Sandia

Exceptional service in the national interest National
Laboratories

Mathematical Modeling of the Polar Ice Sheets

Irina K. Tezaur, et al.

Quantitative Modeling and Analysis Department
Sandia National Laboratories, Livermore, CA

Guest Lecture Federal University of Parana, Brazil June 22, 2021

DEPARTMENT OF

)ENERGY

n l.!b.ﬁ_&a Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
U,H,&,%'E owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-1606P



Sandia
ﬂ" National

Laboratories

Acknowledgements

In collaboration with: L. Bertagna, M. Carlson, J. Jakeman, K. Liegeois, M. Perego,
A. Salinger, C. Sockwell, R. Tuminaro, J. Watkins [SNL]; I. Demeshko, T. Hillebrand,
M. Hoffman, S. Price, T. Zhang [LANL]; K. Evans [ORNL]; J. Kennedy [UAF]; G. Stadler [NYU];
J. Bassis [U Michigan]; K. Shan [Micron Technology]

Computing resources: NERSC, OLCF.

(R)AK ﬁa“.dia | ﬁ) r-r,rh‘ b [ MICHIGAN | LIl"l lej I 52;/_\[\\ S” (%//
DG E laoraores 05 Alamos WY WL o
SeiomiTaburon NYU
e
FASTMATH

Support for this work was provided through Scientific Discovery through Advanced
Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR) and Biological and Environmental
Research (BER) — SciDAC Application Partnership.




Outline rh) i

1. Background

Motivation for climate & land-ice modeling
ISMs, ESMs & projects

Land-ice equations

Our codes: ALl, MALI

2. Algorithms and software
e Discretization & meshes
* Nonlinear solvers
e Linear solvers
e Performance-portability
* |ce sheet initialization
 Towards UQ

3. Simulations
4. Summary



Outline rh) i

1. Background

Motivation for climate & land-ice modeling
ISMs, ESMs & projects

Land-ice equations

Our codes: ALl, MALI

2. Algorithms and software
e Discretization & meshes
* Nonlinear solvers
e Linear solvers
e Performance-portability
* |ce sheet initialization
 Towards UQ

3. Simulations
4. Summary



Motivation )t

» Climate change is a global threat to health, global security, infrastructure, ...

» Global mean sea-level is rising at the rate of 3.2 mm/year and this rate is increasing,
with the latest studies suggesting a possible increase in sea-level of 0.3-2.5 m by 2100.

J/

** Due to melting of the polar ice sheets (Greenland, Antarctica).
» Full deglaciation®*: sea level could rise up to ~65 m (Antarctica: 58 m, Greenland: 7 m)
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» Climate change is a global threat to health, global security, infrastructure, ...

» Global mean sea-level is rising at the rate of 3.2 mm/year and this rate is increasing,
with the latest studies suggesting a possible increase in sea-level of 0.3-2.5 m by 2100.
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** Due to melting of the polar ice sheets (Greenland, Antarctica).
» Full deglaciation®*: sea level could rise up to ~65 m (Antarctica: 58 m, Greenland: 7 m)
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Modeling of ice sheet dynamics is essential for providing estimates of sea-
level rise, towards understanding the local/global effects of climate change.
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What is an Ice Sheet Model (ISM)? rh) i

Dynamical core (“dycore”)
Conservation of:
» Mass (ice thickness)
» Momentum (ice velocity)
» Energy (ice temperature)

Physical processes (“physics”) i
» Iceberg calving
» Basal sliding
> Etc...

http://lima.nasa.gov/antarctica/

Climate forcing
» Snowfall/melt
» Ocean melting/freezing
> Etc...




What is an Ice Sheet Model (ISM)? ) i

Dynamical core (“dycore”) y
Conservation of: /
» Mass (ice thickness)

» Momentum (ice velocity)
» Energy (ice temperature)

Physical processes (“physics”)
» Iceberg calving
» Basal sliding
> Etc...

Bedrock

Climate forcing
» Snowfall/melt
» Ocean melting/freezing
> Etc...

Comes from Earth System
Model (ESM)

Circulation




Earth System Models (ESMs) rh) e,

An Earth System Model (ESM) has six modular components:

.:;, - : S
f l "

Flux Coupler

CESM E3SM nNorE®

Energy Exascale
COMMUNITY EARTH SYSTEM MODEL Earth System Model
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An Earth System Model (ESM) has six modular components:

Role of an ISM within an ESM: to
provide actionable scientific predictions
Eas of 215t century sea-level change

s ¥ (including uncertainty bounds).
Flux Coupler

CE}SM Nor

Energy Exascale
Earth System Model
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An Earth System Model (ESM) has six modular components:

Role of an ISM within an ESM: to
provide actionable scientific predictions
Eas of 215t century sea-level change

s ¥ (including uncertainty bounds).
Flux Coupler

About a decade ago, existing
land-ice models were not robust
enough for ESM integration! ®

CE}SM Nor

Energy Exascale
Earth System Model




U.S. DOE Ice Sheet/Climate Model Efforts @ &=

Motivation:

2007 IPCC (Intergovernmental Panel on Climate Change) Fourth
Assessment Report declined to include estimates of future sea-
level rise from ice sheet dynamics due to the inability of ice sheet
models to mimic/explain observed dynamic behaviors.

» “Much work is needed to make [present-day ISMs] robust
and efficient on continental scales and to quantify
uncertainties in their projected outputs”. — IPCC AR4 (2007)

Lahoratories

SYNTHESIS REPORT
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Motivation:

e 2007 IPCC (Intergovernmental Panel on Climate Change) Fourth CLIMATE CHANGE 2007

SYNTHESIS RERORT:

Assessment Report declined to include estimates of future sea-
level rise from ice sheet dynamics due to the inability of ice sheet
models to mimic/explain observed dynamic behaviors.

» “Much work is needed to make [present-day ISMs] robust
and efficient on continental scales and to quantify
uncertainties in their projected outputs”. — IPCC AR4 (2007)

U.S. DOE-funded Land-lce Modeling Projects:
* Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES): 2012-2017.
* Probabilistic Sea-Level Projections from Ice Sheet Models and ESMs (ProSPect): 2017-2022.

Aim is to develop & apply robust, accurate, scalable dynamical cores N—
for ice sheet modeling on unstructured meshes, enable uncertainty ENERGY
quantification (UQ), and integrate models/tools into DOE E3SM @ SV

e
Earth System Model
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Motivation:

e 2007 IPCC (Intergovernmental Panel on Climate Change) Fourth CLIMATE CHANGE 2007

SYNTHESIS RERORT:

Assessment Report declined to include estimates of future sea-
level rise from ice sheet dynamics due to the inability of ice sheet
models to mimic/explain observed dynamic behaviors.

» “Much work is needed to make [present-day ISMs] robust
and efficient on continental scales and to quantify
uncertainties in their projected outputs”. — IPCC AR4 (2007)

U.S. DOE-funded Land-lce Modeling Projects:
* Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES): 2012-2017.
* Probabilistic Sea-Level Projections from Ice Sheet Models and ESMs (ProSPect): 2017-2022.

Aim is to develop & apply robust, accurate, scalable dynamical cores N—
for ice sheet modeling on unstructured meshes, enable uncertainty ENERGY
quantification (UQ), and integrate models/tools into DOE E3SM @ SV

e

U.S. DOE Energy Exascale Earth System Model (E3SM):

*  “Next-generation” climate model with focus of decadal-century timescale projections,
high-spatial resolution, next generation HPC, impacts to U.S. infrastructure.




The PISCEES & ProSPect Projects ) &=,

MALI
B - TSmf‘l.,)AC Sandia National Labs
FASTMATH Rl Gl Finite Element

/ “First Order” Stokes
PISCEES (2012-2017) _
. Model S
ProSPect (2017-present) Two land-ice dycores = 3
SciDAC Application currently under L
Partnerships development BISICLES <0

(DOE’s BER + ASCR divisions) \ Lawrence Berkeley
National Lab

Finite Volume + AMR
L1L2 Model

MALI: MPAS-Albany Land Ice
BISICLES: Berkeley Ice Sheet Initiative for Climate at Extreme Scales
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Stokes Ice Flow Equations

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow)
and is modeled quasi-statically using nonlinear incompressible Stokes equations.

SNW? W"Plauo,.,.l
!

/" lce sheet |

f

{—\7-1’+|7p=pg in Q.

Bedrock

> Fluid velocity vector: u = (uq, u,, u3)
» lIsotropic ice pressure: p

» Deviatoric stress tensor: T = 2u€

. 1{0u; ou;
» Strain rate tensor: € =5 (—‘ + —1)
2 axj 0x;

il)
2n 2

) o 1 1 (
> Glen’s Law Viscosity*: =~ A(T) n (Ezij eijz)

Q
> Flow factor: A(T) = Age kT

*Nye 1957; Cuffey et al., 2010. Typically we use n = 3.
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Stokes Ice Flow Equations

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow)
and is modeled quasi-statically using nonlinear incompressible Stokes equations.
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Equilibrium
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/" lce sheet \

—V-t+Vp=pg :
Q
{ V-u=0 .

Bedrock

> Fluid velocity vector: u = (uq, u,, u3)
» lIsotropic ice pressure: p

» Deviatoric stress tensor: T = 2u€
. Qu;
» Strain rate tensor: €; = 1(% + ﬁ)
2 axj 0x; (1 1)
, : s, 1 1 N\\2n 2
> Glen’s Law Viscosity™: u = JAM) » (E ij €ij )
Q . .
> Flow factor: A(T) = Age kT Highly nonlinear rheology!

*Nye 1957; Cuffey et al., 2010. Typically we use n = 3.
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Stokes Ice Flow Equations

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow)
and is modeled quasi-statically using nonlinear incompressible Stokes equations.

‘,' SMV1 m"lu"bﬂ'.
f \

/" lce sheet |

{—\7-1’+|7p=pg in Q.

Bedrock

> Fluid velocity vector: u = (uq, u,, u3)

» lIsotropic ice pressure: p

» Deviatoric stress tensor: T = 2u€
1(% %) © “Gold standard” model

il)
2n 2

» Strain rate tensor: €; =

) 2 axj 0x;

) o 1 1 (
> Glen’s Law Viscosity*: =~ A(T) n (Ezij eijz)

Q . .
> Flow factor: A(T) = Age RT Highly nonlinear rheology!

*Nye 1957; Cuffey et al., 2010. Typically we use n = 3.
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Stokes Ice Flow Equations

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow)
and is modeled quasi-statically using nonlinear incompressible Stokes equations.

‘,' SMV1 m"lu"bﬂ'.
f \

/" lce sheet |

{—\7-1’+|7p=pg in Q.

Bedrock

> Fluid velocity vector: u = (uq, u,, u3)

» lIsotropic ice pressure: p

» Deviatoric stress tensor: T = 2u€
1(% %) © “Gold standard” model

» Strain rate tensor: €; =

) 2 axj 0x;

%—%) ® ...but very expensive!

) o 1 1 (
> Glen’s Law Viscosity*: =~ A(T) n (Ezij eijz)

Q . .
> Flow factor: A(T) = Age RT Highly nonlinear rheology!

*Nye 1957; Cuffey et al., 2010. Typically we use n = 3.



First Order (FO) Stokes/Blatter-Pattyn Model*

: 3
Stokes(u,p)in QL € R u=(uvw)

. Uy %(uy + vy) %(uz + wy)
W=l Su+v) W %(vz +wy)
%(uz + wy) 2 (s + Wy) Wz

p=pg(s—2z)—2u(u, + vy)

*Pattyn, 2003; Blatter, 1995.



First Order (FO) Stokes/Blatter-Pattyn Model*

Stokes(u, p) in Q € R3
u=(uuvw)
Hydrostatic approximation + Uy %(uy + 1) %(uz + wy)
scaling argument based on the fact e(u) = %(uy +v,) vy 1 (v, +w5)
that ice sheets are thin and normals 1 %(UZ + ) 22 7
are almost vertical 2 (e )
Y p=pg(s—2z)—2u(u, + vy)

FO Stokes(u, v) in 2 € R3

First Order
Stokes (a.k.a. V- (2ué,) = ds 1
—V - (2u€) = —pg—- 1 1
Blatter-Pattyn) _ g’s‘ , inQ e(wv) = 12“x Ty S (uy tv) 2
Model =V - (2u€y) = —pg T 5 (uy +vx) Ux + 2v, %UZ
1 1/1 (%_%)
i ion: = (=) €2
Discussion: u=5AT) (22 €; )
* Nice “elliptic” approximation to full Stokes. Y
* 3D model for two unknowns (u, v) with nonlinear L. (n=3)

e Valid for both Greenland and Antarctica and used in
continental scale simulations.

*Pattyn, 2003; Blatter, 1995.




BO un d ad ry CO N d |t|0 NS Boundary conditions have tremendous

effect on ice sheet behavior!

Ice-Atmosphere Boundary:

» Stress-free BC: 2ué,-n =0 onTl,

Ice-Bedrock Boundary:

» Basal sliding BC: 2u€;-n+ fu; = 0on Iy

f = basal sliding coefficient

B=pBxy) or B=Bxyurt)

Can’t be measured — must be estimated from data!

