Alternating Schwarz-based coupling of conventional and data-driven models

Irina Tezaur ${ }^{1}$, Joshua Barnett ${ }^{1,2}$, Alejandro Mota ${ }^{1}$, Chris Wentland ${ }^{1}$, Will Snyder ${ }^{1,3}$
${ }^{1}$ Sandia National Laboratories, ${ }^{2}$ Stanford University, ${ }^{3}$ Virginia Tech University
Oénergy NUSA
COUPLED 2023
SAND2023-04302C
Chania, Greece, June 5-7, 2023

In memory of minisymposium coorganizer K. Chad Sockwell

April 30, I99I - May 18, 2022

There exist established rigorous mathematical theories for coupling multi-scale and multi-physics components based on traditional discretization methods ("Full Order Models" or FOMs).

Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

Traditional Methods

- Mesh-based (FE, FV, FD)
- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

- PINNs
- Neural ODEs
- Projection-based ROMs, ...
$D M D=N_{3}$
Traditional + Data-Driven Methods
- Nonlocal integral
- Classical DFT
- Atomistic, ...

Traditional Methods

- Mesh-based (FE, FV, FD)
- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian, ...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

While there is currently a big push to integrate data-driven methods into modeling \& simulation toolchains, existing algorithmic and software infrastructures are ill-equipped to handle rigorous plug-and-play integration of non-traditional, data-driven models!

fHNM (flexible Heterogeneous Numerical Methods) Project:

aims to discover the mathematical principles guiding the assembly of standard and data-
driven numerical models in stable, accurate and physically consistent ways

Data-driven models: to be "mixed-and-matched" with each other and first-principles models

- Class A: projection-based reduced order models (ROMs)
- Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
- Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

- Method 1: Alternating Schwarz-based coupling
- Method 2: Optimization-based coupling
- Method 3: Coupling via generalized mortar methods (GMMs)

${ }_{6}$ Coupling Project, Models and Methods

fHNM (flexible Heterogeneous Numerical Methods) Project:

aims to discover the mathematical principles guiding the assembly of standard and data-
driven numerical models in stable, accurate and physically consistent ways

Data-driven models: to be "mixed-and-matched" with each other and first-principles models

- Class A: projection-based reduced order models (ROMs)

Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs) Class C: flow map approximation models, i.e., dynamic model RESEARCH \& DEVELOPMENT decomposition (DMD) models

This talk
Coupling methods:

- Method 1: Alternating Schwarz-based coupling

Method 2: Optimization-based coupling
Method 3: Coupling via generalized mortar methods (GMMs)

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to $\mathrm{FOM}^{*}-\mathrm{ROM}$ \# and ROM-ROM Coupling
- Numerical Examples

> 1D Dynamic Wave Propagation in Hyperelastic Bar
>2D Burgers Equation
- Summary \& Future Work

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to $\mathrm{FOM}^{*}-\mathrm{ROM}$ \# and ROM-ROM Coupling
- Numerical Examples

>1D Dynamic Wave Propagation in Hyperelastic Bar
> 2D Burgers Equation
- Summary \& Future Work

, Schwarz Alternating Method for Domain Decomposition

- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on $\Omega_{1} \mathrm{~W} /$ initial guess for transmission BCs on Γ_{1}. Iterate until convergence:
- Solve PDE by any method on $\Omega_{2} \mathrm{~W} /$ transmission BCs on Γ_{2} based on values just obtained for Ω_{1}.
- Solve PDE by any method on $\Omega_{1} \mathrm{w} /$ transmission BCs on Γ_{1} based on values just obtained for Ω_{2}.

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs ${ }^{1}$ if $\Omega_{1} \cap \Omega_{2} \neq \emptyset$.
Non-overlapping Schwarz: convergent with Robin-Robin ${ }^{2}$ or alternating Neumann-Dirichlet ${ }^{3}$ transmission BCs.
${ }^{1}$ Schwarz, 1870; Lions, 1988. ${ }^{2}$ Lions, 1990. ${ }^{3}$ Zanolli et al., 1987.

10 How We Use the Schwarz Alternating Method

Controller time stepper
Time integrator for Ω_{1}
Time integrator for Ω_{2}

Step O: Initialize $i=0$ (controller time index).

$$
\text { Model PDE: }\left\{\begin{array}{cc}
\dot{\boldsymbol{u}}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\
\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega
\end{array}\right.
$$

Controller time stepper
Time integrator for Ω_{1}
Time integrator for Ω_{2}

Step 0: Initialize $i=0$ (controller time index).
Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.

$$
\text { Model PDE: }\left\{\begin{array}{cc}
\dot{\boldsymbol{u}}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\
\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega
\end{array}\right.
$$

Controller time stepper

Time integrator for Ω_{1}

Time integrator for Ω_{2}

Step 0: Initialize $i=0$ (controller time index).
Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.
Step 2: Advance Ω_{2} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{2} with time-step Δt_{2}, using solution in Ω_{1} interpolated to Γ_{2} at times $T_{i}+n \Delta t_{2}$.

$$
\text { Model PDE: }\left\{\begin{array}{cc}
\dot{\boldsymbol{u}}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\
\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega
\end{array}\right.
$$

Step 0: Initialize $i=0$ (controller time index).
Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.
Step 2: Advance Ω_{2} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{2} with time-step Δt_{2}, using solution in Ω_{1} interpolated to Γ_{2} at times $T_{i}+n \Delta t_{2}$.
Step 3: Check for convergence at time T_{i+1}.

$$
\text { Model PDE: }\left\{\begin{array}{cc}
\dot{\boldsymbol{u}}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\
\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega
\end{array}\right.
$$

Controller time stepper

Time integrator for Ω_{1}

Time integrator for Ω_{2}

Step 0: Initialize $i=0$ (controller time index).
Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.
Step 2: Advance Ω_{2} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{2} with time-step Δt_{2}, using solution in Ω_{1} interpolated to Γ_{2} at times $T_{i}+n \Delta t_{2}$.
Step 3: Check for convergence at time T_{i+1}.
> If unconverged, return to Step 1.

Step 0: Initialize $i=0$ (controller time index).

Controller time stepper

Time integrator for Ω_{1}

Time integrator for Ω_{2}

Can use different integrators with

 different time steps within each domain!Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.

Step 2: Advance Ω_{2} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{2} with time-step Δt_{2}, using solution in Ω_{1} interpolated to Γ_{2} at times $T_{i}+n \Delta t_{2}$.
Step 3: Check for convergence at time T_{i+1}.
$>$ If unconverged, return to Step 1.
$>$ If converged, set $i=i+1$ and return to Step 1.
Model PDE: $\quad\left\{\begin{array}{cc}\dot{\boldsymbol{u}}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\ \boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\ \boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega\end{array}\right.$

Controller time stepper

Time integrator for Ω_{1}

Time integrator for Ω_{2}

Step 0: Initialize $i=0$ (controller time index).
Time-stepping procedure is equivalent to doing Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance Ω_{1} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{1} with time-step Δt_{1}, using solution in Ω_{2} interpolated to Γ_{1} at times $T_{i}+n \Delta t_{1}$.
Step 2: Advance Ω_{2} solution from time T_{i} to time T_{i+1} using time-stepper in Ω_{2} with time-step Δt_{2}, using solution in Ω_{1} interpolated to Γ_{2} at times $T_{i}+n \Delta t_{2}$.
Step 3: Check for convergence at time T_{i+1}.
$>$ If unconverged, return to Step 1.
$>$ If converged, set $i=i+1$ and return to Step 1 .
Model PDE: $\left\{\begin{array}{cc}\dot{u}+N(\boldsymbol{u})=\boldsymbol{f}, & \text { in } \Omega \\ \boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{g}(t), & \text { on } \partial \Omega \\ \boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}, & \text { in } \Omega\end{array}\right.$

- Coupling is concurrent (two-way).
- Ease of implementation into existing massivelyparallel HPC codes.
- Scalable, fast, robust (we target real engineering problems, e.g., analyses involving failure of bolted components!).
- Coupling does not introduce nonphysical artifacts.
- Theoretical convergence properties/guarantees ${ }^{1}$.

> Ability to couple regions with different non-conformal meshes, different element types and different levels of refinement to simplify task of meshing complex geometries.
> Ability to use different solvers/time-integrators in different regions.

[^0]- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM ${ }^{\#}$ and ROM-ROM Coupling
- Numerical Examples

>1D Dynamic Wave Propagation in Hyperelastic Bar
> 2D Burgers Equation
- Summary \& Future Work

20 Projection-Based Model Order Reduction via the POD/Galerkin
Method Full Order Model (FOM): $\boldsymbol{M} \frac{d^{2} \boldsymbol{u}}{d t^{2}}+\boldsymbol{f}_{\mathrm{int}}(\boldsymbol{u})=\boldsymbol{f}_{\text {ext }}$

ROM = projection-based Reduced Order Model
3. Projection-Based Reduction

| Reduce the |
| :--- | :--- |
| number of |
| unknowns |$\quad \boldsymbol{u}(t) \approx \widetilde{\boldsymbol{u}}(t)=\boldsymbol{\Phi} \widehat{\boldsymbol{u}}(t)$

Perform
Galerkin projection

HROM = Hyper-reduced ROM
${ }_{21}$ Projection-Based Model Order Reduction via the POD/LSPG*

2. Learning

Proper Orthogonal Decomposition (POD):

3. Projection-Based Reduction

Choose ODE	$\frac{d \boldsymbol{u}}{d t}=\boldsymbol{f}(\boldsymbol{u} ; t, \boldsymbol{\mu})$
temporal	$\sqrt{ }$
discretization	$\boldsymbol{r}^{n}\left(\boldsymbol{u}^{n} ; \boldsymbol{\mu}\right)=0, \quad n=1, \ldots, T$

HROM = Hyper-reduced ROM

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices $\boldsymbol{i}_{\text {Dir }}$

- Method I in [Gunzburger et al. 2007] is employed

$$
\boldsymbol{u}(t) \approx \overline{\boldsymbol{u}}+\boldsymbol{\Phi} \widehat{\boldsymbol{u}}(t), \quad \boldsymbol{v}(t) \approx \overline{\boldsymbol{v}}+\boldsymbol{\Phi} \widehat{\boldsymbol{v}}(t), \quad \boldsymbol{a}(t) \approx \overline{\boldsymbol{a}}+\boldsymbol{\Phi} \widehat{\boldsymbol{a}}(t)
$$

$>$ POD modes made to satisfy homogeneous DBCs: $\boldsymbol{\Phi}\left(\boldsymbol{i}_{\text {Dir }},:\right)=\mathbf{0}$
$>$ BCs imposed by modifying $\overline{\boldsymbol{u}}, \overline{\boldsymbol{v}}, \overline{\boldsymbol{a}}: \overline{\boldsymbol{u}}\left(\boldsymbol{i}_{\text {Dir }}\right) \leftarrow \chi_{u}, \overline{\boldsymbol{v}}\left(i_{\text {Dir }}\right) \leftarrow \chi_{v}, \overline{\boldsymbol{a}}\left(i_{\text {Dir }}\right) \leftarrow \chi_{a}$
Hyper-reduction considerations

- Boundary points must be included in sample mesh for DBC enforcement
- We employ the Energy-Conserving Sampling \& Weighting Method (ECSW) [Farhat et al. 2015] \rightarrow preserves Hamiltonian structure for solid mechanics problems

Choice of domain decomposition

- Error-based indicators that help decide in what region of the domain a ROM can be viable should drive domain decomposition [Bergmann et al. 2018] (future work)

Snapshot collection and reduced basis construction

- POD results presented herein use snapshots obtained via FOM-FOM coupling on $\Omega=U_{i} \Omega_{i}$
- Future work: generate snapshots/bases separately in each Ω_{i} [Hoang et al. 2021, Smetana et al. 2022]
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to $\mathrm{FOM}^{*}-$ ROM ${ }^{\#}$ and ROM-ROM Coupling
- Numerical Examples

> 1D Dynamic Wave Propagation in Hyperelastic Bar
> 2 D Burgers Equation
- Summary \& Future Work

24 Numerical Example: ID Dynamic Wave Propagation Problem

- 1D beam geometry $\Omega=(0,1)$, clamped at both ends, with prescribed initial condition discretized using FEM + Newmark- β
- Simple problem but very stringent test for discretization/ coupling methods, and difficult problem for ROMs.
- Two constitutive models considered:

- ROMs results are reproductive and predictive, and are based on the POD/Galerkin method, with POD calculated from FOM-FOM coupled model.
> 50 POD modes capture $\sim 100 \%$ snapshot energy for linear variant of this problem.
> 536 POD modes capture $\sim 100 \%$ snapshot energy for Henky variant of this problem.
- Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]
> Ensures that Lagrangian structure of problem is preserved in HROM.
- Couplings tested: overlapping, non-overlapping, FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM, HROM-HROM, implicit-explicit, implicit-implicit, explicit-explicit. This talk

25 Numerical Example: ID Dynamic Wave Propagation Problem

- Two variants of problem, with different initial conditions (ICs):
> Symmetric Gaussian IC (top right)
> Rounded Square IC (bottom right)

- Non-overlapping domain decomposition (DD) of $\Omega=\Omega_{1} \cup \Omega_{2}$, where Ω_{1} $=[0,0.6]$ and $\Omega_{2}=[0.6,1.0]$
$>$ DD is based on heuristics: during time-interval considered ($0 \leq t \leq$ 1×10^{3}), sharper gradient forms in Ω_{1}, suggesting FOM or larger ROM is needed there.
- Reproductive problem:

Figure above: Symmetric Gaussian IC problem solution Figure below: Rounded Square IC problem solution

${ }_{26}$ Numerical Example: Reproductive Problem Results

- Single-domain ROM and HROM are most efficient
- Couplings involving ROMs and HROMs enable one to achieve smaller errors
- Benefits of hyper-reduction are limited on 1D problem
- FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms of CPU time by 12.5-32.6\%

Figure left: FOM (green) - HROM (cyan) coupling compared with single-domain FOM solution (blue). HROM has 200 modes.

Figure below: ECSW algorithm samples 253/400 elements

${ }_{28}$ Numerical Example: Predictive Problem Results

Model	CPU time (s)	$N_{e, 1} / N_{e, 2}$	$\mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{u}}_{1}\right) /$	$\mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{v}}_{1}\right) /$	$\mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{u}}_{1}\right) /$ $\mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{v}}_{2}\right)$	$N_{\mathrm{MSE}}\left(\tilde{\boldsymbol{a}}_{2}\right)$

- Results indicate that predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM
$>$ FOM-ROM coupling is remarkably accurate, achieving displacement error $\mathrm{O}\left(1 \times 10^{-8}\right)$
$>$ FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs
$>$ HROM-HROM on par with single-domain HROM in terms of accuracy
- Wall-clock times of coupled models can be improved
$>$ FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as more Schwarz iterations required to achieve convergence
$>$ Hyper-reduction samples $\sim 60 \%$ of total mesh points for this 1D traveling wave problem * Greater gains from hyper-reduction anticipated for 2D/3D problems

${ }_{29}$ Numerical Example: Predictive Problem Results

Predictive single-domain ROM ($M_{1}=300$) solution at final time

Predictive FOM-HROM ($M_{2}=200$) solution at final time

- Single-domain FOM solution \quad - Solution in $\Omega_{1} \quad$ - Solution in Ω_{2}
- Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration
- Predictive FOM-HROM solution is smooth and oscillation-free
> Highlights coupling method's ability to improve ROM predictive accuracy

${ }_{30}$ Numerical Example: Predictive Problem Results

Predictive single-domain ROM ($M_{1}=300$)

Predictive FOM-HROM $\left(M_{2}=200\right)$

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to $\mathrm{FOM}^{*}-\mathrm{ROM}^{\#}$ and ROM-ROM Coupling
- Numerical Examples

> 1D Dynamic Wave Propagation in Hyperelastic Bar
> 2D Burgers Equation
- Summary \& Future Work

32 Numerical Example: 2D Inviscid Burgers Problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\frac{1}{2}\left(\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}\right) & =0.02 \exp \left(\mu_{2} x\right) \\
\frac{\partial v}{\partial t}+\frac{1}{2}\left(\frac{\partial v u}{\partial x}+\frac{\partial v^{2}}{\partial y}\right) & =0 \\
u(x=0, y, t ; \boldsymbol{\mu}) & =\mu_{1} \\
u(x, y, t=0) & =v(x, y, t=0)=1 \\
x, y \in[0,100], t & \in\left[0, T_{f}\right]
\end{aligned}
$$

FOM discretization:

- Spatial discretization given by a Godunov-type scheme with $N=250$ elements in each dimension
- Implicit temporal discretization: trapezoidal method with fixed $\Delta t=0.05$; Choose $T_{f}=25.0$

${ }_{33}$ Numerical Example: 2D Inviscid Burgers Problem

- 2D makes for a more appropriate testing of potential speedups from coupling subdomains to ROMs
- The inviscid Burgers' equation is a popular analog for fluid problems where shocks are possible, and is particularly difficult for conventional projection-based ROMs
- Two parameters considered:
> Dirichlet BC parameterization μ_{1}

> Source term parameterization μ_{2}
- ROMs results are predictive and are based on the Least-Squares Petrov-Galerkin (LSPG) method, with POD calculated from FOM coupling models.
> Greater than 200 POD modes required to capture 99% snapshot energy for when sampling 9 $\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}\right]$ values
- Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]
- Couplings tested: overlapping, FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM, HROM-HROM, implicit-explicit, implicit-implicit, explicit-explicit.

${ }_{34}$ Single Domain ROM

- Spatial/temporal resolution: $\Delta x_{i}=0.4, \Delta y_{i}=0.4, \Delta t_{i}=0.05$
- Uniform sampling of $\mathcal{D}=[4.25,5.50] \times[0.015,0.03]$ by a 3×3 grid $\Rightarrow 9$ training parameter points characterized by $\Delta \mu_{1}=0.625$ and $\Delta \mu_{2}=0.0075$
- Queried but unsampled parameter point $\mu=[4.75,0.02]$ with reduced dimension of $M=95$
- Reduced mesh resulting from solving non-negative least squares problem formulate by ECSW gives $n_{e}=5,689$ elements (9.1% of $N_{e}=62,500$ elements).

Figure above: Reduced mesh of single domain HROM

Figure above: ${ }^{3}$ HROM and FOM results at various time steps

\% SV Energy	M	MSE* $_{(\%)}$ $(\%)$	CPU time* (s)
95	69	1.1	138
99	177	0.17	447

* Numbers in table are w/o hyper-reduction

ROM-ROM-ROM-ROM Coupling

99\% Singular Value (SV) Energy Retention

- Method converges in only 3 Schwarz iterations per controller time-step
- Errors $O(1 \%)$ or less
- $1.47 \times$ speedup over all-FOM coupling for 95% SV energy retention case

- FOM in Ω_{1} as this is "hardest" subdomain for ROM
- HROMs in $\Omega_{2}, \Omega_{3}, \Omega_{4}$ capture 99% snapshot energy
- Method converges in 3 Schwarz iterations per controller time-step
- Errors O(0.1\%) with 0 error in Ω_{1}
- $2.26 \times$ speedup achieved over all-FOM coupling

Further speedups possible via code optimizations and additive Schwarz.

Subdomains	99% SV Energy		
	M	MSE (\%)	CPU time (s)
Ω_{1}	-	0.0	95
Ω_{2}	120	0.26	26
Ω_{3}	60	0.43	17
Ω_{4}	66	0.34	21
Total			159

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to $\mathrm{FOM}^{*}-\mathrm{ROM}^{\#}$ and ROM-ROM Coupling
- Numerical Examples

> 1D Dynamic Wave Propagation in Hyperelastic Bar
> 2D Burgers Equation
- Summary \& Future Work

Summary:

- In a 1D solid mechanics and 2D hyperbolic PDE setting, Schwarz has been demonstrated for coupling of FOMs \& (H)ROMs
- Computational gains can be achieved by coupling (H)ROMs

Ongoing \& future work:

- Extension to other applications and HPC codes
- Improving method efficiency (e.g., additive Schwarz)
- Coupling nonlinear approximation manifold methods

「Fressio

- Dynamic adaptation of domain partitioning \& "on-the-fly" ROM-FOM switching

Movie above: FOM-FOM coupling via Schwarz for 2D Euler problem using pressio-demoapps*

- Learning of "optimal" transmission conditions to ensure structure preservation
- Extension of Schwarz to coupling of Physics Informed Neural Networks (PINNs)

Figure above: overlapping alternating Schwarz PINN-PINN coupling for advection-diffusion problem.

Irina Tezaur

Joshua Barnett Year-Round Intern

Alejandro Mota

Chris Wentland Postdoc

困
Sandia National Laboratories

LABORATORY DIRECTED RESEARCH \& DEVELOPMENT

Thank you! Questions?

Will Snyder Summer Intern
[1] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.
[2] H. Schwarz. "Über einen Grenzübergang durch alternierendes Verfahren". In: Vierteljahrsschriftder Naturforschenden Gesellschaft in Zurich 15 (1870), pp. 272-286.
[3] S.L. Sobolev. "Schwarz's Algorithm in Elasticity Theory". In: Selected Works of S.L Sobolev. Volume I: equations of mathematical physics, computational mathematics and cubature formulats. Ed. By G.V. Demidenko and V.L. Vaskevich. New York: Springer, 2006.
[4] S. Mikhlin. "On the Schwarz algorithm". In: Proceedings of the USSR Academy of Sciences 77 (1951), pp. 569-571.
[5] P.L. Lions. "On the Schwarz alternating method I." In: 1988, First International Symposium on Domain
Decomposition methods for Partial Differential Equations, SIAM, Philadelphia.
[6] SIERRA Solid Mechanics Team. Sierra/SM 4.48 User's Guide. Tech. rep. SAND2018-2961. SNL Report, Oct. 2018.
[7] M. Gunzburger, J. Peterson, J. Shadid. "Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data". CMAME 196 (2007) 1030-1047.
[8] C. Hoang, Y. Choi, K. Carlberg. "Domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) nonlinear model reduction". CMAME 384 (2021) 113997.
[9] K. Smetana, T. Taddei. "Localized model reduction for nonlinear elliptic partial differential equations: localized training, partition of unity, and adaptive enrichment", ArXiV pre-print, 2022.
[10] C. Farhat, T. Chapman, P. Avery. "Structure-preserving, stability \& accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear FE dynamic models", IJNME 102 (2015) 1077-1110.
[11] M. Bergmann, A. Ferrero, A. Iollo, E. Lombardi, A. Scardigli, H. Telib. "A zonal Galerkin-free POD model for incompressible flows." JCP 352 (2018) 301-325.
[12] C. Sockwell, P. Bochev, K. Peterson, P. Kuberry. Interface Flux Recovery Framework for Constructing Partitioned
Heterogeneous Time-Integration Methods. Methods Numer. Meth. PDEs, 2023 (in press). Talk by P. Kuberry (IS03-II)
[13] A. de Castro, P. Bochev, P. Kuberry, I. Tezaur. A synchronous partitioned scheme for coupled reduced order models based on separate reduced order bases for interior and interface nodes", submitted to special issue of CMAME in honor of Tom Hughes' $80^{\text {th }}$ birthday.
[14] C. Sockwell, K. Peterson, P. Kuberry, P. Bochev, Interface Flux Recovery Framework for Constructing Partitioned Heterogeneous Time-Integration Methods, to appear.

Talk by J. Connors (ISO3-I)
[15] A. Mota, I. Tezaur, G. Phlipot. "The Schwarz Alternating Method for Dynamic Solid Mechanics", Comput. Meth. Appl. Mech. Engng. 121 (21) (2022) 5036-5071.
[16] J. Hoy, I. Tezaur, A. Mota. "The Schwarz alternating method for multiscale contact mechanics". in Computer Science Research Institute Summer Proceedings 2021, J.D. Smith and E. Galvan, eds., Technical Report SAND20210653R, Sandia National Labs, 360-378, 2021.
[17] J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of nonlinear reduced order models and full order models", in Computer Science Research Institute Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R, Sandia National Laboratories, 2022, pp. 31-55. This talk

Journal article on ROM-FOM/ROM-ROM coupling using Schwarz is in preparation.

Email: ikalash@sandia.gov URL: www.sandia.gov/~ikalash

Start of Backup Slides

Overlapping Domain Decomposition

$$
\begin{aligned}
& \left\{\begin{array}{l}
N\left(\boldsymbol{u}_{1}^{(n+1)}\right)=f, \text { in } \Omega_{1} \\
\boldsymbol{u}_{1}^{(n+1)}=\boldsymbol{g}, \text { on } \partial \Omega_{1} \backslash \Gamma_{1} \\
\boldsymbol{u}_{1}^{(n+1)}=\boldsymbol{u}_{2}^{(n)} \text { on } \Gamma_{1}
\end{array}\right. \\
& \left\{\begin{array}{l}
N\left(\boldsymbol{u}_{2}^{(n+1)}\right)=f, \text { in } \Omega_{2} \\
\boldsymbol{u}_{2}^{(n+1)}=\boldsymbol{g}, \text { on } \partial \Omega_{2} \backslash \Gamma_{2} \\
\boldsymbol{u}_{2}^{(n+1)}=\boldsymbol{u}_{1}^{(n+1)} \\
\text { on } \Gamma_{2}
\end{array}\right.
\end{aligned}
$$

This talk: sequential subdomain solves (multiplicative Schwarz). Parallel subdomain solves (additive Schwarz) also possible.

Model PDE: $\left\{\begin{array}{l}N(\boldsymbol{u})=\boldsymbol{f}, \quad \text { in } \Omega \\ \boldsymbol{u}=\boldsymbol{g}, \quad \text { on } \partial \Omega\end{array}\right.$

- Dirichlet-Dirichlet transmission BCs [Schwarz 1870; Lions 1988; Mota et al. 2017; Mota et al. 2022]
$\left\{\begin{array}{l}N\left(\boldsymbol{u}_{1}^{(n+1)}\right)=f, \quad \text { in } \Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)}=\boldsymbol{g}, \quad \text { on } \partial \Omega_{1} \backslash \Gamma \\ \boldsymbol{u}_{1}^{(n+1)}=\lambda_{n+1}, \quad \text { on } \Gamma\end{array}\right.$
$\left\{\begin{array}{l}N\left(\boldsymbol{u}_{2}^{(n+1)}\right)=f, \quad \text { in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)}=\boldsymbol{g}, \quad \text { on } \partial \Omega_{2} \backslash \Gamma \\ \boldsymbol{\nabla} \boldsymbol{u}_{2}^{(n+1)} \cdot \boldsymbol{n}=\boldsymbol{\nabla} \boldsymbol{u}_{1}^{(n+1)} \cdot \boldsymbol{n}, \text { on } \Gamma\end{array}\right.$
$\lambda_{n+1}=\theta \boldsymbol{\varphi}_{2}^{(n)}+(1-\theta) \lambda_{n}$, on Γ, for $n \geq 1$

Non-overlapping Domain Decomposition

- Relevant for multi-material and multiphysics coupling
- Alternating Dirichlet-Neumann transmission BCs [Zanolli et al. 1987]
- Robin-Robin transmission BCs also lead to convergence [Lions 1990]
- $\theta \in[0,1]$: relaxation parameter (can help convergence)
- Basis sizes M_{1} and M_{2} vary from 60 to 300
$>$ Larger ROM used in Ω_{1}, since solution has steeper gradient here
- For couplings involving FOM and ROM/HROM, FOM is placed in Ω_{1}, since solution has steeper gradient here
- Non-negative least-squares optimization problem for ECSW weights solved using MATLAB's Isqnonneg function with early termination criterion (solution step-size tolerance $=10^{-4}$)
$>$ Ensures all HROMs have consistent termination criterion w.r.t. MATLAB implementation
$>$ However, relative error tolerance of selected reduced elements will differ
* Switching to termination criterion based on relative error is work in progress and expected to improve HROM results
$>$ Convergence tolerance determines size of sample mesh $N_{e, i}$
$>$ Boundary points must be in sample mesh for application of Schwarz BC

J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of nonlinear reduced order models and full order models", in Computer Science Research Institute Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R, Sandia National Laboratories, 2022, pp. 31-55. (https://arxiv.org/abs/2210.12551)

${ }_{45}$ Numerical Example: Reproductive Problem Results

Model	M_{1} / M_{2}	$N_{e, 1} / N_{e, 2}$	$\begin{gathered} \mathrm{CPU} \\ \text { time (s) } \end{gathered}$	$\begin{aligned} & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{u}}_{1}\right) / \\ & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{u}}_{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{v}}_{1}\right) / \\ & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{v}}_{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{a}}_{1}\right) / \\ & \mathcal{E}_{\mathrm{MSE}}\left(\tilde{\boldsymbol{a}}_{2}\right) \\ & \hline \end{aligned}$	N_{S}
FOM	-/-	-/-	1.871×10^{3}	-/-	-/-	-/-	-
ROM	60/-	-/-	1.398×10^{3}	$1.659 \times 10^{-2} /-$	1.037×10^{-1}	$4.681 \times 10^{-1} /-$	-
HROM	60/-	155/-	5.878×10^{2}	$1.730 \times 10^{-2} /-$	$1.063 \times 10^{-1} /-$	$4.741 \times 10^{-1} /-$	-
ROM	200/-	-/-	1.448×10^{3}	$2.287 \times 10^{-4} /-$	$4.038 \times 10^{-3} /-$	$4.542 \times 10^{-2} /-$	-
HROM	200/-	428/-	9.229×10^{2}	$8.396 \times 10^{-4} /-$	$8.947 \times 10^{-3} /-$	$7.462 \times 10^{-2} /-$	-
FOM-FOM	-/-	-/-	2.345×10^{3}	-	-	-	24,630
FOM-ROM	-/80	-/-	2.341×10^{3}	$\begin{gathered} \hline 2.171 \times 10^{-6} / \\ 1.253 \times 10^{-5} \end{gathered}$	$\begin{gathered} \hline 3.884 \times 10^{-5} / \\ 2.401 \times 10^{-4} \end{gathered}$	$\begin{gathered} \hline 2.982 \times 10^{-4} / \\ 2.805 \times 10^{-3} \end{gathered}$	25,227
FOM-HROM	-/80	-/130	2.085×10^{3}	$\begin{gathered} 2.022 \times 10^{-4} / \\ 5.734 \times 10^{-4} \\ \hline \end{gathered}$	$\begin{gathered} 1.723 e \times 10^{-3} / \\ 5.776 \times 10^{-3} \\ \hline \end{gathered}$	$\begin{array}{r} 7.421 \times 10^{-3} / \\ 3.791 \times 10^{-2} \\ \hline \end{array}$	29,678
FOM-ROM	-/200	-/-	2.449×10^{3}	$\begin{gathered} 4.754 \times 10^{-12} / \\ 7.357 \times 10^{-11} \end{gathered}$	$\begin{gathered} 1.835 \times 10^{-10} / \\ 4.027 \times 10^{-9} \end{gathered}$	$\begin{gathered} 5.550 \times 10^{-9} / \\ 1.401 \times 10^{-7} \end{gathered}$	24,630
FOM-HROM	-/200	-/252	2.352×10^{3}	$\begin{gathered} 1.421 \times 10^{-5} / \\ 4.563 \times 10^{-4} \end{gathered}$	$\begin{gathered} 1.724 \times 10^{-4} / \\ 2.243 \times 10^{-3} \end{gathered}$	$\begin{gathered} 9.567 \times 10^{-4} / \\ 1.364 \times 10^{-2} \end{gathered}$	27,156
ROM-ROM	200/80	-/-	2.778×10^{3}	$\begin{aligned} & 4.861 \times 10^{-5} / \\ & 3.093 \times 10^{-5} \end{aligned}$	$\begin{gathered} 1.219 \times 10^{-3} / \\ 4.177 \times 10^{-4} \end{gathered}$	$\begin{gathered} 1.586 \times 10^{-2} / \\ 3.936 \times 10^{-3} \end{gathered}$	27,810
HROM-HROM	200/80	315/130	1.769×10^{3}	$\begin{gathered} 3.410 \times 10^{-3} / \\ 6.662 \times 10^{-4} \end{gathered}$	$\begin{gathered} 4.110 \times 10^{-2} / \\ 6.432 \times 10^{-3} \end{gathered}$	$\begin{gathered} 2.485 \times 10^{-1} / \\ 4.307 \times 10^{-2} \end{gathered}$	29,860
ROM-ROM	300/80	-/-	2.646×10^{3}	$\begin{gathered} 2.580 \times 10^{-6} / \\ 1.292 \times 10^{-5} \end{gathered}$	$\begin{gathered} 6.226 \times 10^{-5} / \\ 2.483 \times 10^{-4} \end{gathered}$	$\begin{aligned} & 9.470 \times 10^{-4} \\ & 2.906 \times 10^{-3} \end{aligned}$	25,059
HROM-HROM	300/80	405/130	1.938×10^{3}	$\begin{gathered} 6.960 \times 10^{-3} \\ 7.230 \times 10^{-4} \end{gathered}$	$\begin{aligned} & 6.328 \times 10^{-2} \\ & 7.403 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 3.137 \times 10^{-1} \\ & 4.960 \times 10^{-2} \end{aligned}$	29,896

Green shading highlights most competitive coupled models

- All coupled models evaluated converged on average in <3 Schwarz iterations per time-step
- Larger FOM-ROM coupling has same total \# Schwarz iters $\left(N_{S}\right)$ as FOM-FOM coupling
- Other couplings require more Schwarz iters than FOM-FOM coupling to converge
> More Schwarz iters required when coupling less accurate models
> Larger 300/80 mode ROM-ROM takes less wall-clock time than smaller 200/80 mode ROM-ROM
- FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms of CPU time by 12.5-32.6\%
- All couplings involving ROMs/HROMs are at least as accurate as single-domain ROMs/HROMs

${ }_{46}$ Numerical Example: Predictive Problem Results

- Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:

$$
\mathcal{E}_{\mathrm{proj}}\left(\boldsymbol{u}, \boldsymbol{\Phi}_{M}\right):=\frac{\left\|\boldsymbol{u}-\boldsymbol{\Phi}_{M}\left(\boldsymbol{\Phi}_{M}^{T} \boldsymbol{\Phi}_{M}\right)^{-1} \boldsymbol{\Phi}_{M}^{T} \boldsymbol{u}\right\|_{2}}{\|\boldsymbol{u}\|_{2}}
$$

- Projection error suggests predictive ROM can achieve accuracy and convergence with basis refinement
- $\mathbf{O (1 0 0)}$ modes are needed to achieve sufficiently accurate ROM
> Larger ROMs containing $\mathrm{O}(100)$ modes considered in our coupling experiments: $M_{1}=300, M_{2}=200$ PDEs is natural idea with a sound theoretical foundation.
- S.L. Sobolev (1936): posed Schwarz method for linear elasticity in variational form and proved method's convergence by proposing a convergent sequence of energy functionals.
- S.G. Mikhlin (1951): proved convergence of Schwarz method for general linear elliptic PDEs.
- P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone elliptic problems using max principle.
- A. Mota, I. Tezaur, C. Alleman (2017): proved convergence of the alternating Schwarz method for finite deformation quasi-static nonlinear PDEs (with energy functional $\boldsymbol{\Phi}[\varphi]$) with a geometric convergence rate.

$$
\boldsymbol{\Phi}[\boldsymbol{\varphi}]=\int_{B} \begin{gathered}
A(\boldsymbol{F}, \boldsymbol{Z}) d V-\int_{B} \boldsymbol{B} \cdot \boldsymbol{\varphi} d V \\
\nabla \cdot \boldsymbol{P}+\boldsymbol{B}=\mathbf{0}
\end{gathered}
$$

Convergence Proof*

Theorem 1. Assume that the energy functional $\Phi[\varphi]$ satisfies properties 1-5 above. Consider the Schwarz alternating method of Section 2 defined by (9)-(13) and its equivalent form (39). Then
(a) $\Phi\left[\tilde{\boldsymbol{\varphi}}^{(0)}\right] \geq \Phi\left[\tilde{\varphi}^{(1)}\right] \geq \cdots \geq \Phi\left[\tilde{\boldsymbol{\varphi}}^{(n-1)}\right] \geq \Phi\left[\tilde{\boldsymbol{\varphi}}^{(n)}\right] \geq \cdots \geq \Phi[\varphi]$, where φ is the minimizer of $\Phi[\varphi]$ over \mathcal{S}.
(b) The sequence $\left\{\tilde{\varphi}^{(n)}\right\}$ defined in (39) converges to the minimizer φ of $\Phi[\varphi]$ in \mathcal{S}.
(c) The Schwarz minimum values $\Phi\left[\tilde{\varphi}^{(n)}\right]$ converge monotonically to the minimum value $\Phi[\varphi]$ in \mathcal{S} starting from any initial guess $\tilde{\varphi}^{(0)}$.

Nom

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

Schwarz Alternating Method for Dynamic Multiscale Coupling:Theory

- Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain problem is well-posed and overlap region is non-empty, under some conditions on Δt.
- Well-posedness for the dynamic problem requires that action functional $S[\boldsymbol{\varphi}]:=$
$\int_{I} \int_{\Omega} L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) d V d t$ be strictly convex or strictly concave, where $L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}):=T(\dot{\boldsymbol{\varphi}})+V(\boldsymbol{\varphi})$ is the Lagrangian.
$>$ This is studied by looking at its second variation $\delta^{2} S\left[\boldsymbol{\varphi}_{h}\right]$
- We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

$$
\delta^{2} S\left[\boldsymbol{\varphi}_{h}\right]=\boldsymbol{x}^{T}\left[\frac{\gamma^{2}}{(\beta \Delta t)^{2}} \boldsymbol{M}-\boldsymbol{K}\right] \boldsymbol{x}
$$

$>\delta^{2} S\left[\boldsymbol{\varphi}_{h}\right]$ can always be made positive by choosing a sufficiently small Δt
$>$ Numerical experiments reveal that Δt requirements for stability/accuracy typically lead to automatic satisfaction of this bound.

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics'

Figure above: tension specimen simulation coupling composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite TET10 elements with HEX elements in Sierra/SM.
${ }^{1}$ Mota et al. 2017; Mota et al. 2022.
${ }_{51}$ Numerical Example: Linear Elastic Wave Propagation Problem

- Linear elastic clamped beam with Gaussian initial condition.
- Simple problem with analytical exact solution but very stringent test for discretization/coupling methods.
- Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicitexplicit.
- ROMs are reproductive and based on the POD/Galerkin method.
> 50 POD modes capture $\sim 100 \%$ snapshot energy

Right: Initial condition (blue) and final solution (red). Wave profile is negative of initial profile at time $\mathrm{T}=1.0 \mathrm{e}-3$.

Linear Elastic Wave Propagation Problem: FOM-ROM and ROMROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate, can couple different discretizations with different $\Delta x, \Delta t$ and basis sizes.

Single Domain FOM

${ }^{1}$ Implicit 40 mode POD ROM, $\Delta t=1 \mathrm{e}-6, \Delta x=1.25 \mathrm{e}-3$
${ }^{2}$ Implicit FOM, $\Delta t=1 \mathrm{e}-6, \Delta x=8.33 \mathrm{e}-4$
${ }^{3}$ Explicit 50 mode POD ROM, $\Delta t=1 \mathrm{e}-7, \Delta x=1 \mathrm{e}-3$

3 overlapping subdomain ROM ${ }^{1}-$ FOM $^{2}-$ ROM 3

2 non-overlapping subdomain

$$
\operatorname{FOM}^{4}-\operatorname{ROM}^{5}(\theta=1)
$$

${ }^{5}$ Implicit FOM, $\Delta t=2.25 \mathrm{e}-7$, $\Delta x=1 \mathrm{e}-6$ ${ }^{4}$ Explicit 50 mode POD ROM, $\Delta t=2.25 \mathrm{e}-7, \Delta x=1 \mathrm{e}-6$
${ }_{53}$ Linear Elastic Wave Propagation Problem: FOM-ROM and ROMROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.

	disp MSE	velo MSE	acce MSE
Overlapping ROM ${ }^{1}$-FOM ${ }^{2}$-ROM	$1.05 \mathrm{e}-4$	$1.40 \mathrm{e}-3$	$2.32 \mathrm{e}-2$
Non-overlapping FOM	-ROM		
	$2.78 \mathrm{e}-5$	$2.20 \mathrm{e}-4$	$3.30 \mathrm{e}-3$

${ }^{1}$ Implicit 40 mode POD ROM, $\Delta t=1 \mathrm{e}-6, \Delta x=1.25 \mathrm{e}-3$
${ }^{2}$ Implicit FOM, $\Delta t=1 \mathrm{e}-6, \Delta x=8.33 \mathrm{e}-4$
${ }^{3}$ Explicit 50 mode POD ROM, $\Delta t=1 \mathrm{e}-7, \Delta x=1 \mathrm{e}-3$
${ }^{4}$ Implicit FOM, $\Delta t=2.25 \mathrm{e}-7, \Delta x=1 \mathrm{e}-6$
${ }^{5}$ Explicit 50 mode POD ROM, $\Delta t=2.25 \mathrm{e}-7, \Delta x=1 \mathrm{e}-6$

$$
{ }^{6} \text { MSE }=\text { mean squared error }=\sqrt{\sum_{n=1}^{N_{t}}\left\|\widetilde{\boldsymbol{u}}^{n}(\boldsymbol{\mu})-\mathbf{u}^{n}(\boldsymbol{\mu})\right\|_{2}^{2}} / \sqrt{\sum_{n=1}^{N_{t}}\left\|\boldsymbol{u}^{n}(\boldsymbol{\mu})\right\|_{2}^{2}} .
$$

ROM-ROM coupling gives errors < O(1e-6) \& speedups over FOM-FOM coupling for basis sizes > 40.

MSE in displacement for 2 subdomain ROM-ROM coupling

\# POD modes in Ω_{1}

CPU times for 2 subdomain ROM-ROM coupling normalized by FOM-FOM CPU time

Average \# Schwarz iterations for 2 subdomain ROM-ROM coupling

- Smaller ROMs are not the fastest: less accurate \& require more Schwarz iterations to converge.
- All couplings converge in ≤ 4 Schwarz iterations on average (FOM-FOM coupling requires average of 2.4 Schwarz iterations).

Overlapping implicit-implicit coupling with $\Omega_{1}=[0,0.75], \Omega_{2}=[0.25,1]$

FOM-ROM coupling shows convergence with basis refinement. FOM-ROM couplings are 10$15 \%$ slower than comparable FOM-FOM coupling due to increased \# Schwarz iterations.

Linear Elastic Wave Propagation Problem: FOM-ROM and ROMROM Couplings

Inaccurate model + accurate model \neq accurate model.

Single Domain, FOM (truth)

10 mode POD - 50 mode POD

Single Domain, 10 mode POD

20 mode POD - FOM

Figures above: $\Omega_{1}=[0,0.75], \Omega_{2}=[0.25,1]$

Accuracy can be improved by "gluing" several smaller, spatially-local models

Figure above: $\Omega_{1}=[0,0.3], \Omega_{2}=[0.25,1]$, 20 mode POD - FOM
Figure below: $\Omega_{1}=[0,0.26], \Omega_{2}=$ $[0.25,0.75], \Omega_{3}=[0.74,1], 15$ mode POD 30 mode POD - 15 mode POD

Observation suggests need for "smart" domain decomposition.

- Project-then-approximate paradigm (as opposed to approximate-then-project)

$$
\begin{aligned}
r_{k}\left(q_{k}, t\right) & =W^{T} r(\tilde{u}, t) \\
& =\sum_{e \in \mathcal{E}} W^{T} L_{e}^{T} r_{e}\left(L_{e}+\tilde{u}, t\right)
\end{aligned}
$$

- $L_{e} \in\{0,1\}^{d_{e} \times N}$ where d_{e} is the number of degrees of freedom associated with each mesh element (this is in the context of meshes used in first-order hyperbolic problems where there are N_{e} mesh elements)
- $L_{e^{+}} \in\{0,1\}^{d_{e} \times N}$ selects degrees of freedom necessary for flux reconstruction
- Equality can be relaxed

Augmented reduced mesh: © represents a selected node attached to a selected element; and \otimes represents an added node to enable the full representation of the computational stencil at the selected node/element

${ }_{58}$ ECSW: Generating the Reduced Mesh and Weights

- Using a subset of the same snapshots $u_{i}, i \in 1, \ldots, n_{h}$ used to generate the state basis V, we can train the reduced mesh
- Snapshots are first projected onto their associated basis and then reconstructed

$$
\begin{aligned}
& c_{s e}=W^{T} L_{e}^{T} r_{e}\left(L_{e^{+}}\left(u_{r e f}+V V^{T}\left(u_{s}-u_{r e f}\right)\right), t\right) \in \mathbb{R}^{n} \\
& d_{s}=r_{k}(\tilde{u}, t) \in \mathbb{R}^{n}, \quad s=1, \ldots, n_{h}
\end{aligned}
$$

- We can then form the system

$$
\boldsymbol{C}=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 N_{e}} \\
\vdots & \ddots & \vdots \\
c_{n_{h} 1} & \ldots & c_{n_{h} N_{e}}
\end{array}\right), \quad \boldsymbol{d}=\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{n_{h}}
\end{array}\right)
$$

- Where $\boldsymbol{C} \boldsymbol{\xi}=\boldsymbol{d}, \boldsymbol{\xi} \in \mathbb{R}^{N_{e}}, \boldsymbol{\xi}=\mathbf{1}$ must be the solution
- Further relax the equality to yield non-negative least-squares problem:

$$
\xi=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}}\|\boldsymbol{C} \boldsymbol{x}-\boldsymbol{d}\|_{2} \text { subject to } \boldsymbol{x} \geq \mathbf{0}
$$

- Solve the above optimization problem using a non-negative least squares solver with an early termination condition to promote sparsity of the vector $\boldsymbol{\xi}$

${ }_{59}$ Numerical Example: ID Dynamic Wave Propagation Problem

- Alternating Dirichlet-Neumann Schwarz BCs with no relaxation $(\theta=1)$ on Schwarz boundary Γ

$$
\begin{aligned}
& \left\{\begin{array}{lr}
\operatorname{Div} \boldsymbol{P}_{1}^{(n+1)}+\rho \boldsymbol{B}\left(t_{i}\right)=\mathbf{0}, & \text { in } \Omega_{1} \\
\boldsymbol{\varphi}_{1}^{(n+1)}=\chi, & \text { on } \partial \Omega_{1} \backslash \Gamma \\
\boldsymbol{\varphi}_{1}^{(n+1)}=\lambda_{n+1} & \text { on } \Gamma
\end{array}\right. \\
& \left\{\begin{array}{lr}
\operatorname{Div} \boldsymbol{P}_{2}^{(n+1)}+\rho \boldsymbol{B}\left(t_{i}\right)=\mathbf{0}, & \text { in } \Omega_{2} \\
\boldsymbol{\varphi}_{2}^{(n+1)}=\chi, & \text { on } \partial \Omega_{2} \backslash \Gamma \\
\boldsymbol{P}_{2}^{(n+1)} \boldsymbol{n}=\boldsymbol{P}_{1}^{(n+1)} \boldsymbol{n}, & \text { on } \Gamma
\end{array}\right.
\end{aligned}
$$

θ	Min \# Schwarz Iters	Max \# Schwarz Iters	Total \# Schwarz Iters
1.10	3	9	59,258
1.00	1	4	24,630
0.99	1	5	35,384
0.95	3	6	45,302
0.90	3	8	56,114

$>$ A parameter sweep study revealed $\theta=0$ gave best performance (min \# Schwarz iterations)

- All couplings were implicit-implicit with $\Delta t_{1}=\Delta t_{2}=\Delta T=10^{-7}$ and $\Delta x_{1}=\Delta x_{2}=10^{-3}$
$>$ Time-step and spatial resolution chosen to be small enough to resolve the propagating wave
- All reproductive cases run on the same RHEL8 machine and all predictive cases run on the same RHEL7 machine, in MATLAB
- Model accuracy evaluated w.r.t. analogous FOMFOM coupling using mean square error (MSE):

$$
\varepsilon_{M S E}\left(\widetilde{\boldsymbol{u}}_{i}\right):=\frac{\sqrt{\sum_{n=1}^{S}\left\|\widetilde{\boldsymbol{u}}_{i}^{n}-\boldsymbol{u}_{i}^{n}\right\|_{2}^{2}}}{\sqrt{\sum_{n=1}^{S}\left\|\boldsymbol{u}_{i}^{n}\right\|_{2}^{2}}}
$$

Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

- $\Omega=[0,0.7] \cup[0.3,1]$, implicit-implicit FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=1 \mathrm{e}-3$.

Multiplicative Schwarz

velocity, snapshot 1 , time $=0$

Additive Schwarz

- $\Omega=[0,0.7] \cup[0.3,1]$, implicit-implicit FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=1 \mathrm{e}-3$.
- Additive Schwarz requires slightly more Schwarz iterations but is actually faster.
- Solutions agree effectively to machine precision in mean square (MS) sense.

	Additive	Multiplicative
Total \# Schwarz iters	24495	24211
CPU time	2.03 e 3 s	2.16 e 3
MS difference in disp	$6.34 \mathrm{e}-13 / 6.12 \mathrm{e}-13$	
MS difference in velo	$1.35 \mathrm{e}-11 / 1.86 \mathrm{e}-11$	
MS difference in acce	$5.92 \mathrm{e}-10 / 1.07 \mathrm{e}-9$	

Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

- $\Omega=[0,0.3] \cup[0.25,0.75] \cup[0.7,1]$, implicit-implicit-explicit FOM-FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=0.001$.

- Solutions agree effectively to machine precision in mean square (MS) sense.
- Additive Schwarz has slightly more Schwarz iterations but is slightly faster than multiplicative.

	Additive	Multiplicative
Total \# Schwarz iters	26231	25459
CPU time	1.89 e 3 s	2.05 e 3 s
MS difference in disp	$5.3052 \mathrm{e}-13 / 9.3724 \mathrm{e}-13 / 6.1911 \mathrm{e}-13$	
MS difference in velo	$7.2166 \mathrm{e}-12 / 2.2937 \mathrm{e}-11 / 2.4975 \mathrm{e}-11$	
MS difference in acce	$2.8962 \mathrm{e}-10 / 1.1042 \mathrm{e}-09 / 1.6994 \mathrm{e}-09$	

- $\Omega=[0,0.3] \cup[0.3,1]$, implicit-implicit FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=1 \mathrm{e}-3$.

Multiplicative Schwarz

Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

- $\Omega=[0,0.3] \cup[0.3,1]$, implicit-implicit FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=1 \mathrm{e}-3$.
- Additive Schwarz requires 1.81x Schwarz iterations (and 1.9x CPU time) to converge. CPU time could be reduced through added parallelism of additive Schwarz.
$>$ Note blue square for additive Schwarz...
- Additive and multiplicative solutions differ in mean square (MS) sense by $0(1 e-5)$.

	Additive	Multiplicativ e
Total \# Schwarz iters	44895	24744
CPU time	1.87 e 3 s	982.5 s
MS difference in disp	$4.26 \mathrm{e}-5 / 2.74 \mathrm{e}-5$	
MS difference in velo	$1.02 \mathrm{e}-5 / 5.91 \mathrm{e}-6$	
MS difference in acce	$5.84 \mathrm{e}-5 / 1.21 \mathrm{e}-5$	

- $\Omega=[0,0.3] \cup[0.3,0.7] \cup[0.7,1]$, implicit-implicit-
 explicit FOM-FOM-FOM coupling, $\mathrm{dt}=1 \mathrm{e}-7, \mathrm{dx}=$ 0.001 .
- Additive Schwarz has about $1.94 x$ number Schwarz iterations and is about $2.06 x$ slower - similar to 2 subdomain variant of this problem. No "blue square".
> Results suggest you could win with additive Schwarz if you parallelize and use enough domains.
- Additive/multiplicative solutions differ by O(1e5), like for 2 subdomain variant of this problem.

	Additive	Multiplicative
Total \# Schwarz iters	53413	27509
CPU time	5.91 e 3 s	2.87 e 3 s
MS difference in disp	$2.8036 \mathrm{e}-05 / 3.1142 \mathrm{e}-05 / 8.8395 \mathrm{e}-06$	
MS difference in velo	$1.4077 \mathrm{e}-05 / 1.2104 \mathrm{e}-05 / 6.5771 \mathrm{e}-06$	
MS difference in acce	$8.7885 \mathrm{e}-05 / 3.2707 \mathrm{e}-05 / 1.3778 \mathrm{e}-05$	

${ }_{66}$ FOM-FOM Coupling: Differing Resolution

$t=16.50$

$t=25.00$

Figures above: Two-subdomain explicit-explicit overlapping coupling in x-axis $[0,70] \cup[30,100]$ where $\mu=[4.3,0.021], \Delta t=0.005, \Delta x_{1}=0.4, \Delta x_{2}=0.3$

- Figures show the mid-plane slice of the solution for u_{x} at various times
- The right subdomain is a finer mesh, and the difference in how the shock is resolved can be seen
- $\Omega_{1} \rightarrow \Omega_{2}$ ordering gives 2 Schwarz iterations per global time step
- $\Omega_{2} \rightarrow \Omega_{1}$ ordering gives 3 Schwarz iterations per global time step

Order can be important!

${ }_{67}$ FOM-FOM Coupling: Differing time integrators and Δt

$$
t=16.50
$$

$$
t=25.00
$$

Figures above: Two-subdomain implicit-explicit overlapping coupling in x-axis [0, 70]

$$
U[30,100], \mu=[4.3,0.021], \Delta t_{1}=0.05, \Delta t_{2}=0.005, \Delta x_{1}=0.4, \Delta x_{2}=0.3
$$

- Introducing a different time stepper in Ω_{1} has not introduced artifacts and produces visually identical solution
- Choosing $\Omega_{1} \rightarrow \Omega_{2}$ still only requires 2 Schwarz iterations per global time step

${ }_{68}$ FOM-FOM Coupling: >2 Subdomains

$$
t=16.50
$$

$$
t=25.00
$$

Figures above: Four-subdomain implicit-explicit-implicit-explicit overlapping coupling in x-axis [0, 60] U [40, 100] and y-axis [0,60] U [40, 100], $\mu=[4.3,0.021]$,

$$
\Delta t_{1}=\Delta t_{3}=0.05, \Delta t_{2}=\Delta t_{4}=0.005, \Delta x_{1}=\Delta x_{4}=0.4, \Delta x_{2}=\Delta x_{3}=0.3
$$

- Despite a heterogeneous mixture of different subdomains coupled in multiple dimensions with different solvers, resolutions, etc. the solution is still consistent
- Choosing $\Omega_{1} \rightarrow \Omega_{2} \rightarrow \Omega_{3} \rightarrow \Omega_{4}$ requires 3 Schwarz iterations per global time step

Subdomain	Wall Clock Time (s)	Total (s)
Monolithic	124	124
Ω_{1}	75	
Ω_{2}	62	
Ω_{3}	62	300
Ω_{4}	77	

Figures above: Four-subdomain implicit-implicit-implicit-implicit overlapping coupling in x-axis [0, 60] U [40, 100] and y-axis [0,60] U [40, 100], $\mu=[4.3,0.021]$,

$$
\Delta t=0.05, \Delta x_{1}=\Delta x_{4}=0.4, \Delta x_{2}=\Delta x_{3}=0.3
$$

- Despite a heterogeneous mixture of different subdomains coupled in multiple dimensions with different solvers, resolutions, etc. the solution is still consistent
- Choosing $\Omega_{1} \rightarrow \Omega_{2} \rightarrow \Omega_{3} \rightarrow \Omega_{4}$ requires 3 Schwarz iterations per global time step

> Mitigation: additive Schwarz, which admits more parallelism

- HROM is in Ω_{1} and retains 95% of snapshot energy $\Rightarrow 57$ modes > HROM assignment is "worst-case-scenario"
- Reduced mesh trained only using a single parameter instance of $\boldsymbol{\mu}=[4.25,0.0225]$
- Method converges in 3 Schwarz iterations per controller time-step.
- Some spurious oscillations in first/last time steps due to under-resolved solution

Spurious oscillations do not impact Schwarz coupling.

Opinion: hybrid FOM-ROM models are the future!

- We have developed an iterative coupling formulation based on the Schwarz alternating method and an overlapping or non-overlapping DD
- Numerical results show promise in using the proposed methods to create heterogeneous coupled models comprised of arbitrary combinations of ROMs and/or FOMs
$>$ Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings
$>$ Coupling introduces no numerical artifacts into the solution
- FOM-ROM and ROM-ROM have potential to improve the predictive viability of projectionbased ROMs, by enabling the spatial localization of ROMs (via DD) and the online integration of high-fidelity information into these models (via FOM coupling)

Comparison of Methods

Alternating Schwarz-based Coupling Method

- Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
- Overlapping or non-overlapping DD
- Iterative formulation (less intrusive but likely requires more CPU time)
- Can couple different mesh resolutions and element types
- Can use different time-integrators with different time-steps in different subdomains
- No interface bases required
- Sequential subdomain solves in multiplicative Schwarz variant
> Parallel subdomain solves possible with additive Schwarz variant (not shown)
- Extensible in straightforward way to PINN/DMD data-driven model

Lagrange Multiplier-Based Partitioned Coupling Method

- Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
- Non-overlapping DD
- Monolithic formulation requiring hybrid formulation (more intrusive but more efficient)
- Can couple different mesh resolutions and element types
- Can use different explicit time-integrators with different time-steps in different subdomains
- Provably convergent variant requires interface bases
- Parallel subdomain solves if explicit or IMEX time-integrator is employed
- Extensions to PINN/DMD data-driven models are not obvious

74 Ongoing \& Future Work

- Extension/prototyping on more multi-D (2D/3D compressible flow ${ }^{1}$, 2D/3D solid mechanics ${ }^{2}$) and multi-physics problems (FSI, Air-Sea coupling)
- Implementation/testing of additive Schwarz variant, which admits more parallelism
- Analysis of method's convergence for ROM-FOM and ROM-ROM couplings
- Learning of "optimal" transmission conditions to ensure structure preservation
- Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)
- Exploration of connections between iterative Schwarz and optimization-based coupling [lollo et al., 2022]
- Development of smart domain decomposition approaches based on error indicators, to determine optimal placement of ROM and FOM in a computational domain (including on-the-fly ROM-FOM switching)
- Extension of couplings to POD modes built from snapshots on independently-simulated subdomains
- Journal article currently in preparation.

1 https://github.com/ Pressio/pressio-demoapps
2 https://github.com/lxmota/norma

[^0]: ${ }^{1}$ Mota et al. 2017; Mota et al. 2022. ${ }^{2}$ https:// github.com/sandialabs/LCM.

