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ABSTRACT 

Many science and engineering applications feature differential equations with terms that are partially 

unknown. For example, in neural ODEs, one tries to train a neural network to model a dynamical system. 

Similarly, in (non-intrusive) reduced order models (NIROMs), operators are derived in such a way to 

closely match (projected) snapshot data. Additionally, recent years have seen a big push to replace 

empirical and often ad hoc subgrid-scale process models (e.g., closure terms in turbulence modelling, 

constitutive models in structural mechanics, physics process representations in climate models) in high 

fidelity modelling toolchains with machine learned representations. Many existing approaches try to 

learn these terms in an ‘offline’ fashion, e.g. through supervised learning, and then substituted back into 

the differential equation in order to give predictions in an ‘online’ setting [1]. An alternative to this 

“operator-fitting” approach is known as “embedded model learning”, “solver-in-the-loop”, or 

“trajectory-fitting” [2,3]. In this approach, one learns a model in such a way that, upon embedding in 

the solver, it results in accurate predictions of the solution trajectory. This has the promise to lead to 

more stable models, but comes at the price of increased computational costs associated with 

differentiating through the entire differential equation solver (e.g. by using fully differentiable solvers 

or adjoints). Such fully differentiable solvers are actively being developed in the Scientific Machine 

Learning community [4]. 

 

In this minisymposium we bring together researchers working on learning models for various science 

and engineering applications (e.g., computational fluid mechanics, structural modelling, climate 

modelling), either with operator fitting or with embedded learning. We welcome contributions on the 

topic of learning turbulence models, reduced order models, and other types of ‘closure’ models that 

appear in partial differential equations.  
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