Ice-Ocean Boundary:
» Floating ice (a.k.a. open ocean) BC:

pgzn,ifz >0

Z“Gi'":{O, ifz <0

onl,
IPCC WG1 (2013): “Based on current understanding, only
the collapse of marine-based sectors of the Antarctic ice
sheet, if initiated, could cause [SLR by 2100] substantially
, above the likely range [of ~0.5-1 m].”

Surface boundary I,
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Ice velocity equations are coupled with equations for ice sheet
evolution (thickness) and ice temperature.

* Energy equation for the temperature T':

ch—: + pcu-VT =V -(kVT) + 2é6, in Qy

» Flow factor A in Glen’s law viscosity u is function of T'.

* Mass equation for the ice thickness H:

Z—I:+|7-(ﬁH)+B, on I

u = vertically averaged u time ¢,
b = surface mass balance
(given accumulation-ablation function that Ice-covered (“active”)
accounts for e.qg. accumulation due to snowfall) cells shaded in white
I = horizontal extent of the ice (H > Hpin)

» Thickness H determines the geometry for velocity equations.
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Lahoratories

Ice velocity equations are coupled with equations for ice sheet
evolution (thickness) and ice temperature.

* Energy equation for the temperature T':

ch—: + pcu-VT =V -(kVT) + 2é6, in Qy

» Flow factor A in Glen’s law viscosity u is function of T.

* Mass equation for the ice thickness H:

Z—I:+|7-(ﬁH)+B, on I

U = vertically averaged u time ¢,
b = surface mass balance
(given accumulation-ablation function that Ice-covered (“active”)
accounts for e.qg. accumulation due to snowfall) cells shaded in white
I' = horizontal extent of the ice (H > Hpin)

» Thickness H determines the geometry for velocity equations.
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Ice velocity equations are coupled with equations for ice sheet
evolution (thickness) and ice temperature.

* Energy equation for the temperature T':

ch—: + pcu-VT =V -(kVT) + 2é6, in Qy

» Flow factor A in Glen’s law viscosity u is function of T.

* Mass equation for the ice thickness H:

Z—I:+|7-(ﬁH)+B, on I

U = vertically averaged u time t,
b = surface mass balance
(given accumulation-ablation function that Ice-covered (“active”)
accounts for e.qg. accumulation due to snowfall) cells shaded in white
I' = horizontal extent of the ice (H > Hpin)

» Thickness H determines the geometry for velocity equations.
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A= (O neelin

Our Codes MALI = MPAS + ALl s

Momentum Balance: First-Order Stokes PDEs

=multi-physics
PDE code*

. d
~V-(2ué) = —pg-- o
o in

. d
V- (2u&;) = —pg 5,

with Glen’s law viscosity u = —A(T) (1 ij €ij )

T
Energy Balance: temperature advection-diffusion PDE M PAS
aT . Mode for Prediction Across Scales
peor = V-(kVT)—pcu-VT + 2€0
L Model for Prediction
Conservation of Mass: thickness evolution PDE Across Scales
o0H )
—=-V-(uH) +b ES3
- (@H) + (E3SM
— Earth Sy stem Model

*https://github.com/SNLComputation/Albany.



Albany Land-Ice (ALIl) FO Stokes Solver rh) e,

The Albany Land-Ice First Order Stokes

solver is implemented in a Sandia open- “Agile Components”
source parallel C++ multi-physics finite
element code known as... b DiscretizationS/meSheS

* Solver libraries

* Preconditioners

* Automatic differentiation
* Performance portable kernels
* Many others!

1722@110}

e Parameter estimation

Land Ice Equation O'Fher « Uncertainty
Set (ALI) Equation Sets quantification
Optimization

Bayesian inference

Trilinos: https://github.com/trilinos/Trilinos
Dakota: https://dakota.sandia.gov/

Albany:
https://github.com/SNL

Computation/Albany
e



https://github.com/trilinos/Trilinos
https://dakota.sandia.gov/
https://github.com/SNLComputation/Albany

Laboratories

Model for Prediction Across Scales (MPAS) @) &=

Model for Prediction Across Scales (MPAS):
climate modeling framework built around
SCVT* meshes (LANL + NCAR collaboration)

S ———

*SCVT = Spherical Centroidal Voronoi Tesselations

/ \L st pr ; >SN 'y
. . ’ e A 'i ,
{ - > . . .
o \J “ " ( i x
¢ . s s
- \\ >

& .p’ h oA
. o - Y o
Y. .

/

.

-

o -
= i e
\

Model for Prediction Across Scales

e Ocean}, seaice? and land
ice3 dynamical cores

10 kil
* Built using shared «.tifflftﬁn"' "‘az";:f"...-"' 80 km
software framework _—
 New capabilities added to P Nl

. f;"""
one core benefit all others y

3
3




MPAS + ALl Coupling (MALI)

output file

[

MPAS Land-Ice

Landlce_ (Fortran)

1 .
model Thickness evolution,
temperature solve,
coupling to DOE-ESM

E3SM M o v @)+

Energy Exascale a t
Earth System Model

oT
pCor = V-(kVT)—pcu-VT + 2€0

Model for Prediction Across Scales

C++/Fortran
Interface, Mesh
Conversion

________________________

\

Sandia
ﬂ'] National

Laboratories
% Albany Land-
Ice (C++)
velocity solve
( 7 (2ue.) = ds
(2pé) = —pg =
ds

—V - (2u€;) = —pg B

“Loose” sequential/staggered coupling between u and (T, H).

* Making this coupling tighter by moving thickness and temperature

evolution to Albany is WIP.
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Finite Element Discretization ) i

Lahoratories

* Can handle well the boundary conditions arising in land ice modeling.

e Allow the use of unstructured meshes to concentrate the computational power
where it is needed.

‘ Avs \J
‘ U R
Greenland mesh from ALl refined 4#5?',:?’5 A
based on gradient of surface WAV

velocity



Meshes ) e,

Lahoratories

e ALl runs employ dual of hexagonal mesh from MPAS extruded to tetrahedra
for the velocity solve in Albany.

* Meshes are structured (extruded) in the vertical dimension.

* |ce sheets are thin (thickness up to 4 km, horizontal extension of thousands
km), meaning we typically have elements with bad aspect ratios.

Variable resolution
triangular mesh extruded to
a (thin) tetrahedral mesh.

MALI uses dual
of hexagonal
mesh extruded
to tetrahedra.
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Nonlinear Solver for Discretized Problem

* Picard iterations have been method of choice in ice sheet modeling

Sandia
National
Laboratories




Nonlinear Solver for Discretized Problem (@)

Lahoratories

* Picard iterations have been method of choice in ice sheet modeling

* ALl employs Newton’s method with several advancements:




Nonlinear Solver for Discretized Problem (@)
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* Picard iterations have been method of choice in ice sheet modeling

e ALl employs Newton’s method with several advancements:

» Automatic differentiation (AD) Jacobian — gives you exact
derivatives/Jacobians without deriving/hand-coding them!

. . . double DFad<double>
Libraries (Sacado) provides new scalar types 5 Sverlonded AD o
eration verloade im
that overload the math operators to P : P
propagate embedded quantities via chain rule c=axhbh ¢c=aztb
. o c=ab ¢ =ab+ab
*¢ Derivatives: DFad<double> . _ . i/
] c=a c=(@@-c
¢ Hessians: DFad<SFad<double,N>> / ( )/
. , , , c=a" ¢ =ra""la
%+ Stochastic Galerkin resid: PCE<double>
+* Stochastic Galerkin Jac: template <typename ScalarT>
void computeF (ScalarT* x, ScalarT* f)
DFad<PCE<double> {
e el e £[0] = 2.0 * x[0] + x[1] * x[}];
¢ Sensitivities: DFad<double> y SIEL eV SSio Sl st i
o o . . double* x; DFad<double>* x;
No finite difference truncation error! double* £; DFad<double>* £
;omputeF(x,f) 3 ;omputeF(x,f) ;

*Tezaur et al. 2015.



Nonlinear Solver for Discretized Problem (@)

Lahoratories

* Picard iterations have been method of choice in ice sheet modeling

* ALl employs Newton’s method with several advancements:

» Automatic differentiation (AD) Jacobian — gives you exact
derivatives/Jacobians without deriving/hand-coding them!

» Homotopy continuation* to deal with “singular” viscosity.

*Tezaur et al. 2015.



Nonlinear Solver for Discretized Problem (@)
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* Picard iterations have been method of choice in ice sheet modeling

* ALl employs Newton’s method with several advancements:

» Automatic differentiation (AD) Jacobian — gives you exact
derivatives/Jacobians without deriving/hand-coding them!

» Homotopy continuation* to deal with “singular” viscosity.

Glen’s Law Viscosity:

1 1/1 -2/3
= — _§ - E ¢ ..2

)

Undefined for u=const!
. 1 aui auj
Ei' == — 4+ —
) 2 an axi

*Tezaur et al. 2015.




Nonlinear Solver for Discretized Problem (@)

Lahoratories

* Picard iterations have been method of choice in ice sheet modeling

* ALl employs Newton’s method with several advancements:

» Automatic differentiation (AD) Jacobian — gives you exact
derivatives/Jacobians without deriving/hand-coding them!

» Homotopy continuation* to deal with “singular” viscosity.

Glen’s Law Viscosity:

1 11 23
"= EA(T) 3 (Ez €;° + V)

)

y = regularization
parameter (0O (1e-10))

. 1 aui auj
Ei' == — 4+ —
J 2 an axi

*Tezaur et al. 2015.




Nonlinear Solver for Discretized Problem (@)

Laboratories

* Picard iterations have been method of choice in ice sheet modeling

e ALl employs Newton’s method with several advancements:

» Automatic differentiation (AD) Jacobian — gives you exact
derivatives/Jacobians without deriving/hand-coding them!

» Homotopy continuation® to deal with “singular” viscosity.

1e+08 T T T T T

Full Hewton
Backtracking 1
Honotopy

1e+B6

18888

i Glen’s Law Viscosity:

| 1 1/1 23
_ p =AM 3(52@-2”)

)

188

Residual Morn IFI

[ N/ — -1.0
8.80081 | v=10 y=1060 y=1010 .

y=10-2.5 ] — . H
Le-B6 . h . . . . . . . y = regularization
a 9 18 15 28 25 38 33 48 45 a8 parameter
Hewton Iterations

Improved robustness and faster nonlinear convergence ¢ = %(? n ?)
by doing a homotopy continuation w.r.t. y X 0%

*Tezaur et al. 2015.
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From Nonlinear Solvers to Linear Solvers

* Krylov iterative linear solvers are employed — CG or GMRES.
» FO Stokes equations are symmetric.

e Grid partitioning is done on 2D base grid for best linear solver
performance (recall that mesh is layered).

* Bad aspect ratios, floating ice, and island/ice hinges can

. Exampl llel
wreak havoc on linear solver! xample paralie
. . . decomposition of Greenland
» Specialized solvers/preconditioners have been geometry.

developed in Trilinos to deal w/ these issues.
s AMG! preconditioner w/ semi-coarsening?.

% Fast and Robust Overlapping Schwarz (FROSch) = .y = ——
preconditioner3w/ GDSW* coarse spaces

» Graph-based algorithms for removing islands/ice
hinges are being developed?.

which takes advantage of layered
nature of 3D mesh.

%]zo S T ?, Visualization of AMG preconditioner?,

L Algebraic Multi-Grid. 2 Tuminaro et al. 2016. 3 Heinlein et al. 2020. 4 Generalized-Dryja-Smith-Widlund.



From Nonlinear Solvers to Linear Solvers

* Krylov iterative linear solvers are employed — CG or GMRES.
» FO Stokes equations are symmetric.

e Grid partitioning is done on 2D base grid for best linear solver
performance (recall that mesh is layered).

* Bad aspect ratios, floating ice, and island/ice hinges can
: ; Exampl llel
wreak havoc on linear solver! Deep dive decom;‘g;’;ﬁ;i;’(‘s’r:en ond
» Specialized solvers/preconditioners have been geometry.

developed in Trilinos to deal w/ these issues.
s AMG! preconditioner w/ semi-coarsening?. Ve
+* Fast and Robust Overlapping Schwarz (FROSch) . B
preconditioner3w/ GDSW* coarse spaces
» Graph-based algorithms for removing islands/ice
hinges are being developed?.

f 7 7 [[ 10S o “ Visua/ization of AMG preconditioner?,
k —— : which takes advantage of layered
nature of 3D mesh.

L Algebraic Multi-Grid. 2 Tuminaro et al. 2016. 3 Heinlein et al. 2020. 4 Generalized-Dryja-Smith-Widlund.



How Does Multi-Grid Work? ) e

Basic idea: accelerate convergence of an iterative method on a given
grid by solving a series of (cheaper) problems on coarser grids.

* Create set of coarse approximations.

* Apply restriction operator R, to interpolate
from fine to coarse grid.

* Solve problem on coarse grid.

* Apply prolongation operator P, to get back
to original (fine) grid.

 Smoothers are applied throughout procedure
to reduce short wavelength errors.

Solve A;u; = f,

u; + P,u,. Smooth A;u; = f..

Smooth A;u; = f;.Set f, = R,r,. / Set u,
Smooth A,u, = f,.Set f, = R1,. \ Setu, = u, + P,u,. Smooth 4A,u, = f,.

Solve A u, = f, directly.




Scalable Algebraic Multi-Grid (AMG) rh) e,

Preconditioners
| | Algebraic
H Structured MG
T

Bad aspect ratios (dx > dz) ruin

classical AMG convergence rates!

* relatively small horizontal
coupling terms, hard to
smooth horizontal errors

= Solvers (AMG and ILU) must

take aspect ratios into account!

Algebraic
Structured MG

Unstructured
T AMG

We developed a new AMG
solver based on aggressive
semi-coarsening (available in
ML/Muelu packages of Trilinos)

See (Tezaur et al., 2015),
(Tuminaro et al., 2016).

%nos




Greenland Controlled Weak Scalability Study

Weak Scalability: 8km, dkm, 2km, 1km, 500m G| SEESE

time (sec)

—=— Total Time - Mesh Import
—=— Total Linear Zoke Time
—*— Finite Element Assembly Time 1

10 E——
1

4 cores
334K dofs
8 km Greenland,
5 vertical layers

2 3 4 a
10 10 10 10
# cores
16,384 cores
1.12B dofs(!)
% 84 " 0.5 km Greenland,

scale up 80 vertical layers

Weak scaling study with fixed
dataset, 4 mesh bisections.

~70-80K dofs/core.

Conjugate Gradient (CG)
iterative method for linear solves

(faster convergence than
GMRES).

New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in z-direction only).

Significant improvement in
scalability with new AMG
preconditioner over ILU
preconditioner!



Greenland Controlled Weak Scalability Study

New AMG preconditioner

preconditioner

ILU preconditioner

? M )
2 2 /—@/ @
— 10 T ] wh 2
g N ] ;’ 10 |
= ] £
—=— Total Time - Mesh Import
—=— Total Linear Soke Time
—*— Finite Element Assembly Time
1 1 Lol il 1 Lol 1 L1l 1 Lo !
10 1] 1 2 3 4 5 10 0
10 10 10 10 10 10 10
# cores
4 cores 16,384 cores
334K dofs 1.12B dofs(!)
8 km Greenland, % g4 0.5 km Greenland,
5 vertical layers scale up 80 vertical layers

—=—Total Time - Mesh Import
—=—Total Linear Solve Time

—*— Finite Element Assembly Time

Adaal b dddaal, hddddasal hdhd b dial,

: : - — s
10 10 10 10 10

~ & cores

Significant improvement in
scalability with new AMG
preconditioner over ILU
preconditioner!



Weak scalabilit
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ILU solver does not converge
for finest mesh resolution!
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v: Antarctica

Sandia
rl'l National
Laboratories

Thin floating ice: ILU will not
work well! Green’s function
~ constant in thin direction*

4

Antarctica is fundamentally different than Greenland:

AIS contains large ice shelves (floating extensions of land ice).

* Weak scaling study: 2.5M — 1.1B dofs, 16 — 8192 cores
* Initialized with realistic basal friction and temperature field from BEDMAP?2.

* [terative linear solver: GMRES.

Thin grounded ice: |
ILU can work well w/
proper ordering

See (Tuminaro et al., SISC, 2016).

* Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

* A~ will have large number of non-zeroes, so approximate inverse ILU preconditioner is ineffective.
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Performance-Portability via Kokkos

We need to be able to run Albany Land-Ice on new architecture machines (hybrid
systems) and manycore devices (multi-core CPU, GPUs, Intel Xeon Phi, etc.).

MPI (inter-node parallelism) + X* (intra-node parallelism)

* Kokkos**:. open-source C++ library that provides performance portability across diverse
devises with different memory models.

» A programming model as much as a software library.

» Provides automatic access to OpenMP, CUDA, Pthreads, ...

u.‘,;:

» Templated meta-programming: parallel_for, parallel_reduce (templated on an
execution space).

» Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template parameter
to get the optimal data layout for your hardware (e.g., (i,j,k) vs. (k,i,j)).

* Finite element assembly in Albany Land-Ice has been rewritten using Kokkos functors.

e Performance portability for linear solvers is an ongoing research topic within Trilinos.

*X = OpenMP, CUDA, etc. **https://github.com/kokkos/kokkos



Kokkos-ification of Finite Element Assembly
(FEA)

MPI-only FEA | ——> | MPI+X FEA

typedef Kokkos::0penMP ExecutionSpace;

template<typename ScalarT>
vectorGrad<ScalarT>: :vectorGrad()

{

Kokkos: :View<ScalarT****, ExecutionSpace> wvecGrad(“vecGrad”, numCells, numQP, numVec, numDim);

}

dedrode e drode ok e Wk ek e e e e e o o e ol e e e e W e e b e e R e o R ol
template<typename ScalarT=
void vectorGrad<ScalarT>::evaluateFields()

{

Kokkos::parallel for<ExecutionSpace> (numCells, #*this);

}

e de e e de o o o o ok o e ok ok b o o o b ok i e o ol ok e o e o e ke e ok b ke e e e e b b e b ol o

template<typename ScalarT=> ]

KOKKOS INLINE FUNCTION ExecutionSpace parameter

void vectorGrad<ScalarT>:: operator() (const int cell) const tailors code for device (e g

q £.,
for (int cell = 0; cell < pumCells; cellit) OpenMP, CUDA, etc.)

for (int gp = 0; gp < numQP; gp++) {
for (int dim = 0; dim < numVec; dim++) {
for (int i = 0; i < numDim; i++) {
for (int nd = 0; nd < numNode; nd++) {
vecGrad(cell, gp, dim, i) += wval(cell, nd, dim) * basisGrad(nd, gp, i);

PP}




Targeted Computer Architectures/Results ) s

Laboratories

Performance-portability of FEA in ALl has been
tested across multiple architectures: Intel Sandy
Bridge, Intel Skylake, IBM POWERS, IBM POWERY,
Keplar/Pascal/Volta/Ampere GPUs, KNL Xeon Phi

Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)]

Summit (OLCF): 4600 nodes [2 P9 (22 cores) + V100 (6 GPUs)]
Future targets: Aurora Intel GPU (ALCF), Frontier AMD GPU (OLCF)

10000 ® time
—»— 4x V100 (CUDA) a = mean
—a— Dual-Socket POWERY, 40 cores per node (Serial) 400 B ) I . ubper
—#— Dual-Socket HSW, 32 cores per node (Openmp) (L | PP
1000 4 —— Single-Socket KNL, 64 cores per node (OpenMP) Anta rctica ower
N 350
g @ performance
5 o T 'Fd
g 100 \ = monitoring  *
2 300
T 3
] o
[«} [¥)
3 10 f=IU
o _
] = 250
£
ol 9
1 200
MPI+X strong-scaling - o Seye
0.1 1 T T T Nov 2019 Jan 2020 Mar 2020 May 2020
2 4 8 16
Number of nodes Simulation Date
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Inversion for Ice Sheet Initialization ) e,

Goal: find ice sheet initial state that:

* matches observations (e.g. surface velocity, temperature).
* matches present-day geometry (elevation, thickness).
e isin “equilibrium” with climate forcings (SMB).

Available data/measurements:
» |ce extent and surface topography.
» Surface velocity.
> Surface mass balance (SMB). Sources of data: satellite

» |ce thickness H (sparse measurements). infrarometry, radar,
altimetry, etc.

Fields to be estimated:
» Basal friction f3, ice thickness H

“Spin-up” approach: initialize model with (imperfect/unknown) present state and integrate
forward until states consistent with observations are reached.

» Can require a lot of CPU time (“spin-up time”): long timescale adjustments to past
BC forcing requires a model “spin-up” of order 10%-10° years*.

» “Spun-up” initial conditions can result in “shocks”, which initiate large transients that
can derail dynamic ice simulations*.

* Perego, Stadler, Price, JGR, 2014.



Dete rm I n iStIC I nve rSIO n U: computed depth averaged velocity

H: ice thickness

First-Order Stokes PDE-Constrained optimization B: basal sliding friction coefficient

roblem for initial condition*:
P T,: surface mass balance (SMB)

minimize g m(u, H) R(u, H): regularization term
s.t. FO Stokes PDEs o standard deviation (weight of uncertanties)

Modeling Assumptions: ice described by FO Stokes equations; ice close to mechanical equilibrium.

m(u, H) = f iz |lu — u°bs|2ds surface velocity mismatch
r Ou
1 ,
+ j — |div(uH) — TS|2dS SMB mismatch
r Ot
+ J; L \H — HObs|2ds thickness mismatch
OH
+ R(u, H) regularization terms

I
* Perego, Stadler, Price, JGR, 2014.



Dete rm I n iStIC I nve rSIO n U: computed depth averaged velocity

H: ice thickness

First-Order Stokes PDE-Constrained optimization B: basal sliding friction coefficient

roblem for initial condition*:
P T,: surface mass balance (SMB)

minimize g m(u, H) R(u, H): regularization term
s.t. FO Stokes PDEs o standard deviation (weight of uncertanties)

Modeling Assumptions: ice described by FO Stokes equations; ice close to mechanical equilibrium.

1 T
m(u,H) = fr 0_5 |lu — uobs|2ds surface velocity mismatch _ common

1 | —

+ j ; |div(uH) — TS|2dS SMB mismatch
r T
— novel

+ J; L \H — HObs|2ds thickness mismatch

oy -
+ R(u, H) regularization terms

* Perego, Stadler, Price, JGR, 2014.



Dete rm I n iStIC I nve rSIO n U: computed depth averaged velocity

H: ice thickness

First-Order Stokes PDE-Constrained optimization B: basal sliding friction coefficient

roblem for initial condition*:
P T,: surface mass balance (SMB)

minimize g m(u, H) R(u, H): regularization term
s.t. FO Stokes PDEs o standard deviation (weight of uncertanties)

Modeling Assumptions: ice described by FO Stokes equations; ice close to mechanical equilibrium.

1 : :
m(u,H) = jr 0—5 |lu — uobs|%ds surface velocity mismatch — common

1 | —

+ j ; |div(uH) — TS|2dS SMB mismatch
r T
— novel

+ J; L \H — HObs|2ds thickness mismatch

oy -
+ R(u, H) regularization terms

Solving FO Stokes PDE-constrained optimization problem for initial
condition significantly reduces non-physical model transients!
I ——

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion Algorithm & Software

Solved via embedded adjoint-based
PDE-constrained optimization
algorithm in Albany Land-Ice.

First-Order Stokes PDE-Constrained optimization
problem for initial condition*:

minimize g y m(u, H) b officiont] 4
st. FO Stokes PDEs Approach efficiently computes gradients of

m(u, H) by solving linear adjoint PDEs.

Algorithm

Finite Element Method discretization Albany
Quasi-Newton optimization (L-BFGS) ROL
Nonlinear solver (Newton) NOX
Krylov linear solvers Belos+Ifpack2/Muelu

- R9L
* Some details: —
» Regularization: Tikhonowv.

» Total derivatives of objective functional m(u, H) computed using adjoints
and automatic differentiation (Sacado package of Trilinos).

» Gradient-based optimization: limited memory BFGS initialized with Hessian
of regularization terms (ROL) with backtrack linesearch.

* Perego, Stadler, Price, JGR, 2014.




Deterministic Inversion: 1km Greenland &z
Initial Condition*

Lahoratories

|u| observed |u| computed 3 Errorin |u| computed
W 200
-1000 o -
- e 150
L A
1500 v ; 100
) P Z e
L .
73a 50
€ 2000 15 B
>
150
2500
-100
-150
-3000
-200
500 0 500 -500 0 500 ° 500 0 500 0
x (km) X (km) X (km)

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion: Common vs. ) e

Novel Approach*

SMB (m/yr) needed for equilibrium

SMB (m/yr) from climate model
(Ettema et al. 2009, RACMO2/GR)

. -

Plot saturated.
In many places field
is = hundreds m/yr.

* Perego, Stadler, Price, JGR, 2014.



High-Resolution Antarctlca Optlmal s
Initial Condition

Optimized surface speed for variable-resolution
Antarctic ice sheet initial condition. Mesh resolution
varies from ~40 km in slow moving EAIS interior to
~1.5 km in regions with ice shelves, ice streams, and
below-sea level bedrock elevation.

"Antarctlc ice sheet inversion
:._,._;_'_performed on O(1M) parameters|




Velocity-Temperature Coupling 7] e

Lahoratories

 MALI default coupling between FO Stokes and temperature is sequential

* We are working towards fully-coupled flow + temperature model
» Enables computation of self-consistent ice sheet initial state (with ice temperature).

* Current implementation in Albany Land-Ice: steady-state enthalpy equation coupled
monolithically with FO Stokes equations

h = enthalpy

Enthalpy equation: u-Vh+V-q= 1:€ T = dissipation heat
q = total heat flux

e Challenges include strong nonlinearity of basal BC due to phase changes and robust solvers.

Enthalpy/melting m , Strategy: approximate

graph at bed (mmpm enthalpy/melting graph at bed by

2 m=mt (4 L arctan (a(h - b)) smooth function, perform

m = (3 + Larctan (a(h— hn)) 2 parameter continuation to
drybed N\ _ smoothly transition from cold to

cold fce N 0) b temperate ice (left).
Dirce one) o approsimated it sh
m=w (420 k) ||z folowing natural boundary condition Developing robust linear solvers
| Lb “pVhen=polm-G-n-u for coupled velocity-temperature
lubricated bed 8 equations is WIP.




Simultaneous Velocity-Temperature

Initialization (Inversion)

First-Order Stokes PDE-Constrained optimization
problem for initial condition:

minimize g y m(u, H)
s.t. FO Stokes PDEs + Enthalpy PDE

Left: Computed basal temperature
Right: Thawed/frozen map from MacGregor et al., JGR, 2016
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Lahoratories

With an implicit steady-state coupled
temperature-velocity model, one can
obtain self-consistent state in one shot.

Initialization capability is unmatched by
other land-ice codes:
» Typically ~10K years are needed to
equilibrate ice temperature
» Our solver robustly computes the
steady-state temperature coupled
w/ velocity at every iteration of the
optimization

2428 25 255 260 265 270 273.1
| I

_—
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Uncertainty Quantification™

Goal: obtain PDF of initial condition using
Bayesian inference and propagate this PDF
through model to get PDF of total ice mass

UQ Workflow
loss/gain during 215t century
Stage 1: — .
Deterministic :
Estimate ice sheet initial inversion L B, H PDFs
(from Bayesian
inference)

condition (MAP point).

Stage 2:
Update prior uncertainty in ice v
sheet initial condition Bayesian SLR(t) for
using observational data calibration ensemble Of.
and steady state model forward runs with
B, H sampled
. from its PDF
stage 3.5 Forward
Propagate uncertain initial propagation ==
o ] A 4

! PDF of SLR

proba bility

condition through ice-sheet
evolution model AN /

sea level fise (mm)

* Jakeman et al. (in prep), 2021.




Uncertainty Quantification™

Goal: obtain PDF of initial condition using
Bayesian inference and propagate this PDF

Sandia
ﬂ" National
Laboratories

through model to get PDF of total ice mass
loss/gain during 215t century

UQ Workflow
—
_ S?ag e o Deterministic |.
Estimate ice sheet initial inversion
condition (MAP point).
Stage 2:
Update prior uncertainty in ice
sheet initial condition Bayesian
using observational data calibration
and steady state model
Stage 3: - Forward
Propagate uncerta.ln initial propagation
condition through ice-sheet
evolution model *}

i
4
K
2
g
2

proba bility

B, H PDFs

(from Bayesian
inference)

A 4

SLR(t) for
ensemble of
forward runs with
B, H sampled
from its PDF

A 4

PDF of SLR

Very challenging! Lots of obstacles, e.g., curse of dimensionality.

* Jakeman et al. (in prep), 2021.
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Model Validation ) s,

Lahoratories

Our model has been validated* using data from two satellites: ICESat, GRACE.

ICESatl [states] 2003 — 2009

GRACE [trends] 2002 —2017? (ongoing)

CIS

file cism_usrf_yr_2007.800000.txt
L

G|MAS—CISM Bilinear differences for
1

1000 -

1500

Histogram of GLAS-CISM Bilinear differences for CISM file cism_usrf_yr_2007.800000.txt

1.2x10°
2000 -

1.0x10°

-1000

8.0%10°

5
2500 £ 6ox10'q
2

Gigatons of total mass change

4.0x10" -1500 s SMB-oni Slm : <
—+— SMB+F : |
T v - RACMO SMB-only Sim : -
30001 - soop L+ & GRAGE | | |
i A e p— o 2003 2004 2005 2006 2007 2008 2008 2010 2011 2012
600 -400 -200 0 200 400 bilinear_compare.pro Mon Dec 14 14:32:25 2015 sk
C E N T > Forcings™**:

meters

bilinear_compare.pro Mon Dec 14 14:32:25 2015 >

SMB-only: Mass change computed by solving an ISM
Surface elevation predictions (states) forced w/ RACMO SMB (2003-2012)

agree pretty well with GLAS (Geoscience » SMB+FF: Mass change computed as in SMB-only with

Laser Altimeter System) aboard ICESat: additional flux term on significant ice streams

mean differences are <1 m » RACMO: mass change computed directly from SMB
without using an ice sheet model

*S. Price et al. GMD (2017). **van Angelen et al. (Surv. Geophys., 2013), Enderlin et al. GRL (2014)



ABUMIP*-Antarctica Experiment ) e,

Basic idea: instantaneously remove all ice shelves and see what happens in the
next 200 years, preventing any floating ice from ever forming again
— Provides an extreme upper bound on SLR contributions from Antarctica

~32M unknowns
solved for on
6400 procs, with
average model
throughput of
~120 simulated
yrs/wall clock

s day.
83 years i
Courtesy of M.
Hoffman, S. Price, T.
Movie Above: 200 year MALI Antarctic ice sheet simulation Zhang. N. Woods, J.
after instantaneous removal of all floating ice shelves Patchet (LANL)

* Antarctic BUttressing Model Intercomparison Project




ABUMIP*-Antarctica Experiment ) e,

Basic idea: instantaneously remove all ice shelves and see what happens in the
next 200 years, preventing any floating ice from ever forming again
— Provides an extreme upper bound on SLR contributions from Antarctica

Ice speed (myr ')

5 10 20 50 100 200 S00 1000 2000

~32M unknowns
solved for on
6400 procs, with
average model
throughput of
~120 simulated
yrs/wall clock

day.
Courtesy of M.
Hoffman, S. Price, T.
Figure Above: Antarctic ice sheet simulation after Zhang. N. Woods, J.
instantaneous removal of all floating ice shelves at year 200 Patchet (LANL)

* Antarctic BUttressing Model Intercomparison Project



LARMIP*-Antarctica Experiment ) i,

Similar to control run (forced with historical observations) in most parts of Antarctica, but
includes warmer ocean water flowing into the cavity beneath the Filchner-Ronne Ice Shelf
— provides example of ice sheet’s response to aggressive melting and thinning

https://www.youtube.com/watch?v=Wt0TvNjYsOs&feature=youtu.be

Increased rates
flow inland,
increase the rate of
ice sheet thinning

Speed Of Ice (meters/day)
0.0 0.1 1 10.0

* Linear Antarctic Response Model Intercomparison Project


https://www.youtube.com/watch?v=Wt0TvNjYsOs&feature=youtu.be

Simulations: Ice Sheets & SLR under ISMIP6*

ABUK-INIT

o
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Sun et al. (J. Glaciol., 2020)

Above: Future Antarctica sea level contribution under rapid ice shelf melting (LARMIP)
and ice shelf collapse (ABUMIP) for ensemble of models.

 ~20% of ice sheet contributions from U.S. DOE-developed models

* Most non-DOE models are 2D ad hoc hybrids or are run at relatively coarse

resolution

* |ce Sheet Model Intercomparison Project




Simulations: Ice Sheets & SLR under ISMIP6*
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Above: Sea-level contributions from Antarctica under different Ehe New York Times

emissions (RCP) scenarios [ Emissions Cuts Coutla Drop the fmpact of

Limit global warming to 1.5°C and halve the land ice Melting Ice on Oceans by Half
contribution to sea level this century A new study said that limiting warming to 1.5 degrees Celsius

could reduce sea level rise from melting ice sheets from about 10
inches to about five by 2100.

New research from a large international community of scientists predicts that sea level rise from the melting of ice
nature could be halved this century if we meet the Paris Agreement target of limiting warming to 15°C.
Article | Published: 05 May 2021

Projected land ice contributions to twenty-first-
century sealevel rise

Tamsin L. Edwards &, Sophie Nowicki, [..JThomas Zwinger

Nature 593, 74-82 (2021) ! Cite this article
6204 Accesses | 1034 Altmetric | Metrics

* |ce Sheet Model Intercomparison Project



MALI Thwaites Glacier Simulation h) s,

. S + Model data

Speed (m/yn)
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Movie shows Thwaites Glacier retreat
simulation under parameterized
submarine melting.

mEnannEEnRnnns s AR R Rt E N

e 250 year regional simulation with
“present day” initial condition.

Bedl siavation (D * Investigate importance of CDW#* depth
St Sl 0 changes due to climate variability.

HHHHH‘\HHHI!IIH‘ LLLL

* When climate variability in sub-shelf
forcing is accounted for, we get a
distribution of possible SLR curves.

* CDW = Circumpolar Deep Water.

Hoffman et al., 2019




MALI
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& E3SM Coupling ) .
— 3

* Global, coupled E3SM simulation
with sub-ice shelf circulation + pre-
industrial forcing + static ice shelves
(illustration/spin-up over ~7 yrs).

 RRS30to10km mesh (eddy
permitting).

Sea Surface Salinity

a@iefmsw_tergm;mwwf

MALI is (partially) coupled to E3SM and ‘ E T e

currently supports static ice shelves and ~ |

fixed grounding lines (enabling dynamic
ice shelves is WIP).

Top: sea-surface salinity

Right: ocean bottom temperature Ocean Bottom Temperature
- - ___________________________________________________________________-"-—"________________________________________________—_—"
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1. Background

Motivation for climate & land-ice modeling
ISMs, ESMs & projects

Land-ice equations

Our codes: ALl, MALI

2. Algorithms and software
e Discretization & meshes
* Nonlinear solvers
e Linear solvers
e Performance-portability
* |ce sheet initialization
 Towards UQ

3. Simulations
4. Summary



Summary ) i,

* Actionable projections of climate change and sea-level rise impacts are
important worldwide!

* A mature ice-sheet modeling capability (high-fidelity, high-performance) was
developed as a part of the PISCEES & ProSPect SciDAC projects. This talk
described the following aspects of creating this capability:

» Equations, algorithms, software used in ice sheet modeling.

* The development of a finite element land ice solver known as Albany
Land-Ice written using the libraries of the Trilinos libraries.

e Coupling of Albany Land-Ice to MPAS LI codes for transient simulations of
ice sheet evolution.

* Some advanced concepts in ice sheet modeling: ice sheet initialization/
inversion.

* Related capabilities on the E3SM side are rapidly maturing.

* Ongoing projects are focusing on the remaining work (physics, coupling,
uncertainty quantification frameworks) necessary to provide sea-level rise
projections and uncertainties.
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Sandia Land-lce Work Clear(®)
In-The-News!

Forecasting, Not Fearing,
Sea-Level Rise

August 28th, 2016 by

Ice s h eet m Od e I i n g Of G ree n Ia n d' This week, the reported a widening 80-mile crack threatening one of

Antarctica’s biggest ice shelves. A large chunk of Larsen C, the most northern major ice

Antarctica helps predict sea-level rise

Of course, the probable loss of Larsen C is a terrifying reminder that climate change is real
Michael Padila Computing SCDAO progam. PISCEES s mults ab, muls- o o e e o e g o e
The G land and Antard heet I kead :.JI'IIVAGIYSIIY en&eavor th;(elrzdlud% f?eoaafk(f;eés "on: Samljllg'b restrain the flow of glaciers from the land to the sea. However, researchers can't predict how
e Greenland and Antarctic ice sheets will make a domi-  Los Alamos, Lawrence Berkeley, an idge national lab- the glaciers will behave once the shelf is gone.
nant contribution to 21st century sea-level rise if current cli- oratories; the Massachusetts Institute of Technology; Florida
mate trends continue. However, predicting the expected loss  State University; the University of Bristol; the University of
Texas Austin; the University of

PREDICTING ICE SHEET LOSS — Irina Tezaur (8954) T South Carolina; and New York €he New NJork Times
and Ray Tuminaro (1442) are part of a team 4 University.
tasked to help improve the reliability anﬁ effi- Sandia’s blggest contribu- . .
e of computationl models hat describe e ta,::l;g s ashenan Emissions Cuts Could Drop the Impact of
(Photo by Dino Vggimnas) : - 2
called Albany/FELIX (Finite Ele- Meltmg Ice on Oceans by Half
f | -
$::;%LL:P£| clf E:spe%non A new study said that limiting warming to 1.5 degrees Celsius
equations that simulate ice could reduce sea level rise from melting ice sheets from about 10
flow over the Greenland and inches to about five by 2100.
Antarctic ice sheets and is being

coupled to Earth models
through the Accelerated Cli-
mate for Energy (ACME) project.

“One of the goals of PISCEES
is to create a land-ice solver
that is scalable, fast, and robust
on continental scales,” says
computational scientist Irina
Tezaur, a lead developer of
Albany/FELIX. Not only did the
new solver need to be reliable
and efficient, but it was critical
“ass is difficult due to the complexity of model-  that the team develop a solver capable of running on new

-

~dme wmd mn i —.——— bner mmd Ao Aibh cdimmnd

_ https://www.sandia.gov/~ikalash _



https://www.sandia.gov/~ikalash

Sandia
m National
Lahoratories

Backup Slides




Sandia
II'] National
Laboratories

Careers at Sandia

Students: please consider Sandia and other national labs as a
potential employer for summer internships and when you graduate!
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Sandia is a multidisciplinