arrows indicate duplicate nodes

hat correspond to the same DoFs.

The coefficients of a finite element function uh
i ∈ Sh

i form a vector ui ∈ Rni . Without loss of generality, we can
assume that the nodes of Ω h

i are numbered such that this coefficient vector has the form ui = (ui,γ , ui,0, ui,Γ ), where
ui,γ ∈ Rni,γ , ui,0 ∈ Rni,0 , and ui,Γ ∈ Rni,Γ are vectors of interface, interior, and Dirichlet coefficients, respectively.
With this convention, it is easy to see that the coefficient vector of a finite element function uh

i,D ∈ Sh
i,D has the

form ui,D = (ui,γ , ui,0, 0).
Besides Sh

i,D , we shall need three additional subspaces of Sh
i . The first one contains all finite element functions

whose coefficient vectors have the form (ui,γ , 0, 0), i.e., they vanish at all but the interface nodes. We denote this
space by Sh

i,γ and call it the interface part of Sh
i . The finite element functions in the second subspace have coefficient

vectors (0, ui,0, 0). These functions are identically zero on both the interface and the Dirichlet boundary. We term
this subspace the interior part of Sh

i and denote it by Sh
i,0. The last subspace of Sh

i contains all finite element
functions with coefficients (0, 0, ui,Γ ). These functions vanish at all nodes except those on the Dirichlet boundary
Γi . We denote this space by Sh

i,Γ and call it the boundary part of Sh
i . Note that

Sh
i = Sh

i,γ ∪ Sh
i,0 ∪ Sh

i,Γ and Sh
i,D = Sh

i,γ ∪ Sh
i,0.

Formally, the subspaces Sh
i,D , Sh

i,γ , Sh
i,0, and Sh

i,Γ have the same dimension ni as their parent space Sh
i . However,

hen discussing the assembled algebraic forms of the weak formulations, it will be more convenient to remove the
ero blocks from the coefficient vectors and associate uh

i,D ∈ Sh
i,D , uh

i,γ ∈ Sh
i,γ , uh

i,0 ∈ Sh
i,0, and uh

i,Γ ∈ Sh
i,Γ with

oefficient vectors ui,D ∈ Rni,D , ui,γ ∈ Rni,γ , ui,0 ∈ Rni,0 , and ui,Γ ∈ Rni,Γ , respectively. In this context, we will
efer to ni,D , ni,γ , ni,0, and ni,Γ as the effective dimensions of their respective finite element subspaces. Finally, we
efine the induced interface finite element space Gh

i as the trace of the interface part of Sh
i , i.e., Gh

i = Sh
i,γ

⏐⏐
γ

. Since
im Gh

i = dim Sh
i,γ = ni,γ , the coefficient spaces of Gh

i and Sh
i,γ are isomorphic, i.e., a vector c ∈ Rni,γ can be

apped to a function uh,c
i,γ ∈ Sh

i,γ , or a function λ
h,c
i ∈ Gh

i .

. Model problem and its coupled FOM-FOM formulation

This section defines the model transmission problem, the associated weak coupled formulation and its semi-
iscretization in space2 by finite elements. The coupled FOM–FOM problem is key to the development of partitioned
chemes for coupled ROM–ROM and ROM–FOM problems in this paper. For completeness, Section 3.2 briefly
eviews the IVR scheme for the FOM–FOM problem.

2 We emphasize that, while the high-fidelity models herein are assumed to be constructed using the finite element method, our partitioned
solution approach is easily extensible to FOMs constructed using alternate discretization approaches such as finite volume and finite difference
methods.
6
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We consider the scalar advection–diffusion transmission equation

u̇i − ∇ · Fi (ui ) = fi on Ωi × [0, T ]
ui = gi on Γi × [0, T ]
ui = ui,0 on Ωi , t = 0

i = 1, 2, (1)

here the over-dot notation denotes differentiation in time, the unknown ui := ui (x, t) is a scalar field, Fi (ui ) =

i∇ui − aui is the total flux function, fi := fi (x, t) is a source term, gi := gi (x, t) is prescribed boundary data,
i,0 := ui,0(x), is a prescribed initial condition, κi := κi (x, t) > 0 is the diffusion coefficient in Ωi , and a := a(x, t)

s the advection field. Along the interface γ , we enforce continuity of the “velocities” u̇i and continuity of the total
ux, giving rise to the following interface conditions:

u̇1(x, t) − u̇2(x, t) = 0 and F1(x, t) · nγ = F2(x, t) · nγ on γ × [0, T ]. (2)

e choose this problem because it allows us to conveniently demonstrate the partitioned methods developed in this
aper in both simulation contexts by setting κ1 = κ2 and κ1 ̸= κ2, respectively.

emark 2. The use of “velocity” continuity in lieu of the more conventional continuity of the states coupling
ondition is required to obtain a coupled FOM–FOM formulation that, under some conditions on the Lagrange
ultiplier space, is a Hessenberg Index-1 Differential Algebraic Equation (DAE) [42]. In such DAEs the algebraic

ariable (the Lagrange multiplier) is an implicit function of the differential variables (the subdomain states). This
act is at the core of the IVR formulation as it allows one to solve for the Lagrange multiplier in terms of the
ubdomain states. It also motivates the term “implicit” in the name of the scheme.

We define the coupled weak formulation of (1) by using a Lagrange multiplier to enforce the first constraint in
2). To that end, we write the solution as ui = ui,D + gi where ui,D ∈ H 1

D(Ωi ) is the interior (unknown) component
f ui and, with some abuse of notation, gi ∈ H 1(Ωi ) is a lifting of the boundary data. The weak form of (1)–(2)
s then given by the variational equation: seek {u1,D, u2,D, λ} : (0, T ] ↦→ H 1

D(Ω1) × H 1
D(Ω2) × H−1/2(γ ) such that

i = ui,0 for t = 0, i = 1, 2, and for t > 0(
u̇1,D, v1

)
0,Ω1

+ ⟨λ, v1⟩γ = ( f1, v1)0,Ω1
−
(
F1(u1,D), ∇v1

)
0,Ω1

− Q1(ġ1, g1; v1) ∀v1 ∈ H 1
Γ (Ω1)(

u̇2,D, v2
)

0,Ω2
− ⟨λ, v2⟩γ = ( f2, v2)0,Ω2

−
(
F2(u2,D), ∇v2

)
0,Ω2

− Q2(ġ2, g2; v2) ∀v2 ∈ H 1
Γ (Ω2)⟨

u̇1,D − u̇2,D, µ
⟩
γ

= ⟨ġ1 − ġ2, µ⟩γ ∀µ ∈ H−1/2(γ ).
(3)

n (3), the Qi , for i = 1, 2, denote bilinear forms producing the contributions from the boundary data to the
ight-hand sides of the subdomain equations. The variational Eq. (3) is of the mixed type. Using the theory in [43],
ne can show that (3) is well-posed.

emark 3. Since the Dirichlet data are supposed to satisfy the first coupling condition in (2), the boundary data
ontribution ⟨ġ1 − ġ2, µ⟩γ to the right-hand side of the constraint equation in (3) is identically zero. However, in
eneral, a discretized version of this term will not be identically zero and boundary contributions need to be properly
ccounted for in the assembled discrete problem.

.1. The coupled FOM-FOM problem

To obtain the coupled FOM–FOM problem, we discretize the weak formulation (3) in space by approximating
he subdomain states {u1, u2} and the Lagrange multiplier λ with the finite element spaces V h

= Sh
1 × Sh

2 and
W h

= Gh
k , k = 1 or k = 2, respectively. This choice of W h is common for mortar element methods [44,45] and it

lso ensures the well-posedness of the IVR scheme for the FOM–FOM problem.
To handle the Dirichlet boundary conditions, we proceed similarly to (3) and write the finite element solution as

h
i = uh

i,D + gh
i , where uh

i,D ∈ Sh
i,D is the unknown part of uh

i and gh
i ∈ Sh

i,Γ is the finite element interpolant of the
oundary data. Thus, the coefficient vector of uh

i is given by ui = (ui,D, gi ) where ui,D ∈ Rni,D is the coefficient
ector containing the unknown nodal values of the solution, and gi ∈ Rni,Γ is a coefficient vector containing the
nown nodal values of the boundary data g . To obtain the coupled FOM–FOM problem, we approximate the duality
i

7
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pairing ⟨·, ·⟩γ by the L2 inner product3 (·, ·)0,γ and restrict (3) to V h and W h . The resulting problem can be written
in the following compact matrix form:⎡⎣M1,D 0 GT

1,D

0 M2,D −GT
2,D

G1,D −G2,D 0

⎤⎦⎡⎣u̇1,D

u̇2,D

λ

⎤⎦ =

⎡⎣ f 1,D − F1,Du1,D − Q1,Γ ( ġ1, g1)
f 2,D − F2,Du2,D − Q2,Γ ( ġ2, g2)

−Qγ,Γ ( ġ1, ġ2)

⎤⎦ , (4)

here, for i = 1, 2, Mi,D and Fi,D are ni,D ×ni,D mass and flux matrices, respectively, G i,D are nk,γ ×ni,D matrices
efining the algebraic form of the “velocity” constraint in (2), λ ∈ Rnk,γ is the coefficient vector of the discrete
agrange multiplier, and f i,D ∈ Rni,D is the coefficient vector of the source term. The terms

Qi,Γ ( ġi , gi ) = Mi,Γ ġi + Fi,Γ gi , i = 1, 2 and Qγ,Γ ( ġ1, ġ2) = G1,Γ ġ1 − G2,Γ ġ2,

here Mi,Γ and Fi,Γ are ni,D × ni,Γ “partial” mass and flux matrices, and G i,Γ are nk,γ × ni,Γ “partial” constraint
atrices, provide the contributions from the boundary data interpolants to the right-hand sides of the subdomain

quations. Note that the matrix blocks in (4) are dimensioned using the effective dimensions of the finite element
paces.

emark 4. The “partial” constraint matrices G i,Γ are, in general, very sparse. For example, in two-dimensions,
ach G i,Γ will have at most two non-zero elements corresponding to the two Dirichlet nodes at the endpoints of
; see Fig. 2. Although ġ1 = ġ2 at these nodes, the integrals of the finite element interpolants ġh

1 and ġh
2 against

he Lagrange multiplier basis functions will not be identical unless the nodes adjacent to the endpoints of γ match
n both sides of the interface. This is to be contrasted with the continuous problem where the Dirichlet data does
ot contribute to the constraint equation; see Remark 3.

