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Abstract

A method for the nonintrusive and structure-preserving model reduction of canonical and noncanonical Hamiltonian systems
s presented. Based on the idea of operator inference, this technique is provably convergent and reduces to a straightforward
inear solve given snapshot data and gray-box knowledge of the system Hamiltonian. Examples involving several hyperbolic
artial differential equations show that the proposed method yields reduced models which, in addition to being accurate and
table with respect to the addition of basis modes, preserve conserved quantities well outside the range of their training data.

2023 Elsevier B.V. All rights reserved.

SC: 65M22; 65K10; 65P10
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1. Introduction

In recent years, Digital Twins (DTs) have emerged as a new paradigm in the field of modeling and simulation. A
T is a computational model of a physical asset, such as a component, system or process, that evolves continuously

n real or near-real time, so as to persistently represent the ever-changing structure and behavior of the underlying
hysical asset. In order for DTs to achieve their full potential as enablers of beyond-forward analyses such as optimal
xperimental design (OED), control and uncertainty quantification (UQ), it is essential that these computational
odels are: (1) capable of incorporating real-time data as it becomes available, (2) computationally efficient enough

o provide predictions in real or near-real time, and (3) equipped with rigorous mathematical convergence, stability
nd accuracy guarantees.

Particularly helpful in establishing the above criteria is making appropriate use of well-studied mathematical
tructure inherent in the underlying partial differential equations (PDEs) when such structure is available. In the
ase that the system modeled obeys a variational principle, there are centuries of knowledge regarding dynamical
roperties (e.g., conservation laws) which can be leveraged to produce accurate and realistic simulations. Of
articular interest at the present time are Hamiltonian systems, which form compact models of reversible, potentially
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chaotic dynamics. Since many common systems relevant to digital twins have a Hamiltonian form (e.g., Hénon–
eiles, n-body motion, idealized MHD, solid dynamics), it is becoming increasingly necessary to have useful ways
f building relatively cheap Hamiltonian surrogates which can be used to inform a high-quality digital representation.

Projection-based model order reduction (PMOR) is a promising strategy for reducing the computational cost of
igh-fidelity simulations, making projection-based reduced order models (ROMs) ideal candidates for constructing
Ts. The key idea in PMOR is to learn a low-dimensional trial subspace by performing a data compression
n a set of snapshots collected from a high-fidelity simulation or physical experiment, and to restrict the state
ariables to reside in this subspace. This effectively projects the high-fidelity dynamics into a much smaller function
pace, which must be carefully imbued with sufficient information for accurate reconstruction of the high-fidelity
olutions. Traditionally, affine (or linear) approaches have been employed for constructing the low-dimensional trial
ubspace in which the ROM solution is sought, e.g., Proper Orthogonal Decomposition (POD) [1,2], Dynamic Mode
ecomposition (DMD) [3,4], balanced POD (BPOD) [5,6], balanced truncation [7,8], and the reduced basis method

RBM) [9,10]. While all such methods have their own strengths and weaknesses, without loss of generality, this work
estricts attention to the POD approach for calculating reduced bases due to its prevalence, flexibility, and simplicity.
eyond linear techniques, it is interesting to note that, in recent years, the idea of employing trial subspaces defined
y nonlinear manifolds has started to be explored by a growing number of authors; see, e.g., [11–17] and references
herein for nonlinear manifold approaches based on convolutional autoencoders, and [18,19] for quadratic manifold
pproaches. Nonlinear approximation approaches have the advantage of mitigating the so-called Kolmogorov n-
idth barrier [20], which reduces the efficacy and efficiency of linear manifold ROMs for convection-dominated
roblems.1 However, they are often more difficult to train and can exhibit poor convergence behavior when compared
ith their linear counterparts [11,14].
Once a low-dimensional trial subspace has been constructed, the mathematical operators defining a ROM are

btained through a projection of the corresponding full order model (FOM) operators onto the reduced subspace.
erforming this projection step is in general a very intrusive process, as it requires access to the FOM code used

o generate the snapshot data. This intrusive nature of the projection step in PMOR limits the class of problems to
hich the approach can be applied, precluding the application of PMOR to FOMs that are given as a black-box. A
romising approach for overcoming this limitation is data-driven Operator Inference (OpInf) (e.g., [21–23]), which
ims to construct projection-based ROMs in a nonintrusive way. OpInf is motivated by the observation that projection
reserves algebraic structure, that is, if the semi-discretized FOM has polynomial nonlinearities, a projection-based
OM for this system will also have polynomial nonlinearities of the same degree. Once the functional, algebraic
tructure of the FOM (and hence the ROM) is determined, OpInf works by replacing the intrusive projection step
hat is typically used to determine the ROM operators with a least-squares problem that infers these operators
irectly in a black-box fashion using available snapshot data (c.f. Section 2.3).

It is well known that projection-based ROMs constructed using either intrusive or non-intrusive techniques will
enerally not automatically inherit key mathematical properties of the PDEs from which they are derived. Since these
roperties are often well-understood to be responsible for the involved physics, this is a major defect which can harm
he predictive performance of ROMs, limiting their utility in practical cases of interest. To remedy this difficulty,

variety of methodologies have been proposed which focus around preserving different mathematical structures
ften seen in application settings. Here, we summarize the literature on this subject for several common properties
hose numerical preservation is critical to a wide range of applications: energy-/entropy- stability, conservation law
reservation, and variational structure preservation (most notably involving Hamiltonian or Lagrangian structure,
nd including the focus of this paper).

It is worth noting that the majority of structure-preserving PMOR approaches in the literature focus on intrusive
OMs rather than non-intrusive OpInf models. The present work is a step towards filling this gap for the specific
ase of Hamiltonian systems. In order to distinguish our approach from other related work, we provide a succinct
verview of existing OpInf methods below, after our overview of commonly-preserved structures/properties.

nergy- and entropy-stability. The bulk of the literature on energy- and entropy-stability preserving PMOR
pproaches focuses on the specific case of compressible flow. It is well-known that projection-based ROMs for
ompressible flow constructed via Galerkin projection in the L2 inner product lack an a priori stability guaran-
ee [24–26]. This problem can be circumvented for traditional intrusive ROMs through a variable transformation or

1 As discussed in Section 6, extending the approach proposed herein to nonlinear manifold bases will be the subject of future work.
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by changing the inner product in which the projection is done, yielding energy-stable [25–28] or entropy-stable [29–
31] approaches. Alternate approaches for mitigating the problem which are less intrusive and possible to apply in
conjunction with OpInf model reduction include subspace rotation [32] and eigenvalue reassignment [33,34]. An
interesting and very recent pre-print that considers incompressible flow is the work of Klein and Sanderse [35],
which develops a novel kinetic energy and momentum conserving hyper-reduction method for projection-based
ROMs for the incompressible Navier–Stokes equations.

Conservation law preservation. A second problem arising in PMOR for fluid mechanics applications, and, more
broadly, conservative systems of PDEs, is lack of conservation: ROMs constructed from conservative models are
not guaranteed to maintain the underlying model’s conservation laws. The following three references for mitigating
this problem for intrusive projection-based ROMs are noteworthy. In [36], Carlberg et al. present a methodology
for constructing conservative compressible flow ROMs by modifying the minimization problem defining the Least
Squares Petrov–Galerkin (LSPG) [37] to include local or global conservation law constraints. The formulation
in [36] is extended to the case of incompressible flow in [38], yielding a method that is both mass- and kinetic
energy-conserving, and thus nonlinearly stable. An alternate way to create an incompressible flow ROM with mass
and energy conservation is presented in [39]. In this work, the authors demonstrate that these properties can be
attained at the ROM level through a careful selection of the boundary condition treatment and finite element space
underlying the ROM. The preservation of conservation laws in OpInf remains an open problem, although progress
has been made on problems with a variational form through [40,41], and this work.

Variational structure preservation. Another mathematical property mentioned previously and exhibited by a
wide range of physical systems (e.g., solid dynamics, the shallow water equations, etc.), including the ones
considered in the present work, is variational structure. This includes systems amenable to the standard Hamiltonian
and Lagrangian formalisms, as well as the more general formalisms of, e.g., Euler–Poincaré, Lie–Poisson and
metriplecticity. The advantages of biasing towards this structure are clear to see; for example, since the Hamiltonian
can be considered a representation of the energy of a system, a Hamiltonian structure-preserving discretization
will automatically obey at least one conservation law. Several Hamiltonian (or Lagrangian) structure-preserving
approaches have been developed in recent years for the specific case of solid dynamics. In [42], it is shown that
performing a Galerkin projection of the second-order-in-time Euler–Lagrange equations defining a canonical solid
dynamics problem preserves Lagrangian structure, provided no hyper-reduction is employed. As discussed in [43],
traditional hyper-reduction approaches such as collocation, the Discrete Empirical Interpolation Method (DEIM) [44]
and gappy POD [45] destroy the Lagrangian structure of the ROM. In [43], two Lagrangian structure-preserving
approaches for performing hyper-reduction on these systems, termed reduced basis sparsification (RBS) and matrix
gappy POD, are proposed. Both approaches are of the “approximate-then-project” flavor, meaning they apply hyper-
reduction to the nonlinear terms in the governing equations prior to projecting these terms onto a reduced basis.
An alternate “project-then-approximate” approach for preserving Lagrangian structure in ROMs for nonlinear solid
dynamics applications is the Energy-Conserving Sampling and Weighting (ECSW) method of Farhat et al. [46]. In
this method, the nonlinear projected function is approximated using a set of points and weights, the latter set of
which are obtained by solving a non-negative least-squares optimization problem. Interestingly, there has recently
been some headway into OpInf techniques for PMOR on solid mechanical systems as well. In [41], the authors
develop a gray-box method for learning the linear parts of Lagrangian systems in a way that respects the symmetric
positive definite nature of the governing operators.

A broader class of symplecticity-preserving PMOR methods focus on directly reducing the Hamiltonian first-
order-in-time system (1). As discussed in [42], performing a Galerkin projection of these equations onto a set of
reduced basis vectors will generally not preserve the Hamiltonian/symplectic structure of the system. Several works,
e.g., [47,48], propose to remedy this through Proper Symplectic Decomposition (PSD) and symplectic Galerkin
projection. In [47], Peng et al. propose three algorithms for calculating the PSD, based on the cotangent lift, complex
SVD and nonlinear programming. These algorithms effectively generate reduced bases such that projection onto the
subspaces spanned by these bases will maintain symplecticity. Further, a version of DEIM for Hamiltonian systems,
termed Symplectic DEIM (SDEIM), is developed for maintaining skew-symmetry (but not necessarily symplecticity
or Hamiltonian structure) when performing hyper-reduction. An approach based on a globally optimal symplectic
reduced basis in the sense of the PSD is derived in [49]. Here, it is shown the POD of a canonizable Hamiltonian

system is automatically symplectic, from which the authors deduce optimality of the PSD. In [50], PSD is extended

3
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to create a greedy approach for symplectic basis generation. The approach is advertised as more cost-effective than
traditional POD and PSD, and exhibits exponentially-fast convergence. The follow-on work [51] presents a reduced
dissipative Hamiltonian (RDH) method as a structure-preserving model reduction approach for Hamiltonian systems
with dissipation. Unlike other approaches, the proposed approach enables the reduced system to be integrated using
a symplectic integrator. The recent work [48], based on a lot of the same ideas as [50,51], demonstrates that linear
symplectic maps can be used to guarantee that the reduced models inherit the geometric formulation from the full
dynamics. The approach evolves the approximating symplectic reduced space in time along a trajectory locally
constrained on the tangent space of the high-dimensional dynamics. The recent pre-print [52] presents a different
DEIM-based hyper-reduction method for nonlinear parametric dynamical systems characterized by gradient fields
such as Hamiltonian and port-Hamiltonian systems and gradient flows. The authors decompose the nonlinear part of
the Hamiltonian into a sum of d terms, each characterized by a sparse dependence on the system state, and obtain

hyper-reduced approximation of the Jacobian by applying DEIM to the derived function. The resulting hyper-
educed model retains the gradient structure, and possesses a priori error estimates showing that the hyper-reduced
odel converges to the reduced model and the Hamiltonian is asymptotically preserved.
It is also possible to derive Hamiltonian structure-preserving ROMs using the classical POD reduced basis.

n [53], a least-squares system is solved to ensure skew-symmetry of the POD-Galerkin system corresponding to
he governing Hamiltonian form. An a priori error estimate for the resulting POD/Galerkin ROM is developed,
ut hyper-reduction is not considered, rendering the approach inefficient. In [54], Sockwell presents a Hamiltonian
tructure-preserving approach that is most closely related to the approach in [53] and that possesses similar error
stimates; however, the technique in [54] is derived in a Hilbert space and takes advantage of the Hamiltonian
ramework in order to abstract the technique to a wide variety of weighted inner-product spaces. This method
s shown to preserve linear Casimir invariants, and is demonstrated in the context of the rotating shallow water
quations, commonly used in ocean modeling on the sphere. In addition to intrusive PMOR approaches, there
s recent work in developing non-intrusive OpInf PMOR approaches that preserve Lagrangian [55] as well as
amiltonian structure [16,40], and ROMs with nonlinear manifold (e.g., convolutional autoencoder) bases [56].
otably, [16,40] are the only works to the authors’ knowledge in which a Hamiltonian structure-preserving
onintrusive OpInf PMOR methodology is developed, although this method is limited to canonical Hamiltonian
ystems with a block-diagonal gradient structure.

Beyond Hamiltonian systems, it is worth mentioning some current references focusing on structure-preserving
odel reduction for port-Hamiltonian and metriplectic systems, e.g., [57,58], which are extensions of the Hamil-

onian formalism to systems with dissipation. Metripletic dynamical systems separate dynamics into terms that are
energy-preserving” and “dissipative”, represented by a noncanonical Poisson structure and a degenerate Riemannian
etric structure, respectively. To the best of our knowledge, [58] is the first paper to develop a structure-preserving

intrusive) ROM for PDEs with metriplectic structure. Conversely, the work [57] presents three techniques for
onstructing reduced bases for port-Hamiltonian systems: one based on POD, one based on H2/H∞-derived
ptimized bases (which can be calculated without any snapshots), and one that is a mixture of the two. Interestingly,
he approach in [57] is based on Petrov–Galerkin projection, rather than Galerkin projection.

perator Inference. Data-driven operator inference originated in the seminal work of Peherstorfer and Willcox
21], which demonstrates that reduced operators in a projection-based ROM can be inferred non-intrusively
i.e., without access to the corresponding FOM operators or code) through the numerical solution of an optimization
roblem, given a set of FOM snapshots. An acknowledged deficiency of the original OpInf formulation is that
t is only applicable to PDEs that contain low-order polynomial nonlinearities. As demonstrated in subsequent
orks [59–61], this shortcoming can be circumvented for many physical systems by using a technique known as

lifting”, which defines a transformation of the state variables into auxiliary variables that make the governing PDEs
inear or quadratic. The resulting approach, termed “Lift and Learn” [59] has been applied to a wide range of prob-
ems, including fluid mechanics and combustion [59,62–64], additive manufacturing [60], magnetohydrodynamics
MHD) [65], and solid mechanics [66].

During the past 1–2 years, researchers have begun to extend operator inference in several important directions.
n [23], non-intrusive operator inference is extended to problems with non-polynomial nonlinearities given in
nalytic form, in a way that does require the definition of a lifting transformation. In several recent works, the
roup of Kramer et al. has developed OpInf methodologies that preserve Hamiltonian (or symplectic) [16,41] and

agrangian [55] structure, to ensure energy-conserving ROMs. Note that, in the Hamiltonian case, all OpInf work
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to date has been restricted to purely canonical systems (c.f. Section 2.1). A primary contribution of this work is the
ability to treat both canonical and noncanonical systems of interest.

Other recent works have focused on improving the efficiency and robustness of the optimization problem
nderlying OpInf. It is well-known that this optimization problem generally requires regularization, and the results
an be extremely sensitive to the choice of regularization parameters. Several researchers have begun to look at ways
o optimize the choice of these regularization parameters. In [67], Guo et al. present a Bayesian approach to operator
nference, in which the maximum marginal likelihood provides insight into the selection of the regularization
arameters specified in the OpInf minimization problem. An alternate remedy known as nested operator inference
s being pursued by Aretz et al. [68].

While OpInf originated in the context of ROMs in which the solution is approximated using an affine POD basis,
he method has recently been extended to balanced truncation [69] and quadratic manifold bases [19,69]. The latter
ork [69] presents a symplecticity-preserving method based on quadratic manifold bases. The advantage of using
uadratic manifold bases over linear bases is that it is often possible to represent the reduced solution using fewer
asis vector, especially for problems exhibiting a slow decay of the Kolmogorov n-width [20].

ontributions of this manuscript. The present work extends the literature on structure-preserving OpInf techniques
o include the linear operators governing general canonical and noncanonical Hamiltonian systems. Particularly, we
ontribute

• Non-intrusive methods based on OpInf for learning either: (1) the linear part of the Hamiltonian gradient
in the case of canonical Hamiltonian systems, or (2) the constant part of the Poisson matrix in the case of
noncanonical Hamiltonian systems. In contrast to previous work, these methods impose no restriction on the
separability properties of the Hamiltonian or the algorithm used to compute the ROM basis.

• Theoretical analysis which guarantees that the learned operators converge to their intrusive counterparts in the
limits of increasing basis size and increasing amounts of training data.

• Several numerical examples probing the behavior of these Hamiltonian OpInf ROMs in comparison to ROMs
based on black-box OpInf as well as more intrusive PMOR techniques.

The remainder of this paper is organized as follows. Section 2 recalls preliminary information on Hamiltonian
ystems (including methods for their POD), as well as OpInf and average vector field time integration (c.f. [70]).
ection 3 describes the present methods for canonical and noncanonical Hamiltonian OpInf, as well as their
onnection to previous work. Section 4 provides analysis showing that the proposed OpInf methods converge
o their intrusive counterparts with the addition of snapshot data and basis modes. Finally, Section 5 provides
umerical evidence for the Hamiltonian OpInf approaches in Section 3 using five example problems: a linear wave
quation, a nonseparable but canonical quadratic Hamiltonian system, the Korteweg–De Vries (KdV) equation, the
enjamin–Bona–Mahony (BBM) equation, and a 3D linear elastic cantilever plate. Finally, some conclusions and

uture directions are discussed in Section 6.

. Preliminaries

Here some preliminary information on Hamiltonian systems, as well as intrusive and nonintrusive methods of
odel reduction for such systems, is summarized.

.1. Hamiltonian systems

The Hamiltonian formalism provides a mechanical framework encompassing a wide variety of conservative
ynamical systems which arise from a variational principle. In particular, it reduces the problem of understanding
near-arbitrarily complicated dynamical system to the simpler problem of understanding a scalar-valued function

H , called the Hamiltonian, and a skew-symmetric Poisson bracket {·, ·}, which encodes a Lie algebra realization
n functions. More formally, given a state vector x ∈ RN , it follows that ∇x = I, and so any Hamiltonian system

can be written in the form

˙
x = {x, H (x)} = ∇x · L(x)∇ H (x) = L(x)∇ H (x), (1)

5
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for some H : RN
→ R and some potentially degenerate Poisson matrix L : RN

→ RN×N , L⊺
= −L which is

ntisymmetric and satisfies the Jacobi identity,
N∑

ℓ=1

(
L il L jk,l + L jl Lki,l + Lkl L i j,l

)
= 0, 1 ≤ i, j, k ≤ N ,

here L i j are the components of L and L i j,k denotes the derivative with respect to the kth basis vector ek ∈ RN .
rom this, it is easy to see that the Poisson bracket (generated by L) is also skew-symmetric, bilinear, and obeys a
eibniz rule. Moreover, the Hamiltonian H is a conserved quantity, since {H, H} = 0 by antisymmetry.

In the simplest case, Hamiltonian systems are dual (and equivalent) to their Lagrangian counterparts. To see this,
onsider a Lagrangian function L(t, q, q̇) defined in terms of a position variable q ∈ RN and its associated velocity
˙ . Then, under some regularity conditions (see e.g. [71]), there is a canonical Legendre transformation

H (t, q, p) = sup
q̇

(⟨p, q̇⟩ − L(t, q, q̇)) ,

hich yields the conjugate momentum vector p = L q̇ := ∇q̇L ∈ RN . Substituting L = ⟨p, q̇⟩ − H in the usual
ction integral S =

∫
L dt and computing the first variation now leads immediately to Hamilton’s equations for the

tate x =
(
q p

)⊺
∈ R2N ,

ẋ =

(
q̇
ṗ

)
=

(
0 I

−I 0

)(
Hq
Hp

)
= J∇ H (x),

imilar to the above. Notice that J is anti-involutive and (trivially) satisfies the Jacobi identity, which implies that
his Hamiltonian system is in canonical form. Conversely, systems of the form (1) for which L ̸= J are said to
e noncanonical. Noncanonical Hamiltonian systems are quite flexible and have an important property: elements in
he kernel of L, called Casimirs, are invariant quantities, meaning that many (but not all) constants of motion in

noncanonical Hamiltonian system can be identified directly from its Poisson structure. Since Casimir invariants
re often directly responsible for the long-time behavior of the system, it is important that they are appropriately
espected by model reduction methods. It will be shown in Section 5 that the particular Hamiltonian OpInf methods
eveloped in Section 3 attend to this issue at least as well as the current state of the art.

Although the Hamiltonian and Lagrangian formalisms can often be freely exchanged, many interesting dynamical
ystems which are readily modeled using the Hamiltonian formalism do not have an unconstrained Lagrangian
ormulation. For example, every completely integrable equation, including the KdV equation considered in Section 5,
as a bi-Hamiltonian structure and therefore a singular Legendre transformation. Therefore, these systems can only
e expressed in Lagrangian terms if the argument to the Lagrangian is constrained to be a derivative of the state
ariable (see, e.g., [72,73] for the case of KdV). This makes working directly with the Hamiltonian formulation
f a dynamical system preferable in many cases, and encourages the search for model reduction techniques which
re more general than those developed for canonical Hamiltonian systems. In particular, the nonintrusive methods
f Section 3 are well adapted to noncanonical Hamiltonian systems and do not appeal to Lagrangians or Legendre
ransforms.

.2. Proper orthogonal decomposition for Hamiltonian systems

Given a large semidiscrete Hamiltonian system (1), it is often necessary to perform model reduction in order
o produce a feasible surrogate. Typically, this means constructing an informative reduced basis for the solution
pace to the system onto which the dynamics can be projected. While there are a variety of linear and nonlinear
ethods for accomplishing this task (including those in [11,74,75], to mention a few), this paper focuses on the

inear technique known as Proper Orthogonal Decomposition (POD) which has seen the most widespread success.
OD uses snapshots x ∈ RN of the high-fidelity model solution to construct a variance-maximizing subspace in
hich reduced solutions can be represented. To explain this more precisely, let Y ∈ RN×ns be a matrix with rank
≤ min{N , ns} containing ns snapshots of the high-fidelity solution y = x−x0∈ RN shifted by the initial condition

0 := x(0). Such snapshots could be collected at, e.g., discrete points in the interval [0, T ], where T ∈ R represents
he final simulation time. If Y = ŨΣV⊺ is the singular value decomposition of this mean-centered data matrix,

N×n ˜
tandard computations show that the matrix U ∈ R comprised of the first n < r columns of U minimizes

6
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the L2 ([0, T ]) reconstruction error of y, and that this error is precisely the sum of the remaining squared singular
alues [76]. More precisely, it follows that

∥y − UU⊺y∥
2

:=

∫ T

0
|y − UU⊺y|

2 dt =

r∑
i=n+1

σ 2
i ,

here σi is the i th singular value of Y. This is the basis for the standard Galerkin POD-ROM (G-ROM) procedure,
hich is applied to the dynamical system governing x by making the approximation x̃ = x0 + Ux̂ ∈ RN for some
nknown coefficients x̂ ∈ Rn and using that U⊺U = I in Rn . In particular, inserting this approximation into the
amiltonian system (1) yields the update rule

˙̂x = U⊺L(x̃)∇ H (x̃),

hich is low-order but obviously not Hamiltonian since U⊺L ̸= − (U⊺L)⊺ = LU. An effective remedy for
his is the strategy developed in [77], which solves the overdetermined least-squares problem U⊺L = L̂U⊺ for
ˆ = U⊺LU, yielding a skew-symmetric operator which is guaranteed to produce dynamics which preserve the
educed Hamiltonian Ĥ = H ◦ x̃: Rn

→ R. To see this, consider solving the Hamiltonian POD-ROM (H-ROM)
˙̂x = L̂(x̃)∇ Ĥ (x̂).

hen, it follows that the change in the value of the reduced Hamiltonian along a solution is given by
˙̂H = ˙̂x · ∇ Ĥ = L̂∇ Ĥ · ∇ Ĥ = −L̂∇ Ĥ · ∇ Ĥ = 0,

o that this quantity is exactly preserved up to time discretization error.
While noncanonical Hamiltonian systems are (thus far) limited to variants of the “ordinary” POD basis

onstruction described above, it turns out that there are several useful ways to construct the POD basis U in the
ase of canonical Hamiltonian systems. In particular, when N = 2M for some M ∈ N and x =

(
q p

)⊺ separates
icely into position and momentum variables, it is frequently useful to use a basis built block-wise from sections
f the snapshot data Y. This is particularly true in the presence of scale separation, where the variance in one of
, p will be dominated by the other if a standard POD basis for the full field

(
q p

)⊺ is used [31,78]. In this case,
eparating the data Y =

(
Yq Yp

)⊺ into M × ns blocks and carrying out the POD procedure described before
ields separate bases Uq , Up ∈ RN×m for position and momentum, which can be combined into the block basis
= Diag

(
Uq , Up

)
of size N × n where n = 2m. This has the effect of normalizing the importance of q and p in

he dimension reduction, often leading to better performance in the associated ROMs. As an added benefit, notice
hat both U⊺

qYqY⊺
qUq and U⊺

pYpY⊺
pUp are diagonal under this construction, since each POD basis is drawn from

he SVD of the snapshots.
In addition to this, another block basis construction which has been demonstrably useful in the model reduction

f canonical Hamiltonian systems is known as the “cotangent lift” algorithm from [47]. This procedure constructs a
asis such that U⊺J = JnU⊺ (for Jn ∈ Rn×n the canonical Poisson matrix of dimension n) by choosing U from the
eft singular vectors of the concatenated snapshot matrix

(
q p

)
≈ ŪΣV⊺

∈ RM×2ns . More precisely, if Ū ∈ RM×m

contains the first M left singular vectors, the basis U = Diag
(
Ū, Ū

)
satisfies the required condition. This is quite

a useful construction, as it follows that U⊺J∇ H = JnU⊺
∇ H = Jn∇ Ĥ and hence the prototypical G-ROM is

converted into an H-ROM. On the other hand, it is clear that Ū⊺YqY⊺
qŪ is not diagonal (and same for p), since

V⊺
=
(
V1 V2

)⊺
∈ Rm×2ns and so V⊺

1V1 ̸= V⊺
2V2 ̸= V⊺

1V1 + V⊺
2V2 = I.

2.3. Generic operator inference

Consider a dynamical system of the form

ẋ (t, µ) = F (t, µ, x (t, µ)) , (2)

where x : R × Rp
→ RN is a time-dependent state variable and µ ∈ Rp is a vector of parameters. As mentioned

previously, constructing a POD basis U ∈ RN×n and making the approximation x̃ = x0 + Ux̂ leads to the canonical
Galerkin ROM,

˙̂x t, µ = U⊺F t, µ, x̃ t, µ , (3)
( ) ( ( ))

7
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which is an n-dimensional dynamical system describing the evolution of the POD basis coefficients. While this
procedure is well studied and often effective, it clearly requires intrusion into the FOM simulation code via access
to the operators governing the high-fidelity system (2), since it is necessary to assemble U⊺F(x̃). In the case that

0 = 0 and F(x) = Dx is linear, this means direct access to D ∈ RN×N is needed in order to assemble the reduced
perator D̂ = U⊺DU ∈ Rn×n . However, it is frequently impossible (or prohibitively expensive) to access this
nformation, due to, e.g., complicated or proprietary legacy codes. This motivates the black-box operator inference
echnique (OpInf) of [6] which is used for the non-intrusive modeling of dynamical systems such as (2). More
recisely, OpInf uses snapshot data to learn the tensor coefficients of a polynomial approximation D0, . . . , Dn to
he action of F, so that if x̃ satisfies

ż = D0 + D1z + D2 (z ⊗ z) + · · · + Dn (z ⊗ · · · ⊗ z) ,

hen z ≈ x remains close to a solution to the original system. This ansatz is clearly exact in the case that the model
n question is polynomial (or differentially polynomial), but has been shown to be useful even outside of this case,
ee, e.g., [22,63] and lifting transformations [59,59,62–64]. Moreover, it readily extends to learning the coefficients
f a POD-based ROM, since reduced basis projection preserves this polynomial structure.

To see this in detail, consider learning a linear approximation ż = Dz (for simplicity), and suppose an
N × ns matrix X of snapshot data is provided containing (partial) trajectories of the original system (2). Then, an
pproximation Xt ≈ Ẋ to the temporal derivative of each snapshot can be formed through, e.g., finite differences,
nd the matrix least-squares problem,

argmin
D∈RN×N

R (D) = argmin
D∈RN×N

|Xt − DX|
2 ,

an be solved to yield the desired operator D. More precisely, exterior differentiation yields

d R (D) = −2 ⟨Xt − DX, dD X⟩ = −2 ⟨(Xt − DX) X⊺, dD⟩ , = ⟨∇ R (D) , dD⟩ ,

o that solving ∇ R (D) = −2 (Xt − DX) X⊺
= 0 reduces to solving the linear system

DXX⊺
= Xt X⊺.

lternatively, there is the equivalent vectorized system

(XX⊺
⊗ I) vec D = vec (Xt X⊺) ,

here ⊗ denotes Kronecker’s matricized tensor product and equivalence follows via the “vec trick” (see Ap-
endix A.1 for a review of these ideas).

On the other hand, in practical application settings, it is usually undesirable (or even infeasible) to infer the full
N × N operator D in this way, as this requires solving a linear system which scales with N 2. Instead, it is more
seful to combine OpInf with dimension reduction techniques such as POD, since, if x̃ = Ux̂ where U ∈ RN×n is a
OD basis and x̂ ∈ Rn , then the snapshot data X and its approximate time derivative Xt can be projected onto this
asis before inferring a reduced operator. In particular, there are the n × ns matrices X̂ = U⊺X and X̂t = U⊺Xt ,
hich can be used to infer a lower-dimensional operator D̂ ∈ Rn×n governing the non-intrusive reduced dynamical

ystem ˙̂x = D̂x̂. In this case, D̂ is inferred through the reduced OpInf problem of size n,

argmin
D̂∈Rn×n

⏐⏐⏐X̂t − D̂X̂
⏐⏐⏐2 ,

hich is solved as described above.
Besides reducing computational costs relative to inference of the full operator D, inferring the reduced operator

ˆ has the following added benefit due to the hierarchical order of the columns of U. While this result appears to
e well known, the lack of a standard reference has motivated the inclusion of a proof in Appendix A.2.

roposition 2.1. Suppose U ∈ RN×n is the matrix of left singular vectors of some data matrix X, and Σ ∈ Rn×n

s the corresponding diagonal matrix of (nonzero) singular values {σ j }
n
j=1. Then, the unique solution to the OpInf

roblem of size n is given by

D̂ = argmin
⏐⏐⏐X̂t − DX̂

⏐⏐⏐2 = X̂t X̂⊺Σ−2.

D∈Rn×n

8
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Moreover, for any n′ < n, the submatrix D̂′
∈ Rn′

×n′

formed by extracting the first n rows and columns of D̂ is the
solution to the corresponding OpInf problem of size n.

Remark 2.1. Note that the conclusion of Proposition 2.1 continues to hold if the minimization objective is

Tikhonov regularized by a multiple of D̂, as can be checked by considering the minimization objective
⏐⏐⏐X̂t − D̂X̂

⏐⏐⏐2+⏐⏐⏐D̂⏐⏐⏐2 for some η > 0 and repeating the arguments above. Moreover, the conclusion also holds block-wise if U is

block basis as discussed in Section 2.2 and D̂ is block diagonal, since the relevant problem decouples over the
locks of D̂.

.4. Previous Hamiltonian operator inference

The idea of using OpInf in conjunction with Hamiltonian systems has been previously explored in [40], where it
as used to learn the linear part of the Hamiltonian gradient ∇ H for a sub-class of canonical Hamiltonian systems
hich are known as separable.2 The separability assumption implies that the system Hamiltonian decomposes as

H (q, p) = T (q) + V (p) for some real-valued functions T, V depending only on q, p, respectively. A consequence
f this is that the linear part of the gradient ∇ H becomes block-diagonal in the variables q, p, a fact which is
reserved at the POD-ROM level as long as a cotangent lift POD basis U ∈ RN×n satisfying U⊺JU = Jn is
mployed, where Jn is the canonical symplectic matrix of dimension n = 2m. With this additional restriction on
he reduced basis, it follows that the intrusive H-ROM for the approximation x̃ = Ux̂ ≈ x decouples over q, p,

becoming ˙̂x = Jn∇ Ĥ (x̃) = Jn

(
Âx̂ + ∇ f̂ (x̃)

)
where Â = diag

(
Âq, Âp

)
is block-diagonal and we have written

H (x) =
1
2 x⊺Ax+ f (x). This allows the authors of [40] to formulate an inference procedure for the linear operator Â

which decouples block-wise into two m2
× m2 subproblems for Âq, Âp, provided snapshots of ∇ f can be obtained

and this quantity can be simulated online. More precisely, given snapshots X ∈ RN×ns of the full order solution
along with snapshots ∇ f (X) ∈ RN×ns of the nonlinear part of ∇ H , the problems to solve are

argmin
Â∈Rm×m

⏐⏐⏐X̂p,t + ÂX̂q + ∇̂q f (X)
⏐⏐⏐2 , s.t. Â⊺

= Â,

argmin
Â∈Rm×m

⏐⏐⏐X̂q,t − ÂX̂p − ∇̂p f (X)
⏐⏐⏐2 s.t. Â⊺

= Â,

here subscripts on q, p denote either the first or second m rows in the snapshot matrix, ∇q, ∇p denote partial
derivatives, subscript t denotes a finite difference approximation to the time derivative, and “hat” indicates the
application of a basis projection U⊺. This yields Aq and Ap, respectively, which once learned can be used to
simulate the differential equation for ˙̂x as usual to yield the approximation x̃. While this procedure has been
previously useful for simulating several systems of interest, it will be shown in Section 3 that the restrictions
inherent in this algorithm can be removed, leading to a Hamiltonian OpInf ROM for canonical systems which
does not require separability of the quadratic terms in the Hamiltonian or a specific choice of reduced basis.
This extends the applicability of canonical Hamiltonian operator inference methods to, e.g., problems in molecular
dynamics involving temperature-dependent potentials [79] or the estimation of Schwarzschild geodesics [80] in
general relativity.

2.5. Linear ROMs and average vector field integration

To simplify the presentation of later results, it is worth mentioning some facts about linear ROMs and the
particular timestepping scheme used in this work. First, note that the average vector field (AVF) method [70,81]
is employed for time integration of all numerical examples, meaning that the Hamiltonian dynamical system (1) is
discretized as

xk+1
− xk

∆t
= L

(
xk+

1
2

) ∫ 1

0
∇ H

(
txk+1

+ (1 − t)xk) dt,

2 Since the nonlinear part of ∇ H is assumed to be available intrusively, the method in [40] actually requires the weaker condition of
eparability in the quadratic part of the Hamiltonian.
9



A. Gruber and I. Tezaur Computer Methods in Applied Mechanics and Engineering 416 (2023) 116334

L

s

p

w
t
e
G

3

b
t

T
s

c

I
m

P
t
d

y

where xk+
1
2 =

1
2

(
xk

+ xk+1
)
, which amounts to linearizing the trajectory of the state between time steps k and

k + 1 and fixing evaluation of L at the midpoint. This integration scheme has appealing properties including exact
quadrature for polynomial nonlinearities, as well as second-order convergence in time. Moreover, it is easy to see
that AVF integration is globally energy-conserving: if ℓ(t) = txk+1

+(1− t)xk , it follows from the symmetry relation
⊺

= −L that

H
(
xk+1

)
− H

(
xk
)

∆t
=

1
∆t

∫ 1

0

d
dt

H (ℓ(t)) dt =
xk+1

− xk

∆t
·

∫ 1

0
∇ H (ℓ(t)) dt

=

[
L
(

xk+
1
2

) ∫ 1

0
∇ H (ℓ(t)) dt

]
·

∫ 1

0
∇ H (ℓ(t)) dt = 0,

o that there can be no loss of energy during AVF timestepping.
Now, when ẋ = Dx is linear, it is clear that AVF integration reduces to the implicit midpoint method

xk+1
− xk

∆t
= Dxk+

1
2 ,

which can be easily solved at each time step k by writing xk+1
= xk

+ ∆xk , where ∆xk
= xk+1

− xk satisfies the
linear system(

I −
∆t
2

D
)
∆xk

= ∆t Dxk .

Note additionally that if x̃ = x0 + Ux̂ ≈ x is a mean-centered Galerkin projection and D̂ = U⊺DU is the intrusive
rojection of D, this implies the low-order update formula x̂k+1

= x̂k
+ ∆x̂k , where(

Î −
∆t
2

D̂
)
∆x̂k

= ∆t
(

U⊺Dx0 + D̂x̂k
)

,

hich is an n × n linear solve leading to the full-order approximate x̃k+1
= x0 + Ux̂k+1. Of course, in the event

hat D is not available and so D̂ must be inferred, this mean-centering can be ignored. Finally, to specify these
xpressions to linear Hamiltonian systems ẋ = LAx, it suffices to replace D̂ = L̂A = U⊺LAU in the case of the
-ROM and D̂ = L̂Â = U⊺LUU⊺AU in the case of the H-ROM.

. Hamiltonian operator inference

It is now possible to discuss the present methods for canonical and noncanonical Hamiltonian OpInf, which will
e referred to as C-H-OpInf and NC-H-OpInf, respectively. First, note the following computational result central to
hese techniques.

heorem 3.1. Let A ∈ RN×N , B, C ∈ RN×ns , and define A⊕̄B = A ⊗ B + B ⊗ A. Then, every solution to the
ymmetry-constrained least-squares regularization problem

argmin
D∈RN×N

|C − ADB|
2 , s.t. D⊺

= ±D,

orresponds to a solution to the vectorized problem(
A⊺A⊕̄BB⊺

)
vec D = vec (A⊺CB⊺

± BC⊺A) .

n particular, the first system is uniquely solvable if and only if the second is also, which holds whenever A, B have
aximal rank.

roof. First, note that the uniqueness condition follows immediately from the fact that the objective is convex,
he symmetry constraint is linear, and rank (B ⊗ A) = rank (B) rank(A). The remainder will follow from a
irect calculation using the method of Lagrange multipliers. More precisely, define the Lagrangian L (D,Λ) =

1
2 |C − ADB|

2
+ ⟨Λ, D ∓ D⊺⟩ where Λ ∈ RN×N is a matrix of Lagrange multipliers. Then, exterior differentiation

ields

d L D,Λ = −⟨C − ADB, A dD B⟩ + ⟨Λ, dD ∓ dD⊺
⟩ + ⟨dΛ, D ∓ D⊺

⟩
( )

10
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= ⟨dD, −A⊺ (C − ADB) B⊺
+ Λ ∓ Λ⊺

⟩ + ⟨dΛ, D ∓ D⊺
⟩ .

Setting this to zero yields the first-order optimality conditions

A⊺ (C − ADB) B⊺
= Λ ∓ Λ⊺,

D ∓ D⊺
= 0.

xamining the first condition the right-hand side implies symmetry in the left-hand side, allowing for easy
limination of Λ through the expression

A⊺ (C − ADB) B⊺
± B (C − ADB)⊺ A = 0.

Expanding the above and using the second condition D ∓ D⊺
= 0 then yields

A⊺ADBB⊺
± BB⊺D⊺A⊺A = A⊺ADBB⊺

+ BB⊺DA⊺A = A⊺CB⊺
± BC⊺A,

hich vectorizes through the “vec trick” (c.f. Appendix A.1) to yield the claimed result. □

Theorem 3.1 provides the solution to a generic symmetric or skew-symmetric operator inference problem, which
ill be seen to include the C-H-OpInf and NC-H-OpInf procedures employed presently. As mentioned before, a
otable benefit of the generic OpInf procedure is that its solutions satisfy Proposition 2.1, meaning that a solution
omputed using a reduced basis of size n remains optimal via truncation for all n′ < n. The next result shows
hat, under some (fairly strong) assumptions on A, B, this “one-shot” ability continues to hold for the system in
heorem 3.1. Since the proof is straightforward but technical, it is deferred to Appendix A.2.

roposition 3.1. Let U ∈ RN×n be a POD basis. Suppose D̂ ∈ Rn×n uniquely solves the optimization problem in
heorem 3.1 for given Â = U⊺AU ∈ Rn×n and B̂, Ĉ ∈ Rn×ns defined by B̂ = U⊺B, Ĉ = U⊺C. Let n′ < n, and for
ny matrix M̂ which is multiplied with the POD basis U, let M̂′ denote the submatrix obtained by removing the
− n′ highest-frequency basis vectors of U from every relevant multiplication. If Â and B̂B̂⊺ are both diagonal,

hen the unique solution to

argmin
D∈Rn′×n′

⏐⏐⏐Ĉ′
− Â′DB̂′

⏐⏐⏐2 , s.t. D⊺
= ±D,

s given by the truncation D̂′.

roof. See Appendix A.2. □

While Proposition 3.1 is useful to know, it is worth mentioning that its conclusion generally does not hold for
ny of the structure-preserving OpInf methods known to date, including those discussed here. Indeed, while the
iagonality of Â can often be arranged, it is more difficult to construct a suitable B̂B̂⊺ which is diagonal. On the
ther hand, there are many cases when the truncated solution to Theorem 3.1 is close enough to optimal to produce
well performing ROM, making it useful to employ truncation without the guarantee of Proposition 3.1 provided

his property is empirically verified.

.1. Canonical Hamiltonian systems

The first goal is to present an OpInf method applicable to canonical Hamiltonian systems, and connect it to
revious work in [40]. Suppose snapshots of the form x =

(
q p

)⊺ can be obtained, say, as the result of post-
rocessing data from a Lagrangian system via a Legendre transformation (c.f. Sections 2.1 and 5.5). Then, given
hat q, p are the canonical position and momentum variables, it must be true that L = J in (1) and the Hamiltonian
ystem to be modeled is in canonical form. In this case, a Hamiltonian OpInf procedure can be considered which
equires only knowledge of the nonlinear part of ∇ H . To see this, recall that the discrete Hamiltonian can be
xpressed as

H (x) =
1

x⊺Ax + f (x),

2

11
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for a symmetric, potentially unknown A ∈ RN×N , and a known nonlinear function f : RN
→ R. It follows that

the gradient is given by ∇ H (x) = Ax + ∇f(x), and any POD basis U ∈ RN×n yields a reduced Poisson operator
Ĵ = U⊺JU corresponding to the H-ROM discussed in Section 2.2. Notice that J has a canonical form, so that
this operator can be computed without intrusion into any simulation code. Making the obvious Galerkin projection
x̃ = Ux̂ and writing Ĥ = H ◦ x̃, f̂ = f ◦ x̃ then yields the reduced Hamiltonian

Ĥ
(
x̂
)

=
1
2

x̂⊺Âx̂ + f̂
(
x̂
)
,

which depends on the symmetric, potentially unknown reduced operator Â ∈ Rn×n . Provided Â can be computed
or inferred, access to ∇f then implies solvability of the H-ROM

˙̂x = Ĵ∇ Ĥ (x̂) = Ĵ
(

Âx̂ + ∇ f̂ (x̂)
)

, (4)

which will be a low-order Hamiltonian system approximating the original dynamics.
Since A is unavailable in the present setting, (4) is most readily solved by setting up a tractable inference problem

for Â. This means forming the appropriate reduced quantities from snapshot data and solving the constrained
least-squares problem

argmin
Â∈Rn×n

⏐⏐⏐X̂t − ĴÂX̂ + ∇̂ f (X)
⏐⏐⏐2 , s.t. Â⊺

= ±Â, (5)

which has minimizer Â satisfying the desired symmetry. In (5), ∇̂ f (X) = U⊺
∇ f (X) denotes the projection of the

napshot data for the derivative of the nonlinear term. Applying Theorem 3.1 with C = X̂t − Ĵ∇̂ f (X) yields the
quivalent linear system(

Ĵ⊺Ĵ⊕̄X̂X̂⊺
)

vec Â = vec
(

Ĵ⊺X̂t X̂⊺
+ X̂X̂⊺

t Ĵ − Ĵ⊺Ĵ∇̂f(X)X̂⊺
− X̂∇̂ f (X)⊺Ĵ⊺Ĵ

)
, (6)

which is guaranteed (see Section 4) to yield an operator Â which converges to U⊺AU in an appropriate limit.
nterestingly, it is even more useful in practice to make the approximation Ĵ⊺Ĵ ≈ I in (6), which is exact for the
otangent lift algorithm discussed in Section 2.2, yielding the alternative linear system(

I⊕̄X̂X̂⊺
)

vec Â = vec
(

Ĵ⊺X̂t X̂⊺
+ X̂X̂⊺

t Ĵ − ∇̂ f (X)X̂⊺
− X̂∇̂ f (X)⊺

)
, (7)

hich satisfies Proposition 3.1 whenever the POD basis used is drawn from the SVD of X. Inferring Â by way of
olving (7) will be called the C-H-OpInf procedure, and is summarized in Algorithm 1.

emark 3.2. Notice that both inference procedures (6) and (7) preserve an approximation to the reduced
amiltonian Ĥ

(
x̂
)

=
1
2 x̂⊺Âx̂+f̂

(
x̂
)
, which can be considered a perturbation of the true Ĥ . The analysis in Section 4,

articularly Theorem 4.5, guarantees that this perturbation remains bounded throughout the range of the training
ata for a high enough snapshot density and large enough basis size, although, in practice, this property seems to
old for much longer time integrations as well (see Section 5).

Algorithm 1 Canonical Hamiltonian Operator Inference (C-H-OpInf)

Input: Snapshots X ∈ RN×ns of model solution; snapshots ∇f(X) ∈ RN×ns of nonlinear term in the gradient ∇ H
of the Hamiltonian; integer n > 0 and real number η > 0.

utput: Symmetric, reduced operator Â ∈ Rn×n approximating the linear term in the gradient ∇ Ĥ of the reduced
Hamiltonian.

1: Employ the user’s preferred algorithm to build a reduced basis U ∈ RN×n from snapshot data.
2: Form reduced Poisson operator Ĵ = U⊺JU ∈ Rn×n , as well as projected quantities X̂ = U⊺X ∈ Rn×ns and

∇̂ f (X) = U⊺
∇ f (X) ∈ Rn×ns .

3: Solve the n2
× n2 linear system (7) for Â ∈ Rn×n .

Before moving to the case of noncanonical systems, it is worth discussing how the C-H-OpInf procedure
iscussed here relates to the previous H-OpInf work in [40] summarized in Section 2.4. Particularly, if U is
12
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chosen via the cotangent lift algorithm so that U⊺JU = Jn is the canonical symplectic matrix of dimension n,
nd Â = diag

(
Âqq, Âpp

)
is assumed to be block diagonal, then the algorithm presented here reduces to [40,

lgorithm 1]. This is because the C-H-OpInf problem (7) decouples into a pair of problems for each diagonal block
ˆ q, Âp in Â, recovering exactly the minimization problems solved by that algorithm. The formulation from [40]
as the advantage of requiring the solution to two problems of size m2

× m2 (still solvable with Theorem 3.1)
s opposed to one problem of size 2m2

× 2m2, but does not allow any flexibility in the choice of basis U and
annot accurately represent any systems with a nonseparable Hamiltonian. Therefore, it should only be used when
he problem in question is canonical and the continuous operator ∇ H is diagonal in phase space. Conversely, the
nference described in Algorithm 1 can accommodate any reduced basis, requires the solution of only one linear
ystem, and is applicable to any Hamiltonian system in canonical form.

.2. Noncanonical Hamiltonian systems

A primary advantage of the OpInf technique inspired by Theorem 3.1 is that it extends to Hamiltonian systems in
oncanonical form. To see this, suppose snapshots of a potentially unknown Hamiltonian system are collected in an
N ×ns)-matrix X, and that a candidate Hamiltonian function H has been identified. This may occur if, for example,
conserved quantity has been identified but the corresponding Hamiltonian structure remains unknown. Then, an

nalytic expression for ∇ H can be obtained, and hence it is possible to compute the matrix ∇ H (X) ∈ RN×ns of
radients at the snapshot data X, as well as a finite difference approximation Xt ≈ Ẋ. As before, this enables the
onstruction of a POD basis U ∈ RN×n via the SVD of the mean-centered data matrix Y = X − X0, where X0
enotes the matrix each column of which is the initial state x0. Writing the Galerkin approximation x̃ ≈ x0 + Ux̂
gain yields the prototypical H-ROM (see Section 2.2) ẋ = L̂∇ Ĥ where L̂ = U⊺LU. When L is inaccessible,
his suggests a similar inference procedure based on Theorem 3.1 which preserves the antisymmetry necessary for
amiltonian preservation. Particularly, it is possible to form the n × ns reduced quantities

X̂ = U⊺X, X̂t = U⊺Xt , ∇̂ H (X) = U⊺
∇ H (X),

nd solve the optimization problem

argmin
L̂∈Rn×n

⏐⏐⏐X̂t − L̂∇̂ H (X)
⏐⏐⏐2 , s.t. L̂⊺

= −L̂,

which is a straightforward least-squares inference for the antisymmetric L̂. As shown in Theorem 3.1, this is
quivalent to solving the n2

× n2 linear system(
I⊕̄∇̂ H (X)∇̂ H (X)⊺

)
vec L̂ = vec

(
X̂t ∇̂ H (X)⊺ − ∇̂ H (X)X̂⊺

t

)
. (8)

Inferring L̂ based on solving (8) will be called the NC-H-OpInf method, and is summarized in Algorithm 2. While
his inference similarly does not satisfy the hypotheses of Proposition 3.1, it is interesting to note that “one shot”
omputation of L̂ using Algorithm 2 occasionally works quite well in practice when the basis U is chosen from the
VD of Y (see Section 5).

Algorithm 2 Noncanonical Hamiltonian Operator Inference (NC-H-OpInf)

Input: Snapshots X ∈ RN×ns of model solution; snapshots ∇ H (X) ∈ RN×ns of the gradient ∇ H of the Hamiltonian;
integer n > 0 and real number η > 0.

utput: Antisymmetric, reduced operator L̂ ∈ Rn×n approximating the Poisson operator governing the H-ROM
˙̂x = L̂∇ Ĥ .

1: Employ the user’s preferred algorithm to build a (mean-centered) POD basis U ∈ RN×n from snapshot data.
2: Form projected quantities X̂ = U⊺X ∈ Rn×ns and ∇̂ H (X) = U⊺

∇ H (X) ∈ Rn×ns .
3: Solve the n2

× n2 linear system (8) for L̂ ∈ Rn×n .

Remark 3.3. Note that NC-H-OpInf can be used (along with a symplectic time integrator) to obtain dynamics
which preserve any quantity H , regardless of whether or not it corresponds to a true Hamiltonian structure. In this
way, it can be considered a gray-box method requiring only snapshots and a desired conserved quantity.
13
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4. Analysis

Now that the C-H-OpInf and NC-H-OpInf procedures have been described, it is important to validate that the
nferred operators approximate their intrusive counterparts in an appropriate sense. To accomplish this, the following

ild assumptions are needed.

ssumption 4.1. The span of the POD basis U ∈ RN×n tends to RN as n → N , i.e., for any x ∈ RN ,

lim
n→N

⏐⏐P⊥x
⏐⏐ = 0,

here P⊥
:= I − UU⊺.

ssumption 4.2. The approximate time derivatives xt converge to the true derivatives ẋ as the time step ∆t → 0,
.e.,

lim
∆t→0

max
i

|xt (ti ) − ẋ(ti )| = 0.

ssumption 4.3. The snapshot matrices X, ∇ H (X) ∈ RN×ns have maximal rank.

This allows for the following result regarding the convergence of NC-H-OpInf.

heorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, the inferred operator L̂ from the NC-H-OpInf procedure in
lgorithm 2 converges to the intrusive operator L̄ = U⊺LU as ∆t → 0 and n → N.

roof. First, notice that⏐⏐⏐⏐X̂t−L̂∇̂ H (X)
⏐⏐⏐⏐ =

⏐⏐⏐(X̂t −
˙̂X
)

+

(
˙̂X − L̄∇̂ H (X)

)
+

(
L̄ − L̂

)
∇̂ H (X)

⏐⏐⏐
=

⏐⏐⏐U⊺
(
Xt − Ẋ

)
+ U⊺

(
Ẋ − L∇ H (X)

)
+ U⊺LP⊥

∇ H (X) +

(
L̄ − L̂

)
∇̂ H (X)

⏐⏐⏐
=

⏐⏐⏐U⊺
(
Xt − Ẋ

)
+ U⊺LP⊥

∇ H (X) +

(
L̄ − L̂

)
∇̂ H (X)

⏐⏐⏐
≤ |U|

(⏐⏐Xt − Ẋ
⏐⏐+ |L|

⏐⏐P⊥
∇ H (X)

⏐⏐)+

⏐⏐⏐L̄ − L̂
⏐⏐⏐ ⏐⏐⏐∇̂ H (X)

⏐⏐⏐ .
herefore, for each n ≤ N ,

min
L̂

⏐⏐⏐X̂t − L̂∇̂ H (X)
⏐⏐⏐ ≤ min

L̂

[
|U|

(⏐⏐Xt − Ẋ
⏐⏐+ |L|

⏐⏐P⊥
∇ H (X)

⏐⏐)+

⏐⏐⏐L̄ − L̂
⏐⏐⏐ |∇ H (X)|

]
= |U|

(⏐⏐Xt − Ẋ
⏐⏐+ |L|

⏐⏐P⊥
∇ H (X)

⏐⏐) .
y Assumptions 4.1 and 4.2, for any ε > 0 there exists an n′ < N and ∆t ′ > 0 such that⏐⏐U⊺

(
Xt − Ẋ

)
+ U⊺LP⊥

∇ H (X)
⏐⏐ ≤ |U|

(⏐⏐Xt − Ẋ
⏐⏐+ |L|

⏐⏐P⊥
∇ H (X)

⏐⏐) <
ε

2
.

Therefore, for n ≥ n′ and ∆t ≤ ∆t ′ it follows from an elementary calculation that

min
L̂

⏐⏐⏐(L̄ − L̂
)

∇̂ H (X)
⏐⏐⏐ < ε,

rom which it can be concluded that L̂ → L̄, since ∇̂ H (X) has maximal rank. □

A similar result holds for C-H-OpInf provided a cotangent lift basis U is used.

Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3, and using a cotangent lift POD basis U, the inferred operator
ˆ from the C-H-OpInf procedure in Algorithm 1 converges to the intrusive operator Ā = U⊺AU as ∆t → 0 and
→ N.

emark 4.6. Note that the assumption of a cotangent lift basis in Theorem 4.5 can be dropped provided (6) is
olved instead of (7) in the C-H-OpInf Algorithm 1.
14
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Proof. First, notice that

Ẋ − JUU⊺ (AUU⊺X + ∇ f (X))

=
(
Ẋ − J (AX + ∇ f (X))

)
+ J

(
P⊥AX + P⊥

∇ f (X) + UU⊺AP⊥X
)

= J
(
P⊥AX + P⊥

∇ f (X) + UU⊺AP⊥X
)
,

ince J∇ H (X) = J (AX + ∇ f (X)). Therefore, it follows as before that for every n ≤ N ,⏐⏐⏐X̂t − Ĵ
(

ÂX̂ + ∇̂ f (X)
)⏐⏐⏐ =

⏐⏐⏐(X̂t −
˙̂X
)

+

(
˙̂X − Ĵ

(
ĀX̂ + ∇̂ f (X)

))
+ Ĵ

(
Ā − Â

)
X̂
⏐⏐⏐

=

⏐⏐⏐U⊺
(
Xt − Ẋ

)
+ U⊺J

(
P⊥AX + P⊥

∇ f (X) + UU⊺AP⊥X
)
+ Ĵ

(
Ā − Â

)
X̂
⏐⏐⏐ ,

ow, for any ε > 0 we can choose n′ < N and ∆t ′ > 0 so that⏐⏐U⊺
(
Xt − Ẋ

)
+ U⊺J

(
P⊥AX + P⊥

∇ f (X) + UU⊺AP⊥X
)⏐⏐

≤ |U|
(⏐⏐Xt − Ẋ

⏐⏐+ ⏐⏐P⊥
⏐⏐ |J|

(
|A| |X| + |∇ f (X)| + |U|

2
|A| |X|

))
<

ε

2
,

and therefore we have

min
Â

⏐⏐⏐Ĵ (Ā − Â
)

X̂
⏐⏐⏐ < ε,

rovided n ≥ n′ and ∆t < ∆t ′. Hence, Â → Ā as desired, since Ĵ, X̂ have maximal rank. □

Remark 4.7. While useful, the results of this section only hold in the “infinite data limit”, and so cannot guarantee
good performance of the OpInf methods (and projection-based ROMs in general) in all cases of practical interest,
particularly in the predictive regime. It is an ongoing effort to develop rigorous estimates which are more valuable
in the presence of partial or limited data.

5. Numerical examples

Here, numerical results are reported on several benchmark problems from hydrodynamics and linear elasticity,
including a linear wave equation, a manufactured test case which has a non-separable canonical Hamiltonian form,
the Korteweg–de Vries equation, the Benjamin–Bona–Mahony equation, and a 3D linear elastic clamped plate
problem undergoing high-frequency oscillations. The primary error metrics used for comparison will be relative ℓ2
error in the state approximation,

Rℓ2

(
X, X̃

)
=

⏐⏐⏐X − X̃
⏐⏐⏐
2

|X|2
,

s well as signed error in the Hamiltonian (or other conserved quantity) approximation H (x(t)) − H0 where
H0 = H (x(0)). When speaking about the properties of POD bases, it will also be useful to evaluate the snapshot
nergy, computed for a given rank r snapshot matrix X with singular values {σi }

r
i=1 and POD basis size n ≤ r as

Es (X, n) =

∑n
k=1 σk∑r
k=1 σk

.

ote that, when appropriate, both uncentered (x̃ = Ux̂) and mean-centered (x̃ = x0 + Ux̂) Galerkin projections will
e considered. This will be denoted by the letters “MC” in the figures below. Of course, mean-centering requires
POD of the centered snapshot matrix discussed in Section 2.2, and is infeasible for a general OpInf method. On

he other hand, NC-H-OpInf is amenable to this technique, since the inferred operator L̂ does not interface directly
ith the approximate solution x̃.
When evaluating the performance of the H-OpInf methods in Section 3, comparisons are drawn with the

tandard intrusive Galerkin ROM (G-ROM) and Hamiltonian ROM (H-ROM) discussed previously, as well as the
tandard Galerkin OpInf (G-OpInf) when appropriate. Reproductive as well as predictive problems are considered,
ncompassing both prediction in time as well as prediction across parameter space. Note that all ROMs considered
re equally efficient online; since the chosen examples have polynomial nonlinearities, their resulting ROMs do not

epend on the full-order state space N , instead scaling only with the reduced basis size n.
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Remark 5.1. On canonical Hamiltonian examples, the NC-H-OpInf algorithm will infer only Ĵ ≈ U⊺JU, which is
lready known. Since it is instructive to see that the NC-H-OpInf ROM behaves appropriately on these examples,
omparisons including it are presented for these cases, although it should be noted that this is not the intended
urpose of NC-H-OpInf.

.1. Linear wave equation

First, consider the one-dimensional linear wave equation with constant speed c,

ϕt t = c2ϕss, 0 ≤ s ≤ l,

ϕ(0) = h(y(s)), ϕt (0) = 0,
(9)

here the boundary conditions are periodic and the (parameterized) initial condition is a cubic spline defined by

h(y) =

⎧⎪⎨⎪⎩
1 −

3
2 y2

+
3
4 y3 0 ≤ y ≤ 1,

1
4 (2 − y)3 1 < y ≤ 2,

0 y > 2,

y(s, α) = α

⏐⏐⏐⏐s −
1
2

⏐⏐⏐⏐ .
etting x =

(
q p

)⊺
∈ R2 where q = ϕ and p = ϕt , this problem is readily recast in the canonical Hamiltonian

orm

ẋ = J∇ H (x) =

(
0 1

−1 0

)(
−c2∂ss 0

0 1

)(
q
p

)
,

here the Hamiltonian functional is given by

H (x) =
1
2

∫ l

0

(
p2

+ c2q2
s

)
ds,

and it follows quickly from differentiation that Hq = −c2qss, Hp = p. As discussed in Section 2.5, semi-discretizing
n x and applying AVF integration to this system yields the implicit midpoint rule

xk+1
− xk

∆t
= JA

(
xk+1

+ xk

2

)
=

(
0 I

−I 0

)(
−c2D2

0 I

)(
xk+1

+ xk

2

)
,

where x =
(
q p

)⊺ has been overloaded, D2 denotes the circulant matrix which results from using a three-point
stencil finite difference method to discretize the 1-D Laplace operator, and the discrete Hamiltonian (also overloaded
as H ) is given by

H (x) =
1
2

N/2∑
i=1

(
p2

i + c2 (qi+1 − qi )
2
+ (qi − qi−1)

2

4∆x2

)
.

ote that the AVF method will preserve this discrete Hamiltonian exactly by construction. Some snapshots of this
olution for different values of α are displayed in Fig. 1.

To evaluate the performance of the ROMs discussed thus far, two experiments will be conducted: one testing
rediction in time, and one testing prediction in parameter space. For each, the wave speed is fixed to c = 0.1, the

length to l = 1, and the spatial domain is divided into M = 500 equally sized intervals (yielding a state vector x
of dimension N = 2M = 1000).

5.1.1. Reproductive versus predictive dynamics
The first goal is to compare the C-H-Opinf and NC-H-Opinf ROM methods discussed in Section 3 to their

intrusive counterparts when predicting trajectories outside the temporal range of their training data. For this, a total
of 501 snapshots of the FOM solution with initial condition parameter α = 5 are uniformly collected on the time
interval [0, T ] where T = 10. These data are used to train three POD bases: one constructed in the “ordinary
way” by forming the SVD of a data matrix of size N × nt containing snapshots of x, another constructed using the
otangent lift algorithm described in Section 2.2, and the final constructed block-wise using the SVD of snapshot
ata for position q and momentum p separately (also described in Section 2.2). The snapshot energies and projection
rrors associated to these bases are shown in Fig. 2. It is evident that all bases are capable of capturing roughly 99%
16
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Fig. 1. Solution snapshots from the linear wave example for different values of the parameter α.

Fig. 2. POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the nonparametric (α = 5) linear wave
example. “MC” indicates mean-centering of the snapshots was performed.

of the snapshot energy with only n = 15 modes, despite exhibiting a slowly decaying projection error characteristic
of hyperbolic problems.

Fig. 3 plots the relative ROM errors as a function of basis size in the case where the ROMs are integrated only in
the range of the training data, i.e. t ∈ [0, 10]. Notice that both the intrusive G-ROM and the G-OpInf ROM are less
accurate than their Hamiltonian counterparts, and that the G-OpInf ROM is somewhat unstable with the addition
of basis modes. It is further interesting to observe the differences in performance between the ROM algorithms as
the underlying basis is changed. Particularly, both the cotangent lift and (q, p)-block basis lead to lower relative
errors than ordinary POD, although ordinary POD has the significant (empirical) advantage of stability under OpInf
truncation. Indeed, in the case of the ordinary POD basis, all operators used in the OpInf ROMs were computed
in “one shot” via truncation from the operators learned at the largest basis size. While this is not guaranteed to
be optimal according to Proposition 3.1, it is interesting to note that this resulted in almost no degradation of
performance. This contrasts highly with the case of the cotangent lift and (q, p) block bases, for which OpInf
truncation led to unusable results (not pictured).

To show the effect of each ROM on energy preservation, Fig. 4 uses the block (q, p) basis case with n = 16
modes to show the change in the Hamiltonian H over time. From this, it is seen that the intrusive H-ROM and

−8
NC-H-OpInf ROM conserve energy exactly, while the C-H-OpInf ROM conserves energy to order 10 . Of course,

17
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Fig. 3. Relative state errors as a function of basis modes for the ROMs in the linear wave example (reproductive case T = 10). “MC”
ndicates the use of a mean-centered reconstruction.

Fig. 4. ROM energy errors for the linear wave example in the reproductive case (T = 10) when using a block (q, p) POD basis with
mean-centering (where applicable) and with n = 16 modes.

Fig. 5. Plots of the FOM and ROM solutions to the linear wave equation in the predictive case (T = 100) when using a standard POD
basis with n = 16 modes. Note that mean-centered reconstructions were used for all but the G-OpInf and C-H-OpInf ROMs.

this is a consequence of the fact that the matrix Â learned by C-H-OpInf represents only an approximation to
the gradient of the true reduced Hamiltonian Ĥ . On the other hand, note that C-H-OpInf still conserves H much
better than G-OpInf or the intrusive G-ROM, and is guaranteed to exactly preserve the approximate reduced energy
H̃ =

1
2 x̂⊺Âx̂ (not pictured), which follows since the matrix Ĵ = U⊺JU is skew-symmetric. It is further remarkable

hat the conservation properties of the H-ROMs displayed in these plots do not depend on the basis construction
echanism or the number of basis modes, n.
Moving beyond the reproductive case, it is useful to see what happens when the ROMs are tested on an interval of

ntegration which is much larger. Fig. 6 plots the relative ROM errors as a function of basis modes when the ROMs
re tested over an interval of [0, T ] with T = 100, which is ten times the interval of training. Here the instabilities
18
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Fig. 6. Relative state errors as a function of basis modes for the ROMs in the linear wave equation example (predictive case T = 100).
“MC” indicates the use of a mean-centered reconstruction.

Fig. 7. ROM energy errors for the linear wave equation example in the predictive case (T = 100) when using a block (q, p) POD basis
with mean-centering (where applicable) and with n = 16 modes.

in the G-OpInf ROM are made readily apparent, as certain numbers of modes lead extreme blow-ups regardless of
the underlying basis construction. It is interesting to note that the intrusive G-ROM also exhibits similar blow-up
in the cases (not pictured here) when the POD basis is constructed with ordinary POD and no mean-centering is
applied. Conversely, both the intrusive and OpInf H-ROMs exhibit a steady and predictable decrease in error with
the addition of basis modes. Note that a comparative visualization of the FOM and ROM solutions is shown in
Fig. 5, which plots each solution when an ordinary POD basis is used with n = 16 modes.

Fig. 7 displays the variation in the value of the Hamiltonian over this larger integration range when the ROMs
are computed using a (q, p) block basis of n = 16 modes. As before, the intrusive G-ROM and OpInf G-ROM are
not sufficiently conservative, which has consequences for their accuracy and stability. Conversely, the NC-H-OpInf
ROM conserves H on the same order as the intrusive H-ROM, and the C-H-OpInf ROM conserves H to order
10−8, exhibiting similar performance to integration over the training interval.

5.1.2. Parametric case
In addition to prediction in time, it is also useful to consider applying ROMs for the prediction of solutions

across the parameter space spanned by α ∈ R, which controls the initial state of the wave (c.f. Fig. 10). To that
end, the next experiment examines how well the present ROM methods are able to predict solutions with variable
initial conditions. To accomplish this, eleven uniformly distributed parameters α ∈ [5, 15] are chosen for training,
and 501 snapshots of the FOM solution in the range [0, 10] are collected using each parameter instance. These data
are then concatenated to form the snapshot matrix which is used to train the POD decompositions. The snapshot
energies and projection errors associated to this procedure are shown in Fig. 8, where it is evident that the inclusion
of multiple solution trajectories slows down both the increase in the snapshot energy and the decay of the projection
error.

For testing, six uniformly distributed parameters α ∈ [5.5, 14.5] are chosen (note that these are disjoint from

the training parameters), and snapshot data of each solution in the temporal range t ∈ [0, 100] is collected for
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“

Fig. 8. POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the parametric linear wave example.
MC” indicates that mean-centering of the snapshots was performed.

Fig. 9. Relative state errors as a function of basis modes for the ROMs in the linear wave equation example (parametric predictive case
T = 100). “MC” indicates the use of a mean-centered reconstruction.

comparison with the ROM integration. The ROMs are then tested over this interval beginning from each unseen
initial condition, and the average relative error over all test snapshots is reported.

Fig. 9 illustrates the results of this experiment. As in the purely predictive case, we see that the G-OpInf ROM
is highly sensitive to basis size, while the intrusive H-ROM and H-OpInf ROMs exhibit a predictable increase in
accuracy with the addition of basis modes. Moreover, the intrusive G-ROM is significantly less accurate in the
case of an ordinary POD basis, and indeed blows up similarly to the G-OpInf ROM in the case (not pictured) that
mean-centering is not applied. A consequence of this is illustrated in Fig. 10, which shows the FOM and ROM
solutions in the case that α = 9.1 and the ROMs are computed using an ordinary POD basis with mean-centering
and with n = 28 modes. Notice that the G-OpInf ROM becomes increasingly unstable while the others remain
bounded and close to the FOM solution throughout the range of integration.

Finally, it is illustrative to observe the energy plots in Fig. 11, computed using a block (q, p) basis with mean-
centering and with n = 16 modes. Here it is obvious that the improved conservation properties of the intrusive and
OpInf H-ROMs persist in this setting as well, leading to improved accuracy and stability over time when compared
to the G-ROMs which do not have this property.

5.2. A non-separable canonical example

Since the linear wave equation can be similarly handled with the techniques in [40], it is worth considering a

simple canonical example where the C-H-OpInf method is necessary. Consider the following Hamiltonian and its
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Fig. 10. FOM and ROM solutions for the linear wave equation example in the parametric predictive case (α = 9.1, T = 100) when using
n ordinary POD basis without mean-centering and with n = 28 modes.

Fig. 11. ROM energy errors for the linear wave equation example in the parametric predictive case (α = 9.1, T = 100) when using a block
q, p) POD basis with mean-centering (where applicable) and with n = 16 modes.

overloaded) discrete counterpart

H (q, p) =

∫ l

0
(1 + q(s)p(s)) ds, H (x) =

N/2∑
i=1

(1 + qi pi ) ,

here x =
(
q p

)⊺ is the semidiscrete state variable of dimension N = 2M . Applying the implicit midpoint method
to the canonical Hamiltonian system ẋ = J∇ H (x) generates the canonical dynamics

xk+1
− xk

∆t
= JA

(
xk+1

+ xk

2

)
=

(
0 I

−I 0

)(
0 I
I 0

)(
xk+1

+ xk

2

)
.

Clearly, ∇ H (x) = Ax does not satisfy the separability hypothesis of [40, Algorithm 1], and therefore that method
should not be effective at learning this system. Conversely, the C-H-OpInf Algorithm 1 applies regardless of the
separability of H , so it is expected that this system can still be learned through this approach. To see that this is
the case, a parameterized initial condition is considered with dimension M = 500,

x0(α) =
(
q0 p0

)⊺
=
(
e−α(q+1) sin(αq) p

)⊺
,

and, as before, eleven uniformly distributed parameters α ∈ [5, 15] are chosen for training, and 501 snapshots of
the FOM solution in the range [0, 2] are collected using each parameter instance. The resulting POD projection

errors corresponding to these data are shown in Fig. 13, along with some solution snapshots in Fig. 12.
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o

Fig. 12. Solution snapshots from the non-separable canonical example for different values of the parameter α.

Fig. 13. POD projection errors corresponding to the bases used in the non-separable canonical example. “MC” indicates that mean-centering
f the snapshots was performed.

Again, the predictive case is considered. For testing, six uniformly distributed parameters α ∈ [5.5, 14.5], disjoint
from the training data, are chosen, and snapshot data of each solution in the range [0, 10] is collected for comparison
with the ROM integration. The ROMs are then tested over this interval beginning from each unseen initial condition,
and the average relative error over all test snapshots is reported. In addition to the ROMs seen in the linear wave
equation example, note that the H-OpInf ROM of [40] discussed in Section 2.4 is also reported.

The results of this experiment are displayed in Fig. 14. As expected, H-OpInf cannot produce a useful ROM,
while C-H-OpInf is effective whenever the POD basis is built block-wise or with the cotangent lift algorithm.
Interestingly, no Hamiltonian ROM algorithm is useful in the case where the POD basis is built from an SVD of
the full snapshot matrix, while the intrusive Galerkin ROM appears to work quite well. This could be due to the
fact that this Hamiltonian system decouples over q and p: a quick calculation shows that q = et q0 and p = e−t p0,
so the scale separation in q, p grows exponentially as t increases. Conversely, C-H-OpInf with a cotangent lift basis
learns an accurate and stable ROM, while the H-OpInf algorithm is unable to do so due to its assumption of a block
diagonal Â. In addition to the state errors, conservation of the system Hamiltonian is displayed in Fig. 15, where
it is clear that C-H-OpInf is conservative to a much higher order than either the Galerkin ROMs or the H-OpInf
ROM.
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Fig. 14. Relative state errors as a function of basis modes for the ROMs in the non-separable canonical example (parametric predictive case
T = 10). “MC” indicates the use of a mean-centered reconstruction.

Fig. 15. ROM energy errors for the non-separable canonical example in the parametric predictive case (α = 7.3, T = 10) when using a
otangent lift POD basis with mean-centering (where applicable) and with n = 10 modes. Note that the intrusive G-ROM and intrusive
-ROM are identical in this case.

.3. Korteweg–De Vries equation

Moving beyond canonical Hamiltonian systems, consider the Korteweg–De Vries (KdV) equation [81]

ẋ = αxxs + ρxs + γ xsss, x ∈ [−l, l] × [0, T ],

hich depends on the parameters α, ρ, γ ∈ R. This equation has infinitely many integrals of motion [72], the first
ew of which are mass, momentum, and energy:

M(x) =

∫ l

−l
x ds, P(x) =

∫ l

−l
x2 ds, E(x) =

∫ l

−l

(α

6
x3

+
ρ

2
x2

−
γ

2
x2

s

)
ds.

oreover, KdV has a noncanonical bi-Hamiltonian structure, meaning that it can be recast as a Hamiltonian system
n two distinct ways. While only the first form will be considered here, the second form is also interesting and (to
ate) no POD-ROMs for it have been seen in the literature. Therefore, some additional discussion regarding this
econd form is included in Appendix A.3.

.3.1. First Hamiltonian formulation
Consider the Hamiltonian functional H (x) = E(x), and note that its gradient satisfies

∇ H (x) =
α

2
x2

+ ρx + γ xss .

hen, recalling that L := ∂s is an antisymmetric operator with respect to the usual metric on L2(R), it follows that
ẋ = L∇ H (x) is a Hamiltonian system equivalent to the KdV equation. Since L has nontrivial kernel, this system is

not canonical, meaning that there is no obvious way to separate the state x into position and momentum variables.
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Assuming periodic boundary conditions and a discretization x ∈ RN , the differential operators ∂s and ∂ss can be
discretized with central finite differences as the circulant matrices

L =
1

2∆x

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 . . . −1

−1 0 1 0 . . . 0
. . .

. . .
. . .

0 . . . 0 −1 0 1
1 . . . 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠ , B =
1

(∆x)2

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 0 . . . 1
1 −2 1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1
1 . . . 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎠ ,

ielding the semidiscrete Hamiltonian system

ẋ = L∇ H (x) = L
(α

2
x2

+ ρx + νBx
)

.

Notice that the only nonlinearity in this system is polynomial in x, meaning that the quadrature necessary for AVF
ime discretization (see Section 2.5) can be computed exactly. This leads to the fully discrete system

xk+1
− xk

∆t
= L

[α
6

((
xk)2

+ xkxk+1
+
(
xk+1)2

)
+ (ρI + νB) xk+

1
2

]
,

where xk+
1
2 = (1/2)

(
xk

+ xk+1
)

and vector products are interpreted element-wise. This represents the KdV FOM
and is solved by Newton iteration. More precisely, at each time step k we have the (∆t-normalized) residual and
Jacobian functions

Rk (v) = v − xk
− ∆t L

[
α

6

((
xk)2

+ xkv + v2
)

+

(
ρI + νB

2

) (
xk

+ v
)]

,

Jk (v) = I −
∆t
2

L
[α

3

(
Diag

(
xk)

+ 2 Diag (v)
)
+ ρI + νB

]
,

which are easily constructed and used to iterate vi+1
= vi

− Jk
(
vi
)−1 Rk

(
vi
)

until convergence. It can be checked
that this scheme exactly preserves the discrete Hamiltonian,

H (x) =
1
2

N∑
j=1

(
α

3
x3

j + ρx2
j − ν

(
x j+1 − x j

∆x

)2
)
∆x .

From this, it is possible to compute the intrusive G-ROM and intrusive H-ROM as described in Section 2.5.
Particularly, straightforward Galerkin projection onto a reduced basis contained in the columns of U yields the
reduced-order G-ROM system

˙̂x = U⊺L∇ H
(
x0 + Ux̂

)
= U⊺L

[α
2

(
x0 + Ux̂

)2
+ (ρI + νB)

(
x0 + Ux̂

)]
=

(α

2
U⊺Lx2

0 + U⊺L (ρI + νB) x0

)
+ U⊺L (α Diag (x0) + (ρI + νB)) Ux̂ +

α

2
U⊺L

(
Ux̂
)2

:= ĉ + Ĉx̂ + T̂
(
x̂, x̂

)
,

here T̂ is a precomputable order-three tensor with components T̂ a
bc = (α/2) U a

i L i
jU

j
b U j

c . Similarly, a reduced-order
H-ROM system is given by

˙̂x = L̂∇ Ĥ
(
x̂
)

= L̂U⊺
[α

2

(
x0 + Ux̂

)2
+ (ρI + νB)

(
x0 + Ux̂

)]
= L̂

[α
2

(
U⊺x2

0 + 2 U⊺Diag (x0) Ux̂ + U⊺
(
Ux̂
)2
)

+ (ρI + νB)
(
x0 + Ux̂

)]
,

= L̂
[(α

2
U⊺x2

0 + U⊺ (ρI + νB) x0

)
+ U⊺ (α Diag (x0) + (ρI + νB)) Ux̂ +

α

2
U⊺
(
Ux̂
)2
]

:= L̂
(

ĉ + Ĉx̂ + T̂
(
x̂, x̂

))
,

here T̂ : Rn
× Rn

→ Rn is a precomputable order-three tensor with components T̂ a
bc = (α/2)U a

i U i
bU i

c . In either
ˆ
case, applying AVF for temporal discretization and using the fact that T is symmetric in its lower indices yields
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Fig. 16. POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the KdV equation example. “MC”
ndicates mean-centering of the snapshots was performed.

he fully discrete ROM (note that L̂ = I in the G-ROM),

x̂k+1
− x̂k

∆t
= L̂

[
ĉ + Ĉx̂k+

1
2 +

1
3

(
2 T̂

(
x̂k, x̂k+

1
2

)
+ T̂

(
x̂k+1, x̂k+1))] ,

hich is again solvable with Newton iterations. In this case, the (∆t-normalized) residual and Jacobian at time step
are given by

R̂k (v̂) = v̂ − x̂k
− ∆t L̂

[
ĉ +

1
2

C
(
x̂k

+ v̂
)
+

1
3

(
T̂
(
x̂k, x̂k

+ v̂
)
+ T̂

(
v̂, v̂

))]
,

Ĵk (v̂) = I − ∆t L̂
[

1
2

C +
1
3

(
T̂
(
x̂k)

+ 2 T̂
(
v̂
))]

,

here T̂
(
x̂k
)

indicates that the symmetric tensor T̂ is applied to the vector x̂ in either of its lower indices, yielding
n n × n matrix.

The goal is now to compare these intrusive ROMs to the NC-H-OpInf ROM from Section 3 as well as a G-OpInf
OM which does not incorporate any structure information. To facilitate a fair comparison, the G-OpInf procedure
mployed presently will not be black-box, but will instead aim to infer L̂ in the intrusive H-ROM ˙̂x = L̂∇̂ H (x̂)
imilarly to NC-H-OpInf, but using the generic technique of Section 2.3. This way, both the G-OpInf ROM and the
C-H-OpInf ROM are assumed to use analytic knowledge of the nonlinear part of ∇ Ĥ , and both OpInf ROMs can
e integrated similarly to the intrusive H-ROM, but with the intrusive governing operator replaced by the inferred
ne. For experimental parameters, we choose l = 20, (α, β, γ ) = (−6, 0, −1), N = 500, and an initial condition

x0(s) = sech2
(

s
√

2

)
,

hich generates a soliton solution for s ∈ R. To train the OpInf ROMs, 1001 snapshots of the solution x and the
gradient ∇ H (x) are collected uniformly on the interval [0, T ] with T = 20.

Recall that there is no analogue of a block basis or cotangent lift method in the case of noncanonical Hamiltonian
systems, so the POD bases U employed here are trained using the full snapshot matrix. The associated snapshot
energies and projection errors are displayed in Fig. 16, where it is evident that the snapshot energy accumulates
quite slowly with the addition of basis modes. On the other hand, the use of ordinary POD bases again allows for
the one-shot computation of all OpInf ROMs via truncation from the OpInf solution at the highest number of modes,
creating large savings in computational cost. While this is unlikely to be provably optimal in view of Proposition 3.1,
the empirical difference in performance is small enough to justify the substantial decrease in computational time
necessary for computing the ROMs.

As before, the performance of these ROMs in both predictive and reproductive cases is considered. The relative
state errors of each ROM as a function of basis modes are shown in Fig. 17, with the reproductive case (T = 20)
on the left and the predictive case (T = 100) on the right. Reported are the errors with and without mean-centering

by x0, as it is interesting to observe the effect of this choice. Notice that mean-centering in the POD basis appears
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Fig. 17. Relative state errors as a function of basis modes for the ROMs in the KdV equation example. Left: reproductive case (T = 20).
Right: predictive case (T = 100). “MC” indicates the use of a mean-centered reconstruction.

Fig. 18. FOM and ROM solutions to the KdV equation example with mean-centering (where applicable) and n = 32 modes (predictive case
T = 100).

to make the intrusive ROMs more accurate and the OpInf ROMs more stable, perhaps because it ensures that the
value of the Hamiltonian is exact at x̂ = 0. However, in either case the NC-H-OpInf ROM remains more accurate
and stable than the G-OpInf ROM, demonstrating the benefits of preserving antisymmetry in the learned operator.
Figs. 18 and 19 provide a comparative illustration of the FOM and ROM solutions in the case that n = 32 modes and
mean-centering is applied. While both OpInf ROMs are capable of predicting the general trajectory of the soliton,
the NC-H-OpInf ROM exhibits much less artifacting over the rest of the domain—a consequence of capturing the
correct latent space dynamics. Note that, in either case, the performance of the OpInf ROM improves substantially
as the number of modes increases, eventually leveling off around n = 60 as a consequence of the failure of the
learned dynamics to remain Markovian (see [82]).

Besides decreased state errors, Fig. 20 shows the improved conservation of energy, mass, and momentum
displayed by the H-ROMs over the G-ROMs when a mean-centered POD basis with n = 48 modes is used. Again,
the conservation behavior of the intrusive H-ROM and the NC-H-OpInf ROM is orders of magnitude more accurate
than the intrusive G-ROM or the G-OpInf ROM, reflecting the notion of the Hamiltonian as a conserved quantity.
It is also clear that the mass and momentum are preserved by the H-ROMs at least as well as the by the G-ROMs,
demonstrating that other conserved quantities are not sacrificed for Hamiltonian preservation. Finally, it is useful
to note that, as before in the canonical case, this behavior persists regardless of the number of basis modes used in

the ROM.
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a

Fig. 19. Snapshots in time corresponding to the FOM and ROM solutions to the KdV equation example with mean-centering (where
pplicable) and n = 32 modes (predictive case T = 100).

Fig. 20. Errors in conserved quantities for the (mean-centered) ROMs in the KdV equation example in the predictive case (T = 100) when
using a POD basis with n = 48 modes.
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5.4. Benjamin-Bona-Mahoney equation

As another example, consider the Benjamin–Bona–Mahony (BBM) equation, also referred to as the regularized
ong-wave equation,

ẋ = αxs + βxxs − γ ẋss .

The BBM equation represents an alternative to the KdV equation introduced in [83] and later in [84], intended as
a model for the unidirectional propagation of long-range water waves with small amplitude. This equation has a
noncanonical Hamiltonian form defined by the data:

L = −
(
1 − ∂2

s

)−1
∂s, H (x) =

1
2

∫ ℓ

0
αx2

+
β

3
x3 ds,

here L2 (R) is skew-symmetric and H is the Hamiltonian. The BBM equation is distinct from KdV in that it
s not completely integrable, possessing only three globally conserved quantities. In addition to H , these are the

omentum and kinetic energy:

P(x) =

∫ ℓ

0
(x − γ xss) ds, K E(x) =

1
2

∫ ℓ

0

(
x2

+ γ x2
s

)
ds.

Because the governing operator L is unwieldy to spatially discretize, the BBM equation has (to the authors’
nowledge) never been simulated in Hamiltonian form. On the other hand, it is straightforward to discretize this
ystem with pseudospectral techniques. In particular, denote the Fourier and inverse Fourier transforms of a function
f : R → R by

f̂ (ξ ) := (F f ) (ξ ) =

∫
∞

−∞

f (ξ )e−2π iξ x , f (x) =

(
F−1 f̂

)
(x) =

∫
∞

−∞

f̂ (ξ )e2π iξ x .

hen, basic properties of the Fourier transform (see e.g. [85]) show that the BBM equation has the equivalent
non-Hamiltonian) expression

ẋ = F−1
(

−2π i F (∇ H (x)) (ξ )
1 + 4γπ2ξ 2

)
(x),

where ∇ H (x) = αx + (β/2)x2. The FOM used presently is generated from this expression by semidiscretizing x
s x ∈ RN with N = 1024 and utilizing the fast Fourier transform and “solve ivp” functions found in the SciPy

library [86]. More precisely, given the discrete Hamiltonian

H (x) =
1
2

N∑
j=1

(
αx2

j +
β

3
x3

j

)
∆x,

the FOM is computed by solving the system

ẋ = F−1
(

−2π i F (∇ H (x))

1 + 4γπ2ξ 2

)
,

ith an explicit Runge–Kutta method of order 8, and F ,F−1 are the discrete Fourier and inverse Fourier transforms
efined in terms of the vector k = m =

(
0 1 ... N − 1

)⊺ of nonnegative integers at most N − 1,

F (x) =

N−1∑
m=0

xm exp
(

−
2π i
N

km
)

, F−1(ξ ) =
1
N

N−1∑
k=0

ξk exp
(

2π i
N

km
)

.

Since it is challenging to build an intrusive Hamiltonian ROM for the BBM system, it is useful to see if the
governing operator can be effectively learned by the OpInf methods seen in Section 3. This would allow for a
nonintrusive spatial ROM which preserves the underlying Hamiltonian structure, which could be valuable in cases
where conservation is paramount. As before, accomplishing this means inferring L̂ in ˙̂x = L̂∇ Ĥ

(
x̂
)
, which is
readily done by solving the linear system in Eq. (8). Similar to the case of KdV, this result will be compared to the
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Fig. 21. Left: POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the BBM equation example.
“MC” indicates mean-centering of the snapshots was performed.

nonintrusive ROM generated by inferring L̂ using the generic OpInf technique described in Section 2.3. Provided
a suitable L̂ is available, the desired Hamiltonian ROM becomes

˙̂x = L̂∇ Ĥ
(
x0 + Ux̂

)
= L̂U⊺

[
α
(
x0 + Ux̂

)
+

β

2

(
x0 + Ux̂

)2
]

= L̂
[

U⊺

(
αx0 +

β

2
x2

0

)
+ U⊺ (αI + β Diag x0) U + T̂

(
x̂, x̂

)]
= L̂

(
ĉ + Ĉx̂ + T̂

(
x̂, x̂

))
,

where T̂ is precomputable with components T a
bc = (β/2)U a

i U i
bU i

c similar to the case of KdV. With these definitions
of ĉ, Ĉ, T̂, AVF integration yields the BBM ROM system

x̂k+1
− x̂k

∆t
= L̂

[
ĉ + Ĉx̂k+

1
2 +

1
3

(
2 T̂

(
x̂k, x̂k+

1
2

)
+ T̂

(
x̂k+1, x̂k+1))] ,

hich is solvable with Newton iterations identically to the KdV system.
For the present experiment, the parameters in the governing equation are set to (α, β, γ ) =

(
1, 1, 10−4

)
and 2001

napshots of x, ∇ H (x) are collected in the interval [0, T ] for T = 0.5, starting from the initial condition

x0 = 7 sech2

(√
1

5γ
(s − 0.25)

)
+ 3 sech2

(√
1

6γ
(s − 0.35)

)
.

his generates a nonperiodic 2-solitary wave solution, which experiences an inelastic collision over the length of
he training integration. The relative POD energies and reconstruction errors of the computed POD bases are shown
n Fig. 21, where it is seen that the reconstruction error decays quite slowly as a function of basis modes. It is
urther interesting to observe that the first eigenvector of the mean-centered basis contains much more information
han the others, although this does not appear to yield a faster decrease in reconstruction error. These data are used
o train the NC-H-OpInf ROM and a corresponding G-OpInf ROM.

For testing, AVF time integration is carried out to T = 0.5 and T = 1, respectively, representing reproductive
nd predictive scenarios. The relative errors of these ROMs as a function of basis size are displayed in Fig. 22,
here it can be seen that the errors for the NC-H-OpInf ROMs are about half of those for the G-OpInf ROMs.
owever, it is also clear that this example poses a much greater challenge for either OpInf ROM, likely due to

he nonperiodic and inelastic nature of the solitary wave collisions present in the BBM solution, as well as the
omplicated form of the governing operator L. It is interesting to note the effect of mean-centering here: in either
ase, there is a significant gain in performance for middling numbers of modes (20–60) which diminishes as more
odes are added.
Visual comparisons of the FOM and ROM solutions in the predictive case are shown in Figs. 23 and 24, where
wo inelastic collisions are pictured and the second collision occurs outside the range of the training data (note
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R

Fig. 22. Relative state errors as a function of basis modes for the ROMs in the BBM equation example. Left: reproductive case (T = 0.5).

ight: predictive case (T = 1). “MC” indicates the use of a mean-centered reconstruction.

Fig. 23. Space–time plots showing the evolution of the BBM ROMs in the predictive case (T = 1) with mean-centering and using n = 44
modes.

the difference in the tails). Even at n = 44 modes, the collisions are relatively well captured, validating the
hypothesis that the NC-H-OpInf procedure can produce a useful and nonintrusive spatial ROM even when the
FOM is pseudospectral and the involved operator L̂ cannot be readily discretized by standard techniques.

Moving beyond state errors, the difference in conserved quantities between the NC-H-OpInf and G-OpInf
ROMs is displayed in Fig. 25, using mean-centered POD bases and n = 44 modes. From this, it is evident that
the Hamiltonian is conserved exactly by the NC-H-OpInf ROM but not by the G-ROM (note that the FOM is
conservative to O

(
10−12

)
), likely enabling the NC-H-OpInf ROM to capture small-scale features like the tails of

the solitons in Fig. 23 much more realistically. Moreover, it appears that both OpInf ROMs are capable of conserving
momentum exactly and kinetic energy to a relatively low-order. It is interesting to note that mean-centering makes
a difference here: without this choice (not shown here), the momentum conservation of both ROMs is on the same

order as the kinetic energy conservation.
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Fig. 24. Snapshots showing the evolution of the BBM ROMs in the predictive case (T = 1) with mean-centering and using n = 44 modes.

Fig. 25. Plots showing the evolution of the conserved quantities for the mean-centered ROMs in the BBM equation example in the predictive
ase (T = 1) using n = 44 modes.

.5. Three-dimensional linear elasticity

The final example considered in this work involves a moderate size three-dimensional (3D) linear elasticity
roblem, given by the following equations of motion:

ρq̈ = ∇ · σ , on Ω ∈ R3. (10)

n (10), q ∈ R3 is the displacement vector, ρ > 0 is the material density, and σ is the Cauchy stress tensor. We
ssume that the material is elastic and follows Hooke’s law, so that the components of σ satisfy

σi j := λTr(ϵ)δi j + 2µϵi j , 1 ≤ i ≤ j ≤ 3, (11)

where λ, µ > 0 are the Lamé coefficients and

ϵ :=
1
2

[
∇q + (∇q)⊺

]
(12)

s the infinitesimal strain tensor. It can be shown [87] that the Hamiltonian for (10) can be expressed in terms of
noncanonical) position and velocity variables:

H (q, q̇) =
1
∫ (

ρ|q̇|
2
+ λ[Tr(ϵ)]2

+ 2µ |ϵ|2
)

dV . (13)

2 Ω
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Fig. 26. Plot of FOM s3–displacement, scaled by a factor of ten, at several times for the 3D linear elastic cantilever beam problem. The
colorbar range is −2.3×10−3 m (blue) to 2.3×10−3 m (red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We remark that, in 1D, (13) reduces to the linear wave equation (9) considered earlier in Section 5.1. The main
purpose of this example is to demonstrate the utility of non-intrusive ROMs on an application in which the FOM
is implemented within a large HPC code without embedded ROM capabilities, making intrusive model reduction
infeasible.

Herein, Eq. (10) is assumed to be discretized in space using the finite element method (FEM), per common
practice in the field of solid mechanics. Doing so gives a semi-discrete system of the form

Mq̈ + Kq = 0, (14)

here (overloading notation) q ∈ RM is the discretized displacement field, and M ∈ RM×M and K ∈ RM×M are
the mass and stiffness matrices, respectively. Letting p := Mq̇ denote the (overloaded) momentum, N = 2M , and
defining x :=

(
q p

)⊺
∈ RN , (14) can be written as the following canonical Hamiltonian system:

ẋ = J∇ H (x) =

(
0 I

−I 0

)(
K 0
0 M−1

)
x, (15)

where H is a quadratic discrete Hamiltonian of the form

H (x) =
1
2

(
q⊺Kq + p⊺M−1p

)
. (16)

The test case considered presently is a classical solid mechanics benchmark involving a vibrating rectangular
cantilever plate of size 0.2×0.2×0.03 m, so that Ω = (0, 0.2)×(0, 0.2)×(0, 0.03) ∈ R3. Let s⊺ := (s1, s2, s3)⊺ ∈ R3

enote the coordinate (position) vector. Here, the left side of the plate is clamped, meaning that a homogeneous
irichlet boundary condition q = 0 is imposed on Γl := {s2, s3 ∈ Ω̄ : s1 = 0}. Homogeneous Neumann boundary

onditions are prescribed on the remaining boundaries of Ω , indicating that these boundaries are free surfaces. The
roblem is initialized by prescribing an initial velocity of 100 m/s in the s3-direction on the right boundary of the
omain, Γr := {s2, s3 ∈ Ω̄ : s1 = 0.2}:

q̇(s, 0) =

⎛⎝ 0
0

⎞⎠ , for s ∈ Γr . (17)

100
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Fig. 27. One-dimensional cartoon illustrating 3D linear elastic cantilever plate problem setup.

Fig. 28. POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the 3D cantilever plate example. “MC”
indicates that mean-centering of the snapshots was performed.

A one-dimensional cartoon illustrating the problem setup is shown in Fig. 27. The initial velocity perturbation
(17) will cause the plate to vibrate and undergo a flapping motion, as shown in Fig. 26. As the plate vibrates,
waves will form and propagate in all three coordinate directions within the plate. Assuming the plate is made of
steel, the material parameters3 are as follows: E = 200 GPa (Young’s modulus), ν = 0.25 (Poisson’s ratio), and
ρ = 7800 kg/m3 (density).

To build the full order model from which our non-intrusive OpInf ROMs are constructed, we utilize the open-
source4 Albany-LCM multi-physics code base [88–90]5 and discretize the domain Ω with a uniform mesh of
20 × 20 × 3 hexahedral elements. To generate snapshots, the FOM system (14) is advanced forward from time
= 0 to time t = 2×10−2 s using a symplectic implicit Newmark time-stepping scheme with parameters β = 0.25

and γ = 0.5, and time-step ∆t = 1.0 × 10−4 s. Plots of the s3 component of the displacement are shown at
several different times in Fig. 26. The resulting 201 snapshots, each of length 5292, are used to build POD bases
of varying sizes, from 4 to 100 POD modes. Fig. 28 shows the snapshot energies and reconstruction errors of these
bases as a function of basis modes. Once the POD bases are constructed, several intrusive and non-intrusive ROMs
are created and evaluated as discussed earlier in this manuscript. All ROMs are evaluated in the time-predictive
regime, by integrating the governing system forward in time until t = 0.1 s (5× longer than the training time).

The results of this experiment are displayed in Fig. 29 and Table 1. Clearly, the ROMs are highly sensitive to
the basis construction technique as well as the number of modes used. While the intrusive G-ROM and G-OpInf
ROMs constructed with a block (q, p) basis yield the lowest minimum errors, they are highly volatile, exhibiting
unpredictable behavior as basis modes are added. Conversely, the NC-H-OpInf ROM constructed with a block
(q, p) basis and the C-H-OpInf ROM constructed with a cotangent lift basis exhibit some attempts at convergence,

3 It is straightforward to calculate the Lamé coefficients appearing in (11) from the Young’s modulus E and the Poisson ratio ν using
he formulas λ =

Eν
(1+ν)(1−2ν) and µ =

E
2(1+ν) .

4 Albany-LCM is available on github at the following URL: https://github.com/sandialabs/LCM.
5 For details on how to reproduce the results in this subsection, the reader is referred to Reproducibility and software availability section.
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“

Fig. 29. Relative state errors as a function of basis modes for the ROMs in the 3D cantilever plate example (predictive case T = 0.1).
MC” indicates the use of a mean-centered reconstruction.

Table 1
Table corresponding to the plots in Fig. 29, corresponding to the 3D cantilever plate example and showing the ROM errors as a function
of basis size. Dashes indicate lack of convergence.

POD basis ROM type Basis size n

4 12 20 28 36 44 52 60 68 76 84 92 100

Ordinary POD

Intrusive G-ROM 5.67 × 102 2.30 × 1010 1.00 2.66 × 1010 1.43 × 1024 3.79 × 10−5 – – 1.72 × 1023 5.56 × 1023 1.25 × 10−6 8.71 × 102 6.56 × 104

Intrusive H-ROM 1.50 1.50 1.00 1.51 1.56 1.53 1.39 1.28 1.23 1.43 1.45 1.47 1.53
G-OpInf ROM 8.58 × 1019 1.51 × 1022 – 2.75 × 105 6.55 × 101 1.29 × 10−4 2.46 × 1010 4.13 × 1034 – 1.00 3.78 × 10146 1.05 × 1044 6.77 × 1055

NC-H-OpInf ROM 1.66 1.87 1.00 1.60 1.68 1.66 1.69 1.66 1.68 1.60 1.47 8.60 × 10−1 1.38 × 10−1

C-H-OpInf ROM 1.16 1.48 1.51 1.49 1.59 1.57 1.50 1.51 1.43 1.00 1.70 1.74 5.09 × 103

Cotangent lift

Intrusive G-ROM 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.75 × 10−1 5.51 × 10−1 2.46 × 10−1 1.68 × 10−1 9.14 × 10−2 6.10 × 10−2

Intrusive H-ROM 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.75 × 10−1 5.51 × 10−1 2.46 × 10−1 1.68 × 10−1 9.14 × 10−2 6.10 × 10−2

G-OpInf ROM 4.83 × 101 8.50 × 10−1 6.88 × 10−1 1.00 × 101 8.07 × 10−2 2.97 × 10−2 1.90 × 1021 1.15 × 10−1 6.08 × 109 1.00 7.34 × 1035 1.90 × 1060 5.65 × 10121

NC-H-OpInf ROM 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.72 × 10−1 5.50 × 10−1 3.01 × 10−1 3.12 × 10−1 8.21 × 10−2 1.25
C-H-OpInf ROM 9.17 × 10−1 4.01 × 1090 1.22 × 105 1.77 9.91 × 10−1 3.15 × 1067 1.39 × 101 4.34 × 10−1 2.70 × 10−4 1.00 1.03 × 10−4 1.48 × 1014 5.62 × 106

Block (q, p)

Intrusive G-ROM 1.32 1.39 3.95 5.12 × 10−1 1.22 × 10−1 3.79 × 10−2 2.30 × 10−2 2.92 × 10−6 3.03 × 10−11 2.94 × 10−11 2.91 × 10−11 1.29 × 10127 1.75 × 10−11

Intrusive H-ROM 1.38 1.46 1.16 1.19 1.17 1.17 1.16 1.15 1.14 1.14 1.14 1.13 1.12
G-OpInf ROM 4.74 × 101 9.65 × 10−1 7.61 × 10−1 5.46 × 1080 1.12 × 10−1 2.89 × 10−2 1.93 × 1028 1.31 5.59 × 10−4 4.05 × 10−6 4.10 × 1060 2.45 × 1043 5.95 × 10−8

NC-H-OpInf ROM 1.43 1.29 1.06 7.49 × 10−1 1.17 × 10−1 6.23 × 10−1 6.32 × 10−1 1.90 × 10−3 2.55 × 10−4 2.55 × 10−4 2.63 × 10−4 7.50 × 10−2 2.50 × 10−4

C-H-OpInf ROM 1.05 1.68 × 1069 4.29 × 1036 – 1.55 × 1010 1.44 × 105 5.04 × 1076 1.15 1.14 1.14 1.14 1.14 1.13

although still with significant oscillations. It is interesting to note that the intrusive H-ROM represents a different
extreme with all choices of bases: it is perfectly stable with the addition of modes, but exhibits O(1) errors unless
a cotangent lift basis is used. It is further remarkable that the ROM errors in the reproductive case T = 0.02 (not
pictured) are slightly lower (within one order of magnitude), but their stability properties remain unchanged.

Remark 5.2. While not pictured here, we have observed that intrusive ROMs based directly on the second-order
Euler–Lagrange equations (14) do not suffer from the same degree of instability with respect to the addition of basis
modes as those based on the first-order Hamiltonian formulation (15). This could be due to the fact that Galerkin
projection of Lagrangian systems onto a reduced basis automatically respects energy conservation, which is not true
in the Hamiltonian case, where an additional corrective projection is needed.

For another visualization, Fig. 30 shows plots of the displacement magnitude at the final time t = 0.1 s for the
FOM (a) and various OpInf ROMs (b)–(d). Here, we showcase “best-case scenarios” for each ROM: (b) a G-OpInf
ROM with 100 POD modes calculated via the (q, p)-block basis approach, (c) a C-H-OpInf ROM with 96 POD
modes calculated via the cotangent lift basis, and (d) an NC-H-OpInf ROM with 96 POD modes calculated via the
(q, p)-block basis approach. The reader can observe that each ROM is capable of producing solutions which are
visually indistinguishable from the FOM solution (see subplots (b)–(d)), although their error distribution patterns
are quite different (see subplots (e)–(g)). We emphasize that, while the G-OpInf ROM is the most accurate, it is also
by far the most sensitive to the size of the reduced basis (see e.g. Fig. 29): there is no visible trend in terms of the
basis size, in contrast with the NC-H-OpInf and C-H-OpInf ROMs which are still volatile but roughly decreasing.
Additionally, it is likely that the results seen here could be improved somewhat by regularizing the OpInf problem
in some way; since the choice of regularization technique is a non-obvious matter which is currently under active
investigation (e.g., [91]), this is left for future work.
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Fig. 30. “Best case” plots of the displacement magnitude at the final time t = 0.1 s for the FOM (a) and various OpInf ROMs (b)–(d)
or the 3D linear elastic cantilever plate problem. Subplots (e)–(g) show the spatial distribution of the absolute errors in the displacement
agnitude for the various ROMs evaluated, again at the final time t = 0.1 s.

To test conservation, Fig. 31 plots the errors in the value of the Hamiltonian. Again, it can be seen that the
-H-OpInf and NC-H-OpInf preserve this quantity much better than the G-OpInf ROM, even in cases where the G-
pInf ROM is more accurate. Unsurprisingly, the conservation properties of the intrusive H-ROM are still superior

n all cases, although it is remarkable that this does not always translate to better accuracy in the ROM solution.
his could be due to the fact that the H-ROMs require an additional projection step onto the column space of U,

imiting their accuracy in order to gain exact property preservation.

. Conclusions and future work

Two gray-box operator inference (OpInf) methods for the nonintrusive model reduction of Hamiltonian dynamical
ystems have been introduced, and their utility has been demonstrated on several canonical and noncanonical
enchmarks. Being provably convergent to their intrusive counterparts in the limit of infinite data, these OpInf
OMs are shown to recover desirable properties of carefully built intrusive Hamiltonian ROMs such as improved
35
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Fig. 31. Plots of the error in the Hamiltonian for three different simulations corresponding to the 3D cantilever beam example. (Top) Ordinary
POD basis, n = 48 modes; (Middle) Cotangent Lift POD basis, n = 84 modes; (Bottom) Block (q, p) POD basis, n = 92 modes.

energy conservation without requiring access to FOM simulation code, making them flexible to deploy and leading
to improved performance over generic OpInf techniques in reproductive and predictive problems. Moreover, the
technique introduced here has been shown to strictly generalize previous state-of-the-art work on Hamiltonian OpInf
methods, reducing to it when the Hamiltonian system in question is canonical, the basis used is a cotangent lift,
and the operator to be inferred is block diagonal.

Despite the improvements made here, there are plenty of avenues for future work in the area of Hamiltonian
model reduction. First, the gray-box requirement that the nonlinear part of the Hamiltonian system is known
can be feasibly removed when this nonlinearity is polynomial, making the Hamiltonian OpInf methods described
potentially black-box in this case. Similarly, it would be interesting to apply this technique to systems which have
a known conserved quantity but no known Hamiltonian structure, to see if the NC-H-OpInf ROM which preserves
this quantity is more accurate and predictively useful than a generic OpInf ROM. Additionally, it is clear that all
structure-preserving ROM techniques to date, intrusive or OpInf, are quite sensitive to basis size when problems
become large with complex dynamics. It would be useful to have stabilized techniques which produce ROMs with
more predictable convergence behavior and which do not destroy the delicate mathematical structure important for
long-term behavior of the FOM system. Finally, it would be interesting to extend the techniques mentioned here to
quadratic POD bases as well as more general Lie–Poisson variational problems.
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Data availability
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epository: https://github.com/ikalash/HamiltonianOpInf.
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Appendix

A.1. Kronecker products and vectorization

We briefly recall some properties of the Kronecker product which are necessary for the results in the body.
Interested readers can find more details in, e.g., [92]. Let A ∈ Rm×n, B ∈ Rp×q . The Kronecker product
A⊗B ∈ Rmp×nq is then the matrix of size mp ×nq whose i, j th block (of size p ×q) is given by (A ⊗ B)i

j = ai
j B.

t is straightforward to show that ⊗ is the matricization of the usual tensor product when expressed with respect
o a lexicographical ordering of the standard bases for Rn

⊗ Rq and Rm
⊗ Rp, since (A ⊗ B) (x ⊗ y) = Ax ⊗ By

or any x ∈ Rn and y ∈ Rq . Moreover, there is a linear vectorization operator “vec” which stacks the columns of a
atrix into a long vector, i.e. Ai j = (vec A)m( j−1)+i . Since vectorization is obviously invertible, this allows for the

ollowing computationally convenient reformulation of linear systems with matrix unknowns.

heorem A.1 (Vec Trick). vec (AXB) = (B⊺
⊗ A) vec X.

roof. Let ai , xi , bi denote the i th column of A, X, B respectively. Then, the i th column of AXB is

(AXB)i = AXbi = Ab j
i x j =

(
b j

i A
)

x j =
(
b⊺

i ⊗ A
)

vec X.

he conclusion now follows by stacking columns. □
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There is also a very concrete (but rather inefficient) way to obtain the transposition matrix K satisfying
vec X⊺

= K vec X. While this is true generally for m × n matrices X, we state the result for square matrices
for ease of notation.

Proposition A.1. Let Ei j = ei e
⊺
j denote the i j th basis vector for the matrix space Rn×n . Then, we have that

K =

∑
i j

E⊺
j i ⊗ E j i ,

atisfies vec X⊺
= K vec X.

roof. Given X ∈ Rn×n , it follows by the vec trick that

K vec X =

(∑
E⊺

j i ⊗ E j i

)
vec X = vec

(∑
E j i XE j i

)
= vec

(∑
e j xi j e

⊺
i

)
= vec

(∑
xi j E j i

)
= vec X⊺. □

More practically, the following pseudocode is used to generate a sparse matrix representing K.

Algorithm 3 Building the commutation matrix K
Input: Integers m, n > 0.

utput: Sparse matrix K ∈ Zmn×mn satisfying vec X⊺
= K vec X for all X ∈ Rm×n .

1: Let row = {1, 2, ..., mn} ∈ Zmn be the vector of row indices.
2: Let row′

∈ Zm×n be defined by reshaping row column-wise.
3: Let col ∈ Zmn , the list of column indices, be the row-wise flattening of row′.
4: return Sparse matrix K with indices (row, col) and entries {1, ..., 1} ∈ Zmn .

A.2. Proofs of results

Here we provide omitted proofs for the results in the body. Note that Einstein summation is assumed throughout,
o that any tensor index appearing both “up” and “down” in an expression is implicitly summed over its range.

roof of Proposition 2.1. This is a straightforward consequence of the fact that OpInf of size n decouples
nto n2 scalar minimization problems. To see this, notice that if D̂ solves the OpInf problem of size n and
≤ i ′, j ′

≤ n′ < K ≤ n, 1 ≤ k ≤ n, then(
X̂t X̂⊺

)i ′

j ′
= D̂i ′

k

(
X̂X̂⊺

)k

j ′
= D̂i ′

k′

(
X̂X̂⊺

)k′

j ′
+ D̂i ′

K

(
X̂X̂⊺

)K

j ′

= D̂i ′
k′ δ

k′

j ′σ
2
j ′ + D̂i ′

K δK
j ′ σ

2
j ′ = D̂i ′

j ′ σ
2
j ′ ,

where δ denotes the Kronecker delta tensor and the first equality of the second line follows from the fact that, for
all 1 ≤ i, j ≤ n,(

X̂X̂⊺
)i

j
=
⟨
X⊺ui , X⊺u j

⟩
=
⟨
ei , U⊺XX⊺Ue j

⟩
=
⟨
ei ,Σ

2e j
⟩
= δi

jσ
2
j .

herefore, the minimization problem for each component D̂i
j has the solution (note the sum on k),

argmin
D̂i

j ∈R

⏐⏐⏐⏐⏐u⊺
i Xt −

∑
k

D̂i
ku⊺

k X

⏐⏐⏐⏐⏐
2

=
u⊺

i Xt X⊺u j

σ 2
j

,

showing that each entry of D̂ depends only on the indices i, j . Therefore, the solution D̂′ to the OpInf problem of
size n′ < n can be extracted from D̂ by extracting the top-left n′

× n′ submatrix, as desired. □
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Proof of Proposition 3.1. Suppose D̂ is the solution hypothesized in the statement of the Proposition. Then, it
ollows that

Â⊺ĈB̂⊺
± B̂Ĉ⊺Â = Â⊺ÂD̂B̂B̂⊺

± B̂B̂⊺D̂⊺Â⊺Â

= Â⊺ÂD̂B̂B̂⊺
+ B̂B̂⊺D̂Â⊺Â

Now, for any 1 ≤ i, j ≤ n, notice that(
Â⊺ĈB̂⊺

± B̂Ĉ⊺Â
)i

j
= Âi

i u
⊺
i CB⊺u j ± u⊺

i BC⊺u j A j
j .

herefore, the i j th entry of the left-hand side of the optimality condition for D̂ depends only on the basis vectors
i , u j , and we have

Â′⊺Ĉ′B̂′⊺
± B̂′Ĉ′⊺Â′

=

(
Â⊺ĈB̂⊺

± B̂Ĉ⊺Â
)′

.

imilarly, letting 1 ≤ i ′, j ′, k ′, l ′ ≤ n′ and 1 ≤ k, l ≤ n, it follows that(
Â⊺ĈB̂⊺

± B̂Ĉ⊺Â
)i ′

j ′
=

(
Â⊺Â

)i ′

k
D̂k

l

(
B̂B̂⊺

)l

j ′
+

(
B̂B̂⊺

)i ′

k
D̂k

l

(
Â⊺Â

)l

j ′

=

(
Âi ′

k′

)2
Dk′

l ′

(
B̂B̂⊺

)l ′

j ′
+

(
B̂B̂⊺

)i ′

k′
Dk′

l ′

(
Âl ′

j ′

)2
,

here the second line uses the fact that
(

Â⊺Â
)i ′

K
=

(
B̂B̂⊺

)L

j ′
=

(
B̂B̂⊺

)i ′

K
=

(
Â⊺Â

)L

j ′
for all n′ < K , L ≤ n. Putting

hese computations together, this shows that the truncation D̂′ of D̂ satisfies

Â′⊺Ĉ′B̂′⊺
± B̂′Ĉ′⊺Â′

= Â′⊺Â′D̂′B̄B̄⊺
+ B̄B̄⊺D̂′Â′⊺Â′,

showing that D̂′ is the desired minimizer. □

.3. Second Hamiltonian formulation of KdV

Another Hamiltonian formulation of the KdV equation is given by the data

H (x) =
1
2

∫ l

0
x2 ds, L(x) =

α

3
(x∂s + ∂s(x ·)) + ρ∂s + ν∂sss,

here ∂s(x ·)y = ∂s(xy). Choosing A to be the central difference discretization of ∂s (this was L in the first
ormulation) leads to the skew-symmetric discrete operator

L(x) =
α

3
(Diag (x) A + A Diag (x)) + ρA + νE,

where E is the pentadiagonal circulant matrix representing the central difference discretization of ∂sss , i.e.

E =
1

2 (∆x)3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 1 −1 2

2
. . .

. . .
. . . −1

−1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

1
. . .

. . .
. . . −2

−2 1 −1 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

his implies the second Hamiltonian formulation of the KdV system,

ẋ = L(x)∇ H (x) =
α

3
(Diag (x) Ax + A Diag (x) x) + ρAx + νEx,

hich is integrated via AVF to yield the discrete system,

xk+1
− xk

= L
(

xk+
1
2

)
xk+

1
2 .
∆t
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Fig. 32. Relative state errors as a function of basis modes for the ROMs in the KdV equation (V2) example. Left: reproductive case
(T = 20). Right: predictive case (T = 100). “MC” indicates the use of a mean-centered reconstruction.

This leads to the ∆t-normalized residual and Jacobian functions,

Rk (xk+1)
= xk+1

− xk
− ∆t L

(
xk+

1
2

)
xk+

1
2 ,

J k (xk+1)
= I −

∆t
2

[
2α

3

(
Diag

(
xk+

1
2

)
A + A Diag

(
xk+

1
2

))
+ ρA + νE

]
,

hich are solvable with Newton iterations.
With this, intrusive Galerkin and Hamiltonian ROMs can then be constructed as before. On the other hand, notice

hat AVF evaluates L at the midpoint of the discrete trajectory, meaning that Galerkin projection and discretization
ith AVF no longer commute, since U⊺L is not a Poisson matrix. However, letting x̃ = x0 +Ux̂, Galerkin projection

fter AVF yields

x̂k+1
− x̂k

∆t
= U⊺L

(
x̃k+

1
2

)
x̃k+

1
2

=

(
U⊺L (x0) +

α

3

(
U⊺ Diag

(
Ux̂k+

1
2

)
A + U⊺A Diag

(
Ux̂k+

1
2

))) (
x0 + Ux̂k+

1
2

)
:= U⊺L (x0) x0 +

(
T
(

x̂k+
1
2

)
x0 + U⊺L (x0) Ux̂k+

1
2

)
+ T̂

(
x̂k+

1
2

)
x̂k+

1
2

:= ĉ + Ĉx̂k+
1
2 + T̂

(
x̂k+

1
2

)
x̂k+

1
2 ,

where T, T̂ are precomputable order 3 tensors given component-wise by T a
jc = (α/3)U a

i

(
U i

c + U jc
)

Ai
j and

T̂ a
bc = (α/3)U a

i

(
U i

c + U jc
)

Ai
jU

j
b . Now, a Hamiltonian ROM can be computed in the same way: applying AVF

before Hamiltonian projection, it follows that

x̂k+1
− x̂k

∆t
= U⊺L

(
x̃k+

1
2

)
UU⊺x̃k+
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2
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3
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U⊺ Diag
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2
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U
)) (
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1
2
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(
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(
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1
2

)
U⊺x0 + U⊺L (x0) Ux̂k+

1
2

)
+ T̂

(
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1
2

)
x̂k+

1
2

:= ĉ + Ĉx̂k+
1
2 + T̂

(
x̂k+

1
2

)
x̂k+

1
2 ,

where the tensor T̂ is identical to before. In either case, these equations are easily solved with Newton iterations,
as explained in Section 5.3.

Remark A.2. It is interesting to note that ∇ H (x) = x in this formulation, so that its matrix representation A = I.

This has the effect of equalizing the (non mean-centered) H-ROM and G-ROM, since L̂Â = L̂A.
40
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Fig. 33. Errors in conserved quantities for the (mean-centered) ROMs in the KdV (v2) equation example in the predictive case (T = 20)
hen using a POD basis with n = 72 modes.

Figs. 32 and 33 show the results of this procedure, alongside a linear G-OpInf ROM for comparison (c.f.
ection 2.3). The experimental parameters are identical to those in Section 5.3. It is remarkable that the mean-
entered H-ROM does not perform well in this case, despite conserving the first three invariant quantities as well
s the mean-centered G-ROM. Note that the naming convention in Fig. 33 follows that of Fig. 20, despite the fact
hat P is now the Hamiltonian functional.
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