.2. The Implicit Value Recovery (IVR) scheme for the coupled FOM-FOM problem

In this section, we briefly review the IVR scheme [4] for the coupled FOM–FOM problem (4). This scheme
olves the linear system

Sλ = G1,D M−1
1,D

[
f 1,D − F1,Du1,D − Q1,Γ ( ġ1, g1)

]
−G2,D M−1

2,D

[
f 2,D − F2,Du2,D − Q2,Γ ( ġ2, g2)

]
+ Qγ,Γ ( ġ1, ġ2),

(5)

here

S = G1,D M−1
1,DGT

1,D + G2,D M−1
2,DGT

2,D (6)

s the dual Schur complement of the matrix on the left hand side of (4). This is used to compute a highly accurate
pproximation of the interface flux4 λ, which then serves as a Neumann boundary condition for the subdomain
quations. As a result, the well-posedness of the IVR scheme hinges on the invertibility of the Schur complement
atrix S. A sufficient condition for (6) to be symmetric and positive definite is that the transpose constraint matrix

as a full column rank. One can show that if the Lagrange multiplier space W h is defined as in Section 3.1, i.e., as
he trace Gh

k of the interface finite element space Sh
k,γ on either of Ω1 or Ω2, the matrix GT

= (G1,D, −G2,D)T

oes indeed have this property.
Assuming a non-singular Schur complement (6), the IVR scheme for (1) comprises the following two steps.

irst, one solves (5) for the Lagrange multiplier λ and eliminates it from (4). This reduces the coupled FOM–FOM
roblem to a coupled system of two ordinary differential equations (ODEs):[

M1,D 0
0 M2,D

] [
u̇1,D

u̇2,D

]
=

[
f 1,D − F1,Du1,D − GT

1,Dλ(u1,D, u2,D; ġ1, ġ2) − Q1,Γ ( ġ1, g1)

f 2,D − F2,Du2,D + GT
2,Dλ(u1,D, u2,D; ġ1, ġ2) − Q2,Γ ( ġ2, g2)

]
. (7)

3 Remark 7 provides some additional information about this choice for the interface inner product.
4 In contrast, “loosely coupled” partitioned schemes use the “raw” solution state from each side of the interface to specify boundary

conditions that close each subdomain equation and make possible its independent solution. Mathematically, such schemes can be viewed
as performing a single step of a non-overlapping alternating Schwarz iterative coupling procedure; see Section 1.1.2. This is also the root
cause for some of the stability and accuracy issues experienced by these methods.
8
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The ODE sub-systems in (7) define the associated subdomain FOMs. It is easy to see that an explicit time
discretization of (7) decouples this problem and allows one to advance the solution to the next time step by solving
the subdomain FOMs independently; see [4]. Thus, the second step of IVR consists of applying explicit time
ntegrators to each subdomain FOM. The subdomain time integrators are not required to be the same and they
an also use different time steps over shared synchronization time intervals.

Because decoupling of (7) is effected solely by explicit time integration, it is not accompanied by any splitting
rrors as is the case with traditional loosely coupled partitioned schemes. In particular, the IVR scheme fully retains
he stability and the accuracy properties of the underlying coupled problem. In fact, one can show that, for some
ettings, the IVR solution is identical to the solution of the coupled problem.

. Projection-based model order reduction (MOR)

In this section, we briefly review the basic concepts of the MOR approach used in this paper to develop the
VR scheme for the partitioned solution of coupled problems involving subdomain-local ROMs coupled to other
ubdomain-local ROMs or to FOMs. We then specialize some aspects of the generic MOR process to the model
ransmission problem that is the focus of this paper.

.1. A generic POD-based MOR workflow

The approach for constructing a projection-based ROM consists of two critical steps: (1) calculation of a reduced
asis (RB), and (2) projection of the governing equations onto the reduced basis. These two steps are described
uccinctly in the following paragraphs.

educed basis construction via the POD. One of the most popular approaches for calculating a reduced basis is
he POD [6,7]. To discuss POD, consider a generic FOM given by

M u̇ = f (u), (8)

here M ∈ Rn×n and u, f ∈ Rn . The FOM (8) can be thought of as resulting from a spatial discretization of some
et of governing PDEs.

To obtain the POD basis, one simulates (8) and collects its solutions um , m = 1, . . . , r into an n × r snapshot
atrix X . Typically, the snapshots um are taken to be the primary solution field at different times and/or different

arameter values. POD works by first computing the singular value decomposition (SVD) X = UΣV T of the
napshot matrix. Then, one chooses a positive integer 0 < d ≤ n that defines the accuracy of the reduced basis.
he value of d is typically selected using a “snapshot energy” criterion, where the “snapshot energy” is defined as

E :=

∑d
i=1 σ 2

i∑n
i=1 σ 2

i
, (9)

ith σi denoting the i th singular value of X . Specifically, let δ be a desired threshold for the retention of the
napshot energy. The integer d is then defined as the smallest integer such that

d∑
i=1

σ 2
i ≥

(
1 − δ

) n∑
i=1

σ 2
i . (10)

Typically, one seeks a reduced basis that captures 95% or 99% of the snapshot energy, i.e., E ≈ 0.95 or E ≈ 0.99.
his corresponds to thresholds δ = 0.05 or δ = 0.01.

Once d is determined according to (10) the n × d POD reduced basis matrix, denoted herein by Φ, is defined
y taking the first d left singular vectors of X , i.e., the first d columns of U . Construction of the POD basis can be
nterpreted as an approximation of the snapshot set X by its truncated SVD: X ≈ X̃ = ΦΣ̃ Ṽ T . In order to achieve
meaningful order reduction of the FOM, d must be much smaller than the dimension n of the FOM. We remark

hat this requires a sharp decay of the singular values, which holds for our model problem but is not true in general
or problems with a slow decay of the so-called Kolmogorov n-width [46]; see, e.g., [47–49].

Once the reduced basis Φ is calculated using the above workflow, the FOM solution u is approximated as a
inear combination of these reduced basis modes and unknown time-dependent modal amplitudes ũ ∈ Rd :

u(t) ≈ ū + Φ ũ(t). (11)
9
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In (11), ū ∈ Rn is a reference state, commonly selected as the initial condition, base flow or snapshot mean. An
important detail in our formulation is that ū can be a function of time, i.e., ū := ū(t). As we show below, ū can
lso be used to enforce time-varying Dirichlet boundary conditions strongly within the POD-based ROM.

alerkin projection. Given a reduced basis Φ, the next step is to project the FOM onto this basis. Here, we restrict
ur discussion to an approach called “discrete Galerkin projection”, where the governing equations in their semi-
iscretized form (8) (i.e., discretized only in space) are projected onto the POD basis in the discrete l2 inner product.
rojecting (8) onto a reduced basis Φ and substituting the modal decomposition (11) yields:

ΦT MΦ ˙̃u = ΦT f (ū + Φ ũ) − ΦT M ˙̄u. (12)

n the present context, the role of the FOM (8) will be played by the coupled FOM–FOM problem (4). Details of
he Galerkin projection for this problem are given in Sections 5 and 6.

emark 5. While we focus our attention on the POD method for reduced basis construction and on the Galerkin
ethod for the projection step, we emphasize that our approach is not limited to these methods and can be

pplied to any reduced order formulation of the coupled FOM–FOM problem that has a provably non-singular
chur complement. We note that, for nonlinear problems, a third step, known as hyper-reduction, is needed to

reat efficiently the projection of the nonlinear terms in the governing equations. A variety of approaches for
yper-reduction exist in the literature, e.g., the Discrete Empirical Method (DEIM) [50], gappy POD [51], or the
nergy Conserving Sampling and Weighting (ECSW) method [52]. The partitioned solver developed herein is easily
xtendable to nonlinear problems, but we omit a detailed discussion of hyper-reduction as our numerical experiments
ocus on linear problems. It is straightforward to see that both the reduced basis construction and Galerkin projection
teps of our model reduction procedure can be precomputed offline, as shown explicitly later, in Sections 5 and 6.

.2. Reduced basis sets for the transmission problem

We now specialize the first step of the generic POD-based MOR workflow in Section 4.1 to obtain the reduced
asis sets that will be used in this work. The second step, i.e., the Galerkin projection onto the reduced basis, will be
iscussed in Sections 5–6. Let X i denote a set of ri snapshots on Ωi , i = 1, 2. The columns of X i are the coefficient
ectors um

i of finite element solutions uh,m
i ∈ Sh

i , m = 1, . . . , ri . Thus, X i is an ni × ri matrix. The columns of
X i can be partitioned as um

i = (um
i,γ , um

i,0, gm
i ), where the coefficient subvectors are defined in Section 3. To handle

the Dirichlet boundary conditions, we adopt an approach similar to the one in [53]. Specifically, we remove the
subvectors gm

i corresponding to the Dirichlet nodes to obtain the ni,D × ri adjusted snapshot matrix X i,D . The mth
column of this matrix is given by the vector (um

i,γ , um
i,0) for um

i,γ ∈ Rni,γ , um
i,0 ∈ Rni,0 ; see Fig. 3. We further split

the adjusted snapshot matrix into an ni,0 × ri submatrix X i,0 containing all interior nodal values of the snapshots
and an ni,γ × ri submatrix X i,γ containing all interface nodal values of the snapshots. Thus, the columns of X i,0

and X i,γ are given by the coefficient vectors um
i,0 and um

i,γ , respectively. Fig. 3 illustrates the construction of these
companion snapshot matrices.

Next, for i = 1, 2, we apply the POD basis construction to X i,D , X i,0 and X i,γ . Specifically, we: (i) compute the
SVDs of these matrices, (ii) choose the integers 0 < di,D ≪ ni,D , 0 < di,0 ≪ ni,0, and 0 < di,γ ≪ ni,γ that define
the percent snapshot energy captured by the reduced basis for each respective set of snapshots, and (iii) form the
ni,D × di,D , ni,0 × di,0, and ni,γ × di,γ reduced bases Φi,D , Φi,0, and Φi,γ , respectively. Because the columns of Φi,D

contain both the interior and interface DoFs on Ωi , in the literature they are usually referred to as the full subdomain
bases [13]. We include these bases because they are ubiquitous in methods that use DD as a vehicle to improve
the efficiency of the MOR workflow; see; e.g., [11–13]. Similarly, we refer to Φi,0 and Φi,γ as the interior and
interface reduced bases, respectively. Once Φi,D , Φi,0, and Φi,γ are obtained, one can approximate the coefficients

f the FOM solution on Ωi , for i = 1, 2, as either

ui (t) ≈
(
Φi,D ũi,D(t), gi (t)

)
or ui (t) ≈

(
Φi,γ ũi,γ (t),Φi,0ũi,0(t), gi (t)

)
, (13)

here ũi,D(t) ∈ Rdi,D , ũi,γ (t) ∈ Rdi,γ , and ũi,0(t) ∈ Rdi,0 are unknown time-dependent modal amplitudes. It
s straightforward to see that both ROM solutions in (13) will satisfy the prescribed boundary conditions by
onstruction. In this context, the reference state in (11) is given by ū (t) = (0, g (t)), with 0 ∈ Rni,D .
i i

10
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Fig. 3. Left to right: the original snapshot matrix X i , the adjusted snapshot matrix X i,D , the interior X i,0 and interface X i,γ snapshot
atrices.

educed bases for the Lagrange multiplier. Because our FOM is given by the coupled problem (4) in which the
nterface conditions are enforced by Lagrange multipliers, its Galerkin projection also requires a suitable reduced
asis for the Lagrange multiplier. Such a basis can be obtained either independently from the RB matrices for the
tates or reusing them in a suitable way. In the first case, one collects rγ snapshots from some generic Lagrange

multiplier space Gh
γ into an nγ × rγ snapshot matrix Xγ and then follows the same procedure as above to obtain

n nγ × dγ reduced basis matrix Φγ . In this paper, we use solely the second approach and define Φγ using either
i,D or Φi,γ . The Lagrange multiplier is then approximated using its reduced basis as

λ(t) ≈ Φγ λ̃(t), (14)

where λ̃(t) ∈ Rdγ is an unknown time-dependent modal amplitude.

Remark 6. Although the construction of the reduced bases is purely algebraic, their columns represent coefficient
vectors of finite element functions in Sh

i , for i = 1, 2, and Gh
γ . Specifically, using the columns of Φi,D , Φi,γ , Φi,0,

nd Φγ as coefficients in an expansion in terms of the nodal basis functions, one obtains functions belonging in
Sh

i,D , Sh
i,γ , Sh

i,0, and Gh
γ , respectively. These finite element functions can be viewed as basis sets spanning reduced

ubspaces (RS) S̃h
i,D , S̃h

i,γ , S̃h
i,0, and G̃h

γ of their respective parent finite element spaces. This functional viewpoint of
he reduced bases will be convenient when analyzing the properties of the partitioned IVR schemes for the coupled
OM–ROM and ROM–FOM formulations. This analysis is deferred until Section 7.

. An IVR scheme for coupled ROM-ROM problems

In this section, we formulate an IVR scheme for the partitioned solution of two ROMs coupled across an interface.
ormally such a scheme can be obtained by projecting the coupled FOM–FOM problem (4) onto reduced subspaces

Ṽ h
⊂ V h and W̃ h

⊂ W h and then using the Schur complement of the resulting coupled ROM–ROM problem to
alculate an accurate approximation of the interface flux.

However, successful execution of this plan requires one to take into consideration the fact that Galerkin projection
f mixed problems does not automatically preserve their stability properties; see, e.g., [54]. In the present context
his means that the Schur complement of the coupled ROM–ROM problem is not guaranteed to be non-singular
ven if the Schur complement of its parent coupled FOM–FOM has this property.

A sufficient condition for (4) to have a non-singular Schur complement was established in [4], and requires every
agrange multiplier to be a trace of a finite element function from one of the two sides of the interface. In Section 7,
e prove that a similar trace compatibility condition ensures that Galerkin projection of (4) also has this property;

ee Remark 8. However, this condition imposes restrictions on the choices of the reduced bases for the subdomain
tates and the Lagrange multiplier. In particular, the trace compatibility condition makes the full subdomain bases

(for i = 1, 2) less than an ideal choice for the extension of the IVR scheme to coupled ROM–ROM problems.
i,D

11
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To explain the issues and motivate our approach, let us examine more closely the Galerkin projection of (4) onto
the full subdomain bases. Such a projection uses the first ansatz in (13) to approximate the subdomain states, i.e.,

ui :=
(
Φi,D ũi,D, gi

)
; i = 1, 2 , (15)

where ũi,D ∈ Rdi,D are time-dependent modal amplitudes (reduced order states). One then has to select a reduced
basis (RB) Φγ for the Lagrange multiplier that is trace-compatible with (15). To construct Φγ note that every column

j
i,D ∈ Rni,D of the full subdomain basis Φi,D can be partitioned as φ

j
i,D = (φ j

i,D,γ , φ
j
i,D,0), where φ

j
i,D,γ ∈ Rni,γ and

φ
j
i,D,0 ∈ Rni,0 are sub-vectors corresponding to interface and interior degrees of freedom, respectively. Let Φi,D,γ

denote the ni,γ × di,D matrix whose j th column is given by φ
j
i,D,γ . It is easy to see that Φγ := Φk,D,γ for k = 1

r k = 2 is a trace-compatible RB for the Lagrange multiplier: every function in the reduced space G̃h
γ spanned by

γ is a trace of a function in the reduced space S̃h
k,D spanned by Φk,D . However, since sub-vectors of a linearly

ndependent set of vectors are not necessarily linearly independent on their own, the reduced order basis Φi,D,γ is
ot guaranteed to have a full column rank.

This is a serious drawback for the development of the IVR scheme as it is easily seen that rank-deficiency
f Φi,D,γ will lead to rank-deficiency of transposed projected constraint matrix G̃T

= (G̃1,D, −G̃2,D)T , thereby
resulting in coupled ROM–ROM problems whose Schur complement is not invertible. Of course, one can prune
the redundant basis functions from Φi,D,γ by computing its SVD and throwing away all left singular vectors
corresponding to zero singular values. Unfortunately, this solution also suffers from some serious flaws. First, the
“pruned” RB for the Lagrange multiplier may fail to satisfy the original “snapshot energy” criterion (10) used to
select the full subdomain basis Φi,D . Second, to preserve trace compatibility one would have to project the interface
states uk,γ using the “pruned” RB, while the interior states uk,0 will have to be projected using the RB Φk,D,0 whose
columns are given by the sub-vectors φ

j
i,D,0. It is clear that Φk,D,0 may suffer from the same issues as Φk,D,γ , that

is, it may be rank-deficient.
Instead of trying to extract a trace-compatible RB for the Lagrange multiplier from the full subdomain basis and

potentially lose its optimality with respect to the snapshot energy criterion, a more robust strategy is to ensure trace
compatibility from the onset by using separate RBs for the interior and interface variables. The following section
describes the construction of a coupled ROM–ROM formulation based on this idea.

5.1. A coupled ROM-ROM based on a composite reduced basis

Our strategy for securing a coupled ROM–ROM problem with a provably non-singular Schur complement has
two key ingredients. The first one is the projection of the state ui,D using pairs (thus the term “composite” RB)
{Φi,γ ,Φi,0}i=1,2 of independently computed interface and interior RBs instead of a single full subdomain RB. The
second ingredient is achieving trace compatibility by selecting one of the two interface RBs as a RB for the Lagrange
multiplier, i.e., we set Φγ = Φk,γ for k = 1 or k = 2. This choice mimics the one in (4) and, as we shall prove
in Section 7, ensures that the Schur complement of the coupled ROM–ROM problem is non-singular. It also has
some similarities with the techniques in [13,55].

To project the coupled FOM–FOM (4) using the composite RB, we apply separate projections to the interior
and to the interface DoFs. Thus, instead of (15), we use the second ansatz in (13) and set

ui =
(
Φi,γ ũi,γ ,Φi,0ũi,0, gi

)
and λ = Φk,γ λ̃. (16)

Here, the time-dependent modal amplitudes ũi,γ ∈ Rdi,γ , ũi,0 ∈ Rdi,0 , and λ̃ ∈ Rdk,γ represent the reduced order
nterface and interior states and the reduced order Lagrange multiplier, respectively. Following Section 4.1, we
nsert (16) into (4) and multiply the blocks corresponding to the interior, interface, and Lagrange multiplier DoFs
y ΦT

i,0, ΦT
i,γ , and ΦT

k,γ respectively. These steps yield the following composite reduced basis coupled ROM–ROM
ormulation:⎡⎢⎢⎢⎢⎢⎣

M̃1,γ γ M̃1,γ 0 0 0 G̃T
1,γ

M̃1,0γ M̃1,00 0 0 0
0 0 M̃2,γ γ M̃2,γ 0 −G̃T

2,γ

0 0 M̃2,0γ M̃2,00 0˜ ˜

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

˙̃u1,γ

˙̃u1,0
˙̃u2,γ

˙̃u2,0˜

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
s̃1,γ

s̃1,0
s̃2,γ

s̃2,0
s̃γ

⎤⎥⎥⎥⎥⎦ . (17)
G1,γ 0 −G2,γ 0 0 λ

12
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The block structure of (16) is induced by the projection onto the composite RB space. Specifically, we have that,
for i = 1, 2,[̃

si,γ

s̃i,0

]
=

[
f̃ i,γ

f̃ i,0

]
−

[
F̃i,γ γ F̃i,γ 0

F̃i,0γ F̃i,00

][
ũi,γ

ũi,0

]
−

[
ΦT

i,γ Qi,γΓ ( ġi , gi )

ΦT
i,0 Qi,0Γ ( ġi , gi )

]
; s̃γ = −ΦT

k,γ Qγ,Γ ( ġ1, ġ2),

nd that, for i ∈ {1, 2} and {p, q} ∈ {γ, 0},

M̃i,pq := ΦT
i,p Mi,pqΦi,q , F̃i,pq := ΦT

i,p Fi,pqΦi,q , G̃ i,γ := ΦT
k,γ G i,γΦi,γ ,

f̃ i,p := ΦT
i,p f i,p, Qi,pΓ ( ġi , gi ) = Mi,pΓ ġi + Fi,pΓ gi .

(18)

or p ∈ {γ, 0}, the matrices Mi,pΓ and Fi,pΓ are the blocks of the “partial” mass and flux matrices corresponding
o the interface and interior variables respectively, i.e.,

Mi,Γ = [Mi,γΓ ; Mi,0Γ ] and Fi,Γ = [Fi,γΓ ; Fi,0Γ ].

.2. An IVR scheme for the coupled ROM-ROM based on a composite reduced basis

In this section, we formulate an IVR scheme for the partitioned solution of the coupled ROM–ROM problem
17). Analysis in Section 7 provides a rigorous mathematical basis for this scheme by showing that the Schur
omplement of (17) is symmetric and positive definite.

Since this IVR scheme is based on a coupled ROM–ROM problem, similar to other ROM methods, it comprises
n offline stage where one computes the reduced basis and projects the FOM and an online stage where one uses
he resulting ROM to simulate the system of interest. Although the offline stage of the IVR ROM–ROM scheme
s very similar to that of any POD-based model order reduction scheme, we include it for completeness of the
resentation.

ffline: Computation of the composite basis ROMs.

1. Snapshot collection. Solve the transmission problem (1) using a suitable full order model to obtain the
subdomain snapshot matrices X i , for i = 1, 2. Form the adjusted snapshot matrices X i,D and extract their
interior X i,0 and interface X i,γ parts.

2. Reduced basis calculation. For i = 1, 2, choose accuracy thresholds δi,0, δi,γ > 0, determine the reduced
bases dimensions di,0 and di,γ as in (10), and calculate the reduced bases Φi,0, Φi,γ following Section 4.2.
Choose k = 1 or k = 2 and set Φγ = Φk,γ .

3. Galerkin projection. For i = 1, 2 and {p, q} ∈ {0, γ }, precompute the ROM matrices:

M̃i,pq := ΦT
i,p Mi,pqΦi,q ∈ Rdi,p×di,q ; F̃i,pq := ΦT

i,p Fi,pqΦi,q ∈ Rdi,p×di,q ; G̃ i := ΦT
k,γ G iΦi,γ ∈ Rdk,γ ×di,γ

Q̃i,pΓ = {ΦT
i,p Mi,pΓ ,ΦT

i,p Fi,pΓ }, and Q̃γ,Γ = {ΦT
k,γ G1,Γ , −ΦT

k,γ G2,Γ }
.

nline: Partitioned solution of the coupled ROM-ROM system (17).

1. Given a simulation time interval [0, T ] choose explicit time integration schemes Dn
i,t (̃u) on Ωi , i = 1, 2.

2. For i = 1, 2, p ∈ {0, γ } and n = 0, 1, . . ., compute the right-hand side vectors f̃ n
i,p := ΦT

i,p f n
i,p,[̃

sn
i,γ

s̃n
i,0

]
=

[
f̃ n

i,γ

f̃ n
i,0

]
−

[
F̃i,γ γ F̃i,γ 0

F̃i,0γ F̃i,00

][
ũn

i,γ
ũn

i,0

]
−

[
Q̃i,γΓ ( ġn

i , gn
i )

Q̃i,0Γ ( ġn
i , gn

i )

]
, and s̃n

γ = −Q̃γ,Γ ( ġn
1, ġn

2),

where ġn
i is approximation of the time derivative of the boundary data at the current time step.

3. For i = 1, 2, let M̃i , G̃ i , s̃n
i and ũn

i denote the 2 × 2, and 2 × 1 block matrices and vectors in (17). Solve
the Schur complement system for λ̃

n:(
G̃1 M̃−1

1 G̃T
1 + G̃2 M̃−1

2 G̃T
2

)̃
λ

n
= G̃1 M̃−1

1 s̃n
1 − G̃2 M̃−1

2 s̃n
2 − s̃n

γ . (19)

4. For i = 1, 2, solve the subdomain ROM problems[
M̃i,γ γ M̃i,γ 0

M̃i,0γ M̃i,00

]
Dn

i,t

([
ũn+1

i,γ

ũn+1
i,0

])
=

[̃
sn

i,γ + (−1)i G̃T
i λ̃

n

s̃n
i,0

]
˜n+1
for the ROM solution ui at the new time step.

13
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5. For i = 1, 2, project the ROM solutions to the state spaces of the FOMs on Ωi :

un+1
i =

(
Φi,γ ũn+1

i,γ ,Φi,0ũn+1
i,0 , gn+1

i

)
.

. An IVR scheme for coupled ROM-FOM problems

This section extends the IVR scheme to the case of a ROM coupled with a FOM. Such a formulation is
elevant to multiple simulation scenarios for the model transmission problem (1). One such scenario is when one
f the subdomains is much larger than the other and its FOM dominates the computational cost. To balance the
omputational costs across the subdomains, one can replace the FOM on the large domain with a computationally
fficient ROM, while retaining the FOM on the small subdomain. A second possible scenario is when the governing
quations are parameterized on just one of the subdomains and simulation of the other subdomain requires a scheme
hat can handle all admissible inputs. In this case, a ROM would be only appropriate for the domain with the
arameterized equations, while on the other subdomain one would still have to use a FOM. A related scenario is
he case where a coupled ROM–FOM model has the potential of having better predictive accuracy than a model
ased solely on ROMs [9,12,18,56,57]. One example of this scenario would be a version of our model transmission
roblem (1) in which the diffusion coefficient on one of the subdomains is allowed to be identically zero. In this
ase, the governing equation on that subdomain reduces to a pure advection problem for which POD-based MOR
s not effective; see Section 4.

.1. A coupled ROM-FOM based on a composite reduced basis

As in the coupled ROM–ROM case, to develop an IVR scheme for the partitioned solution of coupled ROM–
OM problems, we first formulate a coupled ROM–FOM problem that is guaranteed to have a symmetric and
ositive definite Schur complement. To obtain this problem, assume that the FOM should be retained on Ω2 while
imulation on Ω1 can be performed by a ROM. To define the corresponding coupled ROM–FOM, we start from
he coupled FOM–FOM (4), retain the FOM on Ω2, and project the state on Ω1 Φ1,C := {Φ1,γ ,Φ1,0} using the
omposite RB ansatz

u1 =
(
Φ1,γ ũ1,γ ,Φ1,0ũ1,0, g1

)
. (20)

o complete the coupled ROM–FOM problem, one has to choose a trace-compatible representation for the Lagrange
ultiplier. In the present setting there are two possible options that satisfy this condition: the interface RB Φ1,γ

rom the ROM side of the interface (option “rLM”) or the interface finite element space Gh
2 from the FOM side

f the interface (option “fLM”). In the first case λ = Φ1,γ λ̃ and in the second case λ is the coefficient vector of a
unction λh

∈ Gh
2 . Analysis in Section 7 will confirm that either one of these two options leads to coupled problems

ith non-singular Schur complements.
With these choices, we have the following composite RB coupled ROM–FOM formulation:⎡⎢⎢⎢⎢⎢⎣

M̃1,γ γ M̃1,γ 0 0 0 ĜT
1,γ

M̃1,0γ M̃1,00 0 0 0
0 0 M2,γ γ M2,γ 0 −ĜT

2,γ

0 0 M2,0γ M2,00 0

Ĝ1,γ 0 −Ĝ2,γ 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

˙̃u1,γ

˙̃u1,0
u̇2,γ

u̇2,0

λ̂

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
s̃1,γ

s̃1,0
s2,γ

s2,0
ŝγ

⎤⎥⎥⎥⎥⎦ , (21)

here the blocks with the “tilde” accent are defined as in the coupled ROM–ROM (16), the blocks without accents
re defined as in the coupled FOM–FOM (4), and

λ̂ =

{
λ̃, for option rLM
λ, for option fLM

; ŝγ =

{
−ΦT

1,γ Qγ,Γ ( ġ1, ġ2), for option rLM
−Qγ,Γ ( ġ1, ġ2), for option fLM

;

Ĝ1,γ =

{
ΦT

1,γ G1,γΦ1,γ , for option rLM
G1,γΦ1,γ , for option fLM

; Ĝ2,γ =

{
ΦT

1,γ G2,γ , for option rLM
G2,γ , for option fLM

.

(22)

n the next section, we present the IVR scheme for the partitioned solution of (21).
14
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6.2. An IVR scheme for the coupled ROM-FOM based on a composite reduced basis

Since the coupled ROM–FOM problem has a ROM component, the IVR scheme for (21) necessarily involves
n offline stage where one computes the reduced basis and projects the FOM on Ω1 and an online stage where one

uses the coupled problem to simulate the model transmission problem. Although these stages are very similar to
those outlined in Section 5.2, we include an abridged version for the convenience of the reader. To reduce notational
clutter in some cases we switch to the more compact notation M2,D , s2,D , and f 2,D for the matrix and vector blocks
of the FOM problem.

Offline: Computation of the composite basis ROM for Ω1.

1. Snapshot collection. Solve the transmission problem (1) using a suitable full order model to obtain the
snapshot matrix X1, form X1,D and extract X1,γ and X1,0.

2. Reduced basis calculation. Choose accuracy thresholds δ1,0, δ1,γ > 0, determine the reduced bases
dimensions d1,0 and d1γ , and calculate the reduced bases Φ1,0, Φ1,γ . Select an option (rLM or fLM) for
the Lagrange multiplier.

3. Galerkin projection. For {p, q} ∈ {0, γ }, precompute the ROM matrices M̃1,pq , F̃1,pq , Q̃1,pΓ . Precompute
Ĝ i,γ as defined in (22) and

Q̂γ,Γ :=

{
{ΦT

1,γ G1,Γ , −ΦT
1,γ G2,Γ }, for option rLM

{G1,Γ , −G2,Γ }, for option fLM
.

nline: Partitioned solution of the composite basis coupled ROM-FOM system.

1. Given a simulation time interval [0, T ] choose explicit time integration schemes Dn
i,t (̃u) on Ωi , i = 1, 2.

2. For p ∈ {0, γ } and n = 0, 1, . . ., compute the ROM vectors f̃ n
1,p := ΦT

1,p f n
1,p, s̃n

1,γ , s̃n
1,0 as in Section 5.2.

Compute the FOM vectors f n
2,D , sn

2,D , and the right-hand side for the constraint equation:

ŝn
γ = −Q̂γ,Γ ( ġn

1, ġn
2).

3. Solve the Schur complement system for λ̂
n:(

Ĝ1 M̃−1
1 ĜT

1 + Ĝ2 M−1
2,DĜT

2

)̂
λ

n
= Ĝ1 M̃−1

1 s̃n
1 − Ĝ2 M−1

2,D sn
2 − ŝn

γ . (23)

4. Solve the subdomain ROM problem[
M̃1,γ γ M̃1,γ 0

M̃1,0γ M̃1,00

]
Dn

1,t

([
ũn+1

1,γ

ũn+1
1,0

])
=

[̃
sn

1,γ − ĜT
1 λ̂

n

s̃n
i,0

]
,

to obtain the ROM solution ũn+1
1 at the new time step. Solve the subdomain FOM problem[

M2,γ γ M2,γ 0
M2,0γ M2,00

]
Dn

2,t

([
un+1

2,γ

un+1
2,0

])
=

[
sn

2,γ + ĜT
2 λ̂

n

sn
2,0

]
,

to obtain the FOM solution un+1
2 at the new time step.

5. Project the ROM solution to the state space of the FOM on Ω1:

un+1
1 =

(
Φ1,γ ũn+1

1,γ ,Φ1,0ũn+1
1,0 , gn+1

1

)
.

In the next section, we show that both the coupled ROM–ROM and ROM–FOM have provably non-singular
chur complements, thereby providing appropriate settings for an application of the IVR scheme.

. Analysis

We will first consider the coupled ROM–ROM formulation (17) and use variational techniques to prove that it
as a symmetric and positive definite Schur complement. We will then specialize this analysis to the case of the
oupled ROM–FOM problem.
15
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7.1. Composite reduced basis coupled ROM-ROM

Successful completion of the online stage of the IVR scheme for (17) hinges on the unique solvability of the
chur complement system (19) in Step 3. We will show that this system is uniquely solvable by proving that the
chur complement matrix

S̃ := G̃1 M̃−1
1 G̃T

1 + G̃2 M̃−1
2 G̃T

2 (24)

is symmetric and positive definite (SPD). It is well-known that this property requires the projected mass matrices
M̃i , for i = 1, 2, to be symmetric and positive definite and the matrix G̃T

= (G̃1, −G̃2)T to have full column rank.
While it is possible to develop purely algebraic proofs of the required properties, here we adopt a variational

approach that exploits connections between the matrix defining the left hand side of the coupled ROM–ROM
problem and mixed variational forms. In so doing, we illuminate how properties of the variational formulation
underlying (17) translate into properties of its algebraic equivalent. This approach can also expose potential
dependencies of these properties on the dimension of the reduced basis and/or the mesh parameter. The latter
is not easily achievable through strictly algebraic means.

Let V h
D = Sh

1,D × Sh
2,D and W h

= Gh
k . We introduce the auxiliary mixed variational form B : (V h

D × W h)× (V h
D ×

W h) ↦→ R as

B(uh
1,D, uh

2,D, µh
; vh

1,D, vh
2,D; λh) := a(uh

1,D, uh
2,D; vh

1,D, vh
2,D) + b(vh

1,D, vh
2,D; λh) + b(uh

1,D, uh
2,D; µh) (25)

here a : V h
D × V h

D ↦→ R and b : V h
D × W h

↦→ R are defined as

a(uh
1,D, uh

2,D; vh
1,D, vh

2,D) =
(
uh

1,D, vh
1,D

)
0,Ω1

+
(
uh

2,D, vh
2,D

)
0,Ω2

and b(vh
1,D, vh

2,D; λh) =
(
vh

1,D − vh
2,D, λh)

0,γ
,

espectively. We call the bilinear form (25) “auxiliary” because it is not the form that corresponds to the weak
oupled problem (3); rather, it is the form that generates the matrix operators on the left-hand side of the coupled
OM–FOM problem (4).

To prove that the Schur complement (24) is SPD, we will apply Brezzi’s mixed variational theory [43] to (25)
o show that the projected mass matrices are SPD and that the transpose constraint matrix has full column rank.
pplication of this mixed theory requires a proper functional setting for (25), specifically the endowment of V h

D
nd W h with suitable norms. We define these norms as

∥{vh
1,D, vh

2,D}∥
2
V := ∥vh

1,D∥
2
0,Ω1

+ ∥vh
2,D∥

2
0,Ω2

and ∥λh
∥W := ∥λh∥0,γ , (26)

espectively.

emark 7. Although the IVR scheme bears resemblance with DD methods based on Lagrange multipliers such as
ETI [58,59] and mortar methods [45], the variational setting for its analysis provided by (25) and (26) is different
rom that required for the analysis of these DD schemes. This difference stems from the fact that analysis of IVR
elies on the auxiliary form (25), which does not include any contributions from the flux terms, whereas analysis of
D methods involves the “true” mixed form corresponding to (3), which includes such terms. A proper functional

etting for the latter requires a broken H 1 norm on V h
D , instead of the broken L2 norm (26) used here, and a discrete

pproximation of the trace norm on H−1/2(γ ). The use of the auxiliary form (25) relaxes the requirements on the
unctional setting for the application of the mixed theory and allows us to use a weaker norm on V h

D and a very
crude” approximation of the trace norm by an L2 norm on γ . We refer to [60,61] for further details about the
nalysis of DD methods.

To apply the mixed theory to (17), we need to further adjust the variational setting so that the auxiliary form (25)
roduces the left-hand side of the coupled ROM–ROM problem. For i = 1, 2, let S̃h

i,γ , S̃h
i,0, and G̃h

k be the reduced
ubspaces of Sh

i,γ , Sh
i,0, and Gh

k , induced by the columns of the composite RBs Φi,γ , Φi,0, and Φk,γ , respectively;
ee Section 4. We define the reduced subspaces Ṽ h

C ⊂ V h
D and W̃ h

⊂ W h as

Ṽ h
C = S̃h

1,C × S̃h
2,C and W̃ h

= G̃h
k , (27)

espectively, where5 S̃h
i,C := S̃h

i,γ ⊕ S̃h
i,0.

5 Note that we have deviated from our usual naming convention and have labeled the subspace of Sh
i,D engendered by the composite

basis as S̃h
i,C . This is done in order to avoid confusion with the reduced subspace S̃h

i,D , which corresponds to the full subdomain RB matrix
Φ .
i,D

16
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It is straightforward to check that restriction of the auxiliary form (25) to the reduced subspaces (27) generates
he matrix on the left-hand side of the coupled ROM–ROM problem (17). For example, consider a finite element
unction uh

i,C ∈ S̃h
i,C with coefficient vector ui,C = (ui,γ , ui,0), where

ui,γ = Φi,γ ũi,γ and ui,0 = Φi,0ũi,0, (28)

or some modal amplitudes ũi,γ and ũi,0. Let now {uh
1,C , uh

2,C}, {vh
1,C , vh

2,C} ∈ Ṽ h
C . Using (28) it easily follows that

a(uh
1,C , uh

2,C ; vh
1,C , vh

2,C ) =

2∑
i=1

[̃
uT

i,γ ũT
i,0
] [M̃i,γ γ M̃i,γ 0

M̃i,0γ M̃i,00

] [
ũi,γ

ũi,0

]
. (29)

Application of the Brezzi theory requires verification of two separate conditions on a(·, ·) and b(·, ·). Specialized
o the functional setting for (17) constructed earlier, these conditions are as follows.

oercivity on the kernel. The form a(·, ·) is coercive on the nullspace Z̃ h
C ⊂ Ṽ h

C of b(·, ·) defined as

Z̃ h
C =

{
{vh

1,C , vh
2,C} ∈ Ṽ h

C

⏐⏐b(vh
1,C , vh

2,C ; µh) = 0 ∀µh
∈ W̃ h} .

nf-sup condition. For any µh
∈ W̃ h the form b(·, ·) satisfies the inequality

sup
{vh

1,C ,vh
2,C }∈Ṽ h

C ×Ṽ h
C

b(vh
1,C , vh

2,C ; µh)

∥{vh
1,C , vh

2,C}∥V
≥ β∥µh

∥W , (30)

ith a mesh-independent constant β.
The proof of the first Brezzi condition is trivial as it is easy to see that a(·, ·) is coercive on all of V h

D ×V h
D . Since

trong coercivity is inherited on subspaces, it follows that a(·, ·) is coercive on Ṽ h
C × Ṽ h

C and its subspace Z̃ h
C × Z̃ h

C .
sing (29), it easily follows that the algebraic translation of this property amounts to the statement that the projected
ass matrices are SPD, which verifies the first condition necessary to establish that the Schur complement (24) is
PD.

It is well-known that the second condition, i.e., the requirement that G̃T has full column rank, is a consequence
f b(·, ·) satisfying the inf-sup condition; see, e.g., [62, p.38, Proposition 3.1] for a discussion of the relationships
etween algebraic and variational properties of discrete mixed problems. To prove the inf-sup condition, we will
eed the following auxiliary result.

emma 1. Let hk denote the characteristic element size of the interface mesh defining the Lagrange multiplier
pace Gh

k . There exists an operator Q : W̃ h
↦→ Ṽ h

C such that for every µh
∈ W̃ h there holds

(a) ∥µh
∥

2
W ≤ C1b(Q(µh); µh) and (b) ∥Q(µh)∥V ≤ C2hα

k ∥µh
∥W , (31)

here α ≥ 0 and C1, C2 are positive constants independent of this element size.

roof. Let k = 1 or k = 2 be the index used to define the reduced basis for the Lagrange multiplier space.
ccording to (28), the coefficient vector of a function uh

k,C ∈ S̃h
k,C is given by uk,C = (Φk,γ ũk,γ ,Φk,0ũk,0), where

uk,γ ∈ Rdk,γ and ũk,0 ∈ Rdk,0 are the associated interface and interior modal amplitudes. Let µh
∈ W̃ h be an

rbitrary function in the reduced Lagrange multiplier space. The coefficient vector of this function is given by the
nsatz in (16), i.e., µ = Φk,γ µ̃, with a modal amplitude µ̃ ∈ Rdk,γ . It follows that the coefficient vector

uµ

k,C = (µ, 0) = (Φk,γ µ̃, 0); 0 ∈ Rnk,0 (32)

efines a lifting uh,µ

k,C ∈ S̃h
k,C of µh such that

uh,µ

k,C

⏐⏐
γ

= µh .

e define the operator Q = {Q1,Q2} using this lifting as

Q(µh) =

{
{uh,µ

1,C , 0} ∈ Ṽ h
C if k = 1

−{0, uh,µ

2,C} ∈ Ṽ h
C if k = 2 .

(33)

ith this definition the first assertion in (31) holds trivially with C1 = 1:

b(Q(µh); µh) =
(
Q (µh) − Q (µh), µh)

=
(
µh, µh)

= ∥µh
∥

2 .
1 2 0,γ 0,γ W

17
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To prove the second assertion in (31), we start by noting that

∥Q(µh)∥2
V = ∥Q1(µh)∥2

0,Ω1
+ ∥Q2(µh)∥2

0,Ω2
= ∥uh,µ

k,C∥
2
0,Ωk

. (34)

Next, we recall the equivalence relation [63, p.386, Lemma 9.7]

Cνhν
|v|

2
≤ ∥vh

∥
2
0,ω ≤ Cνhν

|v|
2 (35)

hat holds for any nodal finite element function vh defined on a quasi-uniform finite element partition of a bounded
egion ω ⊂ Rν and its coefficient vector v ∈ Rn . Application of the upper bound in (35) to the lifting uh,µ

k,C , together
with the definition (32) of its coefficient vector, yields

∥uh,µ

k,C∥
2
0,Ωk

≤ Cνhν
k |u

µ

k,C |
2

= Cνhν
k |µ|

2.

ince µ is also the coefficient of the Lagrange multiplier µh , application of the lower bound in (35) with ν − 1
ives the inequality

|µ|
2

≤
1

Cν−1h(ν−1)
k

∥µh
∥

2
W .

In conjunction with (34), these two inequalities combine to produce the bound

∥Q(µh)∥2
V ≤

Cν

Cν−1
hk∥µ

h
∥

2
W .

Therefore, the second assertion of the lemma holds with C2 = Cν/Cν−1 and α = 1/2. □

Having established the existence of the operator Q, the proof of the inf-sup condition is straightforward. The
ollowing lemma provides the formal argument.

emma 2. Assume that hk < 1. Then, the bilinear form b(·, ·) satisfies the inf-sup condition (30).

roof. Let µh
∈ W̃ h be an arbitrary reduced space function. Using the assumption on the mesh size and the

roperties (31) of the operator Q, we find that

sup
{vh

1,C ,vh
2,C }∈Ṽ h

C ×Ṽ h
C

b(vh
1,C , vh

2,C ; µh)

∥{vh
1,C , vh

2,C}∥V
≥

b(Q(µh), µh)
∥Q(µh)∥V

(31)(a)
=

∥µh
∥

2
W

∥Q(µh)∥V

(31)(b)
≥

Cν−1

Cν

h−1/2
k ∥µh

∥W ≥ β∥µh
∥W ,

ith β = Cν−1/Cν . □

Remark 8. The proofs of Lemmas 1 and 2 highlight the key role played by the trace-compatibility condition for
our analysis. Specifically, this condition guarantees the existence of a lifting (32) of the Lagrange multiplier into the
composite RB space, which is needed for the construction of the operator Q. This operator is essential for showing
that (30) holds.

This completes the verification of the assumptions necessary to assert that the Schur complement (24) is SPD.
Therefore, we can conclude that the IVR formulation for the composite coupled ROM–ROM problem is well-posed.

7.2. Composite reduced basis coupled ROM-FOM

Let us now specialize the results of Section 7.2 to the case of the coupled ROM–FOM formulation (21) (note
that the FOM–ROM case, where a FOM is used in Ω1 and a ROM is used in Ω2, is analogous). To prove that the
Schur complement

Ŝ := Ĝ1 M̃−1
1 ĜT

1 + Ĝ2 M−1
2,DĜT

2 (36)

is symmetric and positive definite, we will use the same variational approach based on showing that the auxiliary
mixed variational form (25) satisfies the conditions of Brezzi’s theory. To that end, we specialize the functional
setting from Section 7.1 to the present case as follows.
18
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First, we shall retain the norms (26) for the full order state space V h
D and the Lagrange multiplier space W h .

ext, we define the hybrid state space Ṽ h
H ⊂ V h

D as

Ṽ h
H = S̃h

1,C × Sh
2,D,

here S̃h
1,C = S̃h

1,γ ⊕ S̃h
1,0 is the composite RB space on Ω1. Finally, we set

Ŵ h
=

{
G̃h

1,γ , for option rLM

Gh
2, for option fLM

.

s in the case of (17), it is straightforward to show that restriction of the auxiliary form (25) to Ṽ h
H and Ŵ h produces

he matrix on the left-hand side of (21). Likewise, since Ṽ h
H is a subspace of V h

D , the first Brezzi condition is trivially
atisfied.

Specialized to (21), the second (inf-sup) condition now reads: for any µ̂h
∈ Ŵ h the form b(·, ·) satisfies the

nequality

sup
{vh

1,H ,vh
2,H }∈Ṽ h

H ×Ṽ h
H

b(vh
1,H , vh

2,H ; µh)

∥{vh
1,H , vh

2,H }∥V
≥ β∥µ̂h

∥W , (37)

ith a mesh-independent constant β. Again, as in the case of (17), the proof of (37) requires an operator
: Ŵ h

↦→ Ṽ h
H such that for every µ̂h

∈ Ŵ h there holds

(a) ∥µ̂h
∥

2
W ≤ C1b(Q(µ̂h); µ̂h) and (b) ∥Q(µ̂h)∥V ≤ C2ĥα

γ ∥µ̂h
∥W , (38)

here ĥγ = h1,γ for option rLM, ĥγ = h2,γ for option fLM, α ≥ 0, and C1, C2 are positive constants independent
f ĥγ .

Since both options for the Lagrange multiplier space are trace-compatible, the operator Q for the coupled
OM–FOM case can be easily defined by a minor modification of (33) to account for the particular option used.
pecifically, we set

Q(µh) =

{
{uh,µ

1,C , 0} ∈ Ṽ h
C for option rLM

−{0, uh,µ

2,D} ∈ Ṽ h
C for option fLM .

(39)

here uh,µ

1,C is the lifting of µ̂h defined in Lemma 1 and uh,µ

2,D is the lifting of µ̂h into the finite element space Sh
2,D

efined by the coefficient vector uµ

2,D = (µ̂, 0). It is straightforward to verify that the operator (39) satisfies the
nequalities in (38). Then, using the same arguments as in the proof of Lemma 2, one can show that (37) holds with
he same constant β as in that lemma. This establishes all conditions necessary for the Schur complement (36) to
e SPD.

A few comments about these results are now in order. As we have mentioned earlier, it is possible to prove the
ull column rank property of the transpose constraint matrices in the coupled ROM–ROM and ROM–FOM problems
irectly using purely algebraic tools. However, this approach fails to account for the fact that we are dealing with
atrices obtained through a discretization process followed by a Galerkin projection. Such matrices carry an implicit

ependence on the discretization mesh parameter and the size of the RBs employed in the projection. As a result,
he condition numbers and the ranks of the matrices in the coupled FOM–FOM, ROM–ROM, and ROM–FOM
roblems also depend on these parameters. An algebraic approach treats these matrices as having a given fixed
imension and generally cannot reveal the dependence of condition numbers and ranks on the mesh size and the
B dimension.

In contrast, the inf-sup condition not only establishes that these transpose constraint matrices have full column
anks, but it also provides a lower bound on their smallest singular values; see, e.g., [64]. In particular, by showing
hat the inf-sup conditions (30) and (37) hold with mesh and RB-independent lower bounds, we effectively prove
hat the smallest singular values of the associated constraint matrices are bounded away from zero independently of
he mesh size and/or the dimensions of the reduced bases. To put it differently, by adopting a variational approach
e are able to show that the transpose constraint matrices cannot become computationally rank-deficient both when
ne varies the mesh size of the coupled FOM–FOM and when one varies the dimension of the composite RB. This

roperty is highly non-trivial to establish using algebraic approaches.
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Fig. 4. Initial conditions, domain partitioning, and mesh for the model 2D transmission problem.

. Numerical results

The objectives of this section are two-fold. First, we aim to confirm numerically the theoretical analysis in
ection 7, specifically the fact that projection of the coupled FOM–FOM (4) onto the composite RB spaces, using
trace-compatible Lagrange multiplier space, leads to coupled ROM–ROM (17) and ROM–FOM (21) problems
ith non-singular Schur complements, independently of the RB size. Our second goal is to demonstrate numerically

he accuracy of the partitioned schemes in the two distinct simulation settings outlined in Section 1. We recall that
he first one is characterized by a continuous diffusion coefficient, i.e., we consider (1) with κ1 = κ2. Keeping

in mind the distinctions with the use of this term in the ROM literature highlighted in Section 1.2, we shall
refer to this case as the “domain decomposition” (DD) setting. We also recall that the second setting represents
a bona fide transmission problem (TP) characterized by a discontinuous diffusion coefficient. Section 8.1 presents
reproductive and predictive results for the DD setting, while Section 8.2 provides predictive tests in the TP setting.
Since reproductive tests for the latter largely mirror the results for former, Section 8.2 includes only predictive TP
tests.

Following our previous work [3], we use the solid body rotation test from [65], specialized to (1). The
computational domain for this test is the unit square Ω := (0, 1) × (0, 1), the initial condition comprises a cone, a
cylinder, and a smooth hump (Fig. 4(a)), and the advection field is defined as a := (0.5 − y, x − 0.5). We split Ω
nto subdomains Ω1 := (0, 0.5) × (0, 1) and Ω2 := (0.5, 1) × (0, 1), impose homogeneous Dirichlet boundaries on
ll non-interface boundaries Γi , for i = 1, 2, and set the final time to be T f := 2π , representing one full rotation.

In all examples we use a uniform partition of Ω into 64 × 64 square elements yielding 4225 nodes in Ω and
145 nodes in Ωi for i = 1, 2, as seen in Fig. 4(b). It is easy to see that γ h

1 = γ h
2 , i.e., the interface finite

lement partitions induced by the subdomain meshes are identical. This setting eliminates error pollution due to
on-matching interface grids from the numerical results and allows us to examine the “pure” properties of the
artitioned schemes. In particular, in this setting, the IVR solution of the coupled FOM–FOM problem (4) obtained
y solving the subdomain equations in (7) coincides, to machine precision, with a single domain solution obtained
y treating (1) as a single PDE with a discontinuous coefficient; see [4]. Finally, we note that all results in this
ection were obtained by using the forward Euler method as the time discretization scheme.

.1. Domain decomposition setting

The model problem is parameterized with respect to the diffusion coefficient κi , which for the domain
ecomposition case is the same on both subdomains, i.e., κ1 = κ2 := κ . We perform the reproductive tests using

a RB obtained from solution snapshots corresponding to κ = 10−5. For the predictive tests, we define the reduced
bases from snapshots computed with κ = 10−2 and κ = 10−8, and then simulate the model problem with κ = 10−5.
20
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Fig. 5. Snapshot energy (9) as a function of interior Φi,0 and interface Φi,γ basis sizes in the reproductive regime.

To obtain the subdomain solution snapshots, we restrict a single domain finite element solution of (1) to Ω1 and
Ω2, respectively. The single domain solution is computed using the time step ∆ts = 9.156×10−4 for κ = 10−2, and
∆ts = 1.684 × 10−3 for κ = 10−5 and 10−8. These time steps are determined from the Courant–Friedrichs–Lewy
(CFL) condition. Since both the reproductive and the predictive tests are performed for κ = 10−5, the partitioned
solution scheme employed for all coupled formulations uses the time step ∆t = 1.684 × 10−3. To demonstrate
he importance of the composite RB and trace-compatible Lagrange multipliers for the properties of the Schur
omplement, we present results for the partitioned solution of the coupled ROM–ROM and FOM–ROM problems,
mplemented with the composite RB and with alternative choices for the Lagrange multiplier (LM) space. We use
s a benchmark the single domain solution introduced earlier. For the coupling of a ROM to a FOM we choose
o implement the FOM on Ω1 and the ROM on Ω2, but note that similar performance is achieved if this choice
ere reversed. Still, in what follows, for consistency, we label this formulation as FOM–ROM. To summarize, we
erform tests using the following schemes:

• RR-rLM: partitioned solution of the coupled ROM–ROM problem (17).
• FR-fLM: partitioned solution of the coupled FOM–ROM (21) with the (full) LM space Gh

1 .
• FR-rLM: partitioned solution of the coupled FOM–ROM (21) with the (reduced) LM space Φ2,γ .
• FF-fLM partitioned solution of the coupled FOM–FOM (4).

he partitioned schemes above are supported by rigorous theory that asserts the existence of well-posed Schur
omplements for the associated coupled problems, i.e., Schur complements that are provably non-singular and have
ounded condition numbers. As an example of a formulation that is not supported by such a theory, we consider

• RR-fLM: partitioned solution of the coupled ROM–ROM problem (17) with the (full) LM space Gh
1 .

8.1.1. Reproductive results
First, we present the results for the reproductive case. With the snapshot time step set to ∆ts = 1.684 × 10−3,

3732 snapshots are collected. A prerequisite for an effective ROM is the rapid decay of the singular values. We
first confirm that this is indeed the case and that most of the energy, defined in (9), is contained within a much
smaller subset of the snapshots. The plots in Fig. 5 show the energy retained in the interior Φi,0 and interface Φi,γ

RB sets as a function of their respective sizes, di,0 and di,γ . The plot reveals that just d1,0 = 24, d2,0 = 21 and
di,γ = 6 interior and interface modes, respectively, are sufficient to capture 99% of the energy in X i,0 and X i,γ .
Setting d1,0 = 57, d2,0 = 50, and di,γ = 18 captures 99.999% of the snapshot energies. In what follows, we denote
the size of the composite RB Φi,C = {Φi,γ ,Φi,0}i=1,2 as di,C = di,0 + di,γ .

To assess the accuracy of the partitioned solutions of the coupled ROM–ROM and FOM–ROM problems, we
report their relative errors with respect to the single domain solution of the model problem with the same diffusion
21
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Fig. 6. Relative error (40) at the final time T f = 2π of the partitioned solution for each coupled formulation as a function of the composite
reduced basis size di,C = di,0 + di,γ in the reproductive regime.

coefficient as used for the reproductive tests, i.e., κ = 10−5. We define these errors as

ϵ(t) :=
∥{ut

1,P , ut
2,P} − {ut

1,S, ut
2,S}∥V

∥{ut
1,S, ut

2,S}∥V
, (40)

here ∥ · ∥V is the norm defined in (26), {ut
1,S, ut

2,S} is the single domain solution of the model problem, and
ut

1,P , ut
2,P} denotes a partitioned solution of the coupled ROM–ROM, FOM–ROM or FOM–FOM problems, at a

hosen time t ∈ [0, 2π ].
When using the composite RB, one can set the dimensions di,0 and di,γ for the interior and interface bases

independently. Here, we choose di,γ to be two-fifths of the total composite basis size di,C , i.e., we set

di,γ =
2
5

(
di,γ + di,0

)
H⇒ di,γ =

2
3

di,0. (41)

ote that the dimension of the reduced Lagrange multiplier space in the coupled ROM–ROM (17) is given by either
1,γ or d2,γ .

When setting di,γ , one also has to account for the fact that the total number of modes dmax
i,γ available for the

onstruction of the interface RB Φi,γ is, in general, smaller than the number dmax
i,0 available for the construction

of Φi,0. As a result, direct application of (41) may yield values for di,γ that exceed the number dmax
i,γ of interface

modes available. To avoid this, we further refine the choice of the interface dimension according to

di,γ = min
{2

3
di,0, dmax

i,γ

}
.

In all our simulations dmax
i,γ = 63.

We first examine the behavior of the relative error (40) when our partitioned schemes are applied to coupled
formulations with provably well-posed Schur complements. Fig. 6 plots ϵ(T f ), i.e., the relative error at the final
ime, as a function of the composite RB size di,C . The plots in this figure show that as the total size of the composite
B di,C is increased, the error at the final time in the partitioned solutions of the coupled ROM–ROM and FOM–
OM problems approaches that of the partitioned solution of the coupled FOM–FOM problem, as expected for a

eproductive test. At the same time, we observe that, while ϵ(T f ) for the coupled FOM–ROM problem with the
educed space Lagrange multiplier is essentially the same as for the other formulations when di,C is large enough,

it is significantly higher for small RB sizes.
To examine this issue further we plot the relative error as a function of time for “small” (di,C ≤ 100, Fig. 7(a,b)),

“medium” (150 ≤ di,C ≤ 300, Fig. 7(c,d)), and “large” (di,C = 2016, Fig. 7(e)) composite RB sizes. Note
that the “large” RB has the same number of modes as the FOM. For comparison, in Fig. 7(f) we plot ϵ(t) for
22
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Fig. 7. Relative error (40) of the partitioned solution for select RB sizes as a function of time in the reproductive regime.

three instances of a single domain ROM. The three instances have approximately the same total number of modes,
i.e., d1,0 + d2,0 + di,γ , as the “small”, “medium” and “large” RBs in Fig. 7(b), (d), and (e), respectively.

The plots in Fig. 7 clearly show that for “medium” and “large” RB sizes ϵ(t) for all coupled formulations is
table and roughly comparable to that of the single domain ROM. However, the behavior of ϵ(t) for the FR-rLM
ormulation deviates significantly from that of the other formulations when the RB size is small. The plots in
ig. 7(a,b) show that, up to t ≈ 2, the relative errors of all formulations have roughly the same magnitude. However,
s time integration continues past this time, ϵ(t) for the FR-rLM formulation begins to grow, while the relative error
f all other formulations remains about the same. Therefore, the large size of ϵ(T f ) for this formulation is caused

by the accumulation of errors during the explicit time stepping.
Although a rigorous analysis of the source of these errors is beyond the scope of this paper, below we offer

some insights into the probable cause for the growth of ϵ(t) for the FR-rLM formulation with a “small” RB size.
efore we provide the details, let us remark that the behavior of ϵ(t) in this case does not contradict the analysis in
ection 7 because our theory asserts well-posedness of the Schur complement (24), which is independent of time.
n fact, the plots in Fig. 8, that will be discussed in more detail shortly, reveal that for “small” RB sizes condition
umber of the Schur complement for the FR-rLM formulation is actually lower than that for the benchmark coupled
OM–FOM problem.

Since FR-rLM and FR-fLM only differ in the choice of the Lagrange multiplier space, let us compare and contrast
he enforcement of the coupling condition (2) in these formulations. This task is greatly simplified by the fact that
n all our examples γ h

1 = γ h
2 . As a result, Sh

1,γ = Sh
2,γ , n1,γ = n2,γ = nγ , and G1,γ = G2,γ = Gγ , where Gγ is

a symmetric and positive definite interface mass matrix. In the FR-fLM formulation λh
∈ Gh

1 . Taking into account
that the FOM is defined on Ω1 and that G1,γ = G2,γ = Gγ , the last equation in (21) specializes to

G1,γ u̇1,γ − G2,γΦ2,γ
˙̃u2,γ = Gγ

(
u̇1,γ − Φ2,γ

˙̃u2,γ

)
= 0 . (42)

ince Gγ is non-singular, it follows that

u̇1,γ − Φ2,γ
˙̃u2,γ = 0 . (43)

hus, in the FR-fLM formulation on matching interface grids the coupling condition is enforced pointwise.
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Fig. 8. Condition number of Schur complement matrix for each coupled formulation as a function of the composite reduced basis size
di,C = di,0 + di,γ size in the reproductive regime. Subfigure (a) reports results for all methods evaluated, whereas subfigure (b) focuses only
on methods with provably well-posed Schur complements.

In contrast, in the FR-rLM formulation λ = Φ2,γ λ̃ and the last equation in (21) now assumes the form

ΦT
2,γ G1,γ u̇1,γ − ΦT

2,γ G2,γΦ2,γ
˙̃u2,γ = ΦT

2,γ Gγ

(
u̇1,γ − Φ2,γ

˙̃u2,γ

)
= 0 . (44)

et Φ ′

2,γ be the nγ ×r2 −d2,γ matrix of discarded left singular vectors from the SVD decomposition of the snapshot
et X2,γ . Then, (44) permits the existence of a nonzero vector δ ∈ R(r2−d2,γ ) such that

Gγ

(
u̇1,γ − Φ2,γ

˙̃u2,γ

)
= Φ ′

2,γ δ.

t follows that

u̇1,γ − Φ2,γ
˙̃u2,γ = G−1

γ Φ ′

2,γ δ . (45)

n other words, in the FR-rLM formulation, the coupling condition is satisfied approximately whereas in the FR-fLM
ase this condition holds pointwise.

The plots in Fig. 5 reveal that just 6 interface modes are sufficient to capture 99% of the snapshot energy (9)
f X i,γ . However, for small values of d2,γ , the snapshot energy contained in the discarded modes Φ ′

2,γ may still be
arge enough so that accumulation of errors at each time step due to the right hand side in (45) eventually destroys
he accuracy of the numerical solution.

We note that this phenomenon is not limited to the FOM–ROM formulation, but is rather a consequence of
oupling subdomain formulations that are imbalanced with respect to their accuracy. Indeed, we observed similar
rror growth when a ROM with a “large” RB size was coupled to a ROM with a “small” RB size. Thus, when
oupling subdomain models that differ significantly in their resolution, a useful rule of a thumb would be to define
he Lagrange multiplier space by always using the side with a higher resolution.

Next, we highlight the importance of the Lagrange multiplier basis for the well-posedness of the Schur
omplement in the coupled ROM–ROM and FOM–ROM problems. To that end, in Fig. 8, we compare and
ontrast the condition number of this matrix for the couplings that satisfy the trace compatibility condition with
he RR-fLM scheme that does not satisfy this condition. Conditioning of the Schur complement is a measure of its
well-posedness” and can be used to confirm the conclusions from the analysis in Section 7.

The most important takeaway from Fig. 8 is that the Schur complements of the coupled ROM–ROM (17)
nd FOM–ROM (21) problems, which employ trace-compatible Lagrange multiplier spaces conforming with the
heory in Section 7, have essentially constant condition numbers6 with respect to the reduced basis dimension. This

6 Although, in Fig. 8(b), the condition number of the Schur complement for the FR-fLM problem appears significantly larger than that
for the other couplings, the range for the y-axis in Fig. 8(b) is [0, 28.1] with the upper limit representing max cond(S) for the FR-fLM

roblem. Thus, in all cases cond(S) is of order at most O(10).
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corroborates numerically the theoretical conclusions asserting that the condition number of the Schur complement
should be independent of the size of the reduced basis. Moreover, we see that using the trace-compatible Lagrange
multiplier spaces required by the theory produces coupled ROM–ROM and FOM–ROM problems whose Schur
complements are of the same order as those of the coupled FOM–FOM problem. We recall that the latter also uses
trace-compatible Lagrange multiplier spaces and is provably well-posed [4].

At the same time, using Lagrange multiplier spaces that are not trace-compatible clearly leads to Schur
omplements whose condition number depends on the reduced basis size. Specifically, by inspecting Fig. 8(a),
e see that when the full order interface finite element space Gh

2 is used as a Lagrange multiplier space to couple
two ROMs (RR-fLM), the Schur complement of the resulting coupled problem has very high condition numbers
for smaller dimensions of the reduced basis. While the condition number does decrease as the reduced basis size
increases, it is still high compared to that of the coupled FOM–FOM problem, and it only reaches a reasonable
scale when the reduced basis size is larger than one would wish to consider.

To understand the root cause for this behavior, recall that trace-compatibility requires every element of the
Lagrange multiplier space to have a corresponding subdomain state whose trace on the interface matches the
multiplier. This property is essential for the construction of the operator Q that plays a key role in showing that
the Schur complement is non-singular; see Remark 8. At the same time, it is clear that when the subdomain states
are represented by a reduced basis, their traces will not be able to reproduce every possible element of the full
interface space Gh

2 , i.e., the latter is not trace-compatible. As the size of the reduced basis for the states increases,
trace compatibility is restored and the condition number of the Schur complement is reduced. This inflection point
is clearly visible in Fig. 8(a) and corresponds to the instance when the traces of the reduced basis states contain
the Lagrange multiplier space. An algebraic explanation of this behavior is that when the subdomain states are
represented by a reduced basis, the full size Lagrange multiplier space will over-constrain the states leading to
nearly rank deficient, or rank-deficient transpose constraint matrices.

Remark 9. Numerical studies in [3] have shown that the partitioned solution of the coupled ROM–ROM problem
implemented with the full LM space Gh

2 has, to machine precision, the same errors as the partitioned solution of
the this problem implemented with the reduced interface LM space Φi,γ . This suggests that solution errors alone do
not tell the whole story about the quality of the Schur complement underpinning these partitioned solutions. Using
Lagrange multiplier spaces that violate our analysis may result in seemingly reasonable errors for specific instances
of discretization and ROM parameters, but is not guaranteed to work across all possible regimes.

Finally, in Fig. 9, we examine how well the partitioned solutions of the provably well-posed coupled problems
satisfy the interface condition, which is an important characteristic of any partitioned scheme. To that end, we
compare the partitioned solutions with the single domain solution of the model problem on the interface γ . The
plots in Fig. 9 reveal that, for a large enough composite reduced basis, partitioned solutions of the coupled ROM–
ROM and FOM–ROM problems have essentially the same accuracy on the interface as the solution of the coupled
FOM–FOM problem (FF-fLM). We note that the FOM–ROM coupling with reduced LM space does require a larger
basis size for the same accuracy as the FOM–ROM with full LM space, but it is capable of attaining the same level
of errors. In particular, as discussed earlier, the oscillations in the FR-rLM formulations with “small” RB sizes are
due to accumulation of interface errors during the time integration caused by the approximate enforcement (45) of
the coupling condition.

8.1.2. Predictive results
We recall that for the predictive tests we collect snapshots at two diffusion coefficients, κi = 10−2 and 10−8,

and compute the partitioned solutions with κi = 10−5 for i = 1, 2. We collect a total of 10,594 solution snapshots
for κi = 10−2 and κi = 10−8 using the time steps stated at the beginning of this section. Again, we note that the
singular values decay rapidly, so that we are able to capture most of the snapshot energy within a much smaller
subset of modes, as shown in Fig. 10. These plots reveal that only d1,0 = 26, d2,0 = 22, and di,γ = 7 interior and
interface modes are sufficient to capture 99% of the energy in X i,0 and X i,γ . Setting d1,0 = 67, d2,0 = 58, and
di,γ = 20 captures 99.999% of the snapshot energies. This is approximately the same rate of decay as shown in the
reproductive case.

We first consider the relative errors (40) of the partitioned solutions of the coupled ROM–ROM and FOM–ROM
problems. Figs. 11–12 summarizes our results. In all three cases we see that, for a sufficiently large composite
25
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Fig. 9. Comparison of the interface states at T f for the partitioned schemes with provably well-posed Schur complements vs. the single
omain (monolithic) solution of the model problem. Reproductive test in the DD setting. The oscillations in the FR-rLM formulations with
small” RB sizes are due to accumulation of interface errors during the time integration caused by the approximate enforcement (45) of the
oupling condition. The legend “m/n modes” corresponds to m interior and n interface modes.

educed basis size, partitioned solutions are able to achieve relative errors of roughly 10−2 or 10−3. This confirms
he ability of the partitioned schemes presented in this paper to simulate the model problem for parameter values
hat have not been used in the construction of the reduced basis.

In the predictive case, as previously in the reproductive case, the approximate satisfaction of the coupling
ondition (45) leads to accumulation of errors during the time integration that eventually destroys the accuracy
f the solution for “small” RB sizes. As a result, as in the reproductive test, the relative error at the final time for
he FR-rLM formulation is significantly larger than that for the other formulations. The plots in Fig. 12 reveal that,
lso similar to the reproductive case, all formulations have comparable errors up to time t ≈ 2, and that the error
uildup for the FR-rLM formulation begins after that time.

We next examine the condition numbers of the Schur complement matrices involved in the predictive tests. Again,
e compare and contrast the conditioning of these matrices for the couplings that satisfy the trace compatibility

ondition and the RR-fLM coupling that satisfies this condition only for large enough size of the reduced basis.
hese results are summarized in Fig. 13. The plots in this figure mirror the behavior of the condition number
bserved in the reproductive test. Thus, one can conclude that the theoretical results in Section 7 remain in full
26
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Fig. 10. Snapshot energy (9) as a function of interior Φi,0 and interface Φi,γ basis sizes in the predictive regime.

Fig. 11. Relative error (40) at the final time T f = 2π of the partitioned solution for each coupled formulation as a function of the composite
educed basis size di,C = di,0 + di,γ in the predictive regime.

orce in the predictive regime as well, confirming the need for trace-compatible Lagrange multiplier spaces when
onstructing the coupled ROM–ROM and FOM–ROM problems.

We conclude with results showing how well the partitioned solutions satisfy the interface condition in the
redictive tests. As in the reproductive test, we focus only on the well-posed coupled formulations, and compare the
nterface states of the partitioned and single domain solutions. These results are summarized in Fig. 14. We again
ee that partitioned solutions of the couplings with provably well-posed Schur complements are able to satisfy the
nterface condition. The coupled ROM–ROM and FOM–ROM problems display agreement with the single domain
olution on the interface. Not surprisingly, we see that, as in the reproductive test, the FR-rLM formulation requires
larger basis set to achieve the same accuracy as the other formulations. In particular, for “small” RB sizes we

ee the same oscillatory behavior at the final time, which is caused by the approximate enforcement (45) of the
oupling condition and the subsequent accumulation of errors during the time integration.

.2. Transmission problem case

For the TP variant of our model problem, we parameterize the model problem using a discontinuous diffusion
oefficient, i.e., κ ̸= κ . Since in our experiments we observed essentially the same behavior as in the DD case,
1 2
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Fig. 12. Relative error (40) of the partitioned solution for select basis sizes as a function of time in the predictive regime. The error plots
for 160 and 537 modes in subfigure (f) are indistinguishable.

Fig. 13. Condition number of Schur complement matrix for each coupled formulation as a function of the composite reduced basis size
di,C = di,0 + di,γ size in the predictive regime. Subfigure (a) reports results for all methods evaluated, whereas subfigure (b) focuses only
on methods with provably well-posed Schur complements.

we limit ourselves to showing results for a predictive TP test. For this test, we consider a diffusion coefficient
κ1 = 10−5 in Ω1, and κ2 = 10−4 in Ω2. To obtain the subdomain snapshots, we proceed as in the DD case and
estrict a single domain finite element solution to Ω1 and Ω2, respectively. The single domain solution is computed
sing the time step ∆t = 1.684 × 10−3.
s
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Fig. 14. Comparison of the interface states at T f for the partitioned schemes with provably well-posed Schur complements vs. the single
omain (monolithic) solution of the model problem. Predictive test in the DD setting. The oscillations in the FR-rLM formulations with
small” RB sizes are due to accumulation of interface errors during the time integration caused by the approximate enforcement (45) of the
oupling condition. The legend “m/n modes” corresponds to m interior and n interface modes.

The snapshot energy plots in Fig. 15 confirm that the rapid decay of the singular values continues to hold in the
TP case. In particular, just d1,0 = 23, d2,0 = 19 and di,γ = 5 interior and interface nodes, respectively, are sufficient
to capture 99% of the energy in X i,0 and X i,γ .

Next, in Figs. 16 and 17, we show the relative errors for each formulation. Similar to the DD case, the relative
error at the final time of the FR-rLM formulation for small RB sizes is much larger than that for the other
formulations. The plots in Fig. 17 confirm that, again, this is due to the accumulation of error during the explicit
time stepping. Interestingly enough, these plots also show that the growth of the relative error in the TP case occurs
at roughly the same time instances as in the DD case. Moreover, the reader can observe convergence with basis
refinement for all proposed schemes (Fig. 17).

We continue with plots of the condition number of the Schur complement for all coupled formulations in Fig. 18.
These plots mirror the behavior of this quantity from the DD case and once again underscore the importance of using
Lagrange multiplier spaces that satisfy the trace compatibility condition; see Remark 8. Most notably, Fig. 18(b)
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Fig. 15. Snapshot energy (9) as a function of the POD basis size for the interior Φi,0 and interface Φi,γ bases in the predictive regime for
he multiphysics example.

Fig. 16. Relative error (40) at T f = 2π of the partitioned solution for each coupled formulation as a function of the composite reduced
asis size di,C = di,0 + di,γ in the predictive regime for the TP example.

hows no substantive difference in the behavior of the condition number in the TP case as long as the formulation
atisfies the trace compatibility condition.

Finally, in Fig. 19, we take a look at the interface states of all formulations with provably well-posed Schur
omplements at the final time T f . The results in this figure affirm yet again the consistency in the behavior of the
roposed schemes for the DD and TP examples.

. Conclusions

The main contributions of this paper are (i) extension of the IVR scheme to the partitioned solution of coupled
OM–ROM and ROM–FOM problems, and (ii) identification of the trace compatibility condition as a key factor

or the well-posedness of the IVR extensions. The IVR extension requires each coupled problem to have a non-
ingular Schur complement in order to compute accurate estimates of the interface flux needed to independently
olve the subdomain equations at each time step. Moreover, the Schur complement must be well-conditioned for
he partitioned scheme to be robust and accurate.

Our previous numerical studies [3] revealed that the Schur complement of a coupled ROM–ROM problem, based
n full subdomain bases and a full Lagrange multiplier space, can become severely ill-conditioned and compromise
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Fig. 17. Relative error (40) of the partitioned solution for select basis sizes as a function of time in the predictive regime for the TP
example. The error plots for the FR-rLM and FR-fLM formulations in subfigures (c,d), and the error plots for all couplings in subfigure
(e), are indistinguishable.

the accuracy of the coupling. The key issue with this formulation is the lack of trace compatibility for the Lagrange
multiplier space. However, the full subdomain basis does not provide a satisfactory setting to secure this property.
In this paper, we demonstrated that a robust and effective solution to ensure well-posed Schur complements is
to consider an alternative composite reduced basis comprising independently defined sets of basis vectors for the
interface and interior variables, respectively. The interface reduced basis then provides a trace-compatible Lagrange
multiplier space for coupled ROM–ROM problems. For coupled ROM–FOM problems, one can use either the
reduced interface basis from the ROM side or the interface finite element space from the FOM side.

Using variational techniques, we proved rigorously that these choices of the Lagrange multiplier space lead to
coupled problems with non-singular Schur complements whose condition numbers are independent of the underlying
FOM mesh size and the dimension of the composite reduced basis. We performed numerical experiments in two
31
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Fig. 18. Condition number of Schur complement matrix for each coupled formulation as a function of the composite reduced basis size
di,C = di,0 + di,γ size in the predictive regime for the TP example. Subfigure (a) reports results for all methods evaluated, whereas subfigure
(b) focuses only on methods with provably well-posed Schur complements.

distinct simulations settings. In both cases, numerical results confirmed the theoretical analysis and demonstrated
the accuracy of the partitioned schemes. The consistent behavior of the well-posed formulations in both simulation
settings further underscores the importance of the trace compatibility condition and the robustness of the schemes.

Our future work will focus on extension of the partitioned schemes in this paper to nonlinear problems where one
has to consider techniques such as DEIM [66], gappy POD [67] or the ECSW method [68] to handle the nonlinear
terms.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Mathematical Multifaceted Integrated Capability Centers (MMICCs)
program, under Field Work Proposal 22-025291 (Multifaceted Mathematics for Predictive Digital Twins (M2dt)),
Field Work Proposal 20-020467, and the Laboratory Directed Research and Development program at Sandia
National Laboratories. The writing of this manuscript was funded in part by the fourth author’s (Irina Tezaur’s)
Presidential Early Career Award for Scientists and Engineers (PECASE). This article has been authored by an
employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525
with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is
solely responsible for its contents. The United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this article or allow others to do so, for United
States Government purposes. The DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.
32

https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan


A. de Castro, P. Bochev, P. Kuberry et al. Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

d
“
c

Fig. 19. Comparison of the interface states at T f for the partitioned schemes with provably well-posed Schur complements vs. the single
omain (monolithic) solution of the model problem. Predictive test in the TP setting. The oscillations in the FR-rLM formulations with
small” RB sizes are due to accumulation of interface errors during the time integration caused by the approximate enforcement (45) of the
oupling condition. The legend “m/n modes” corresponds to m interior and n interface modes.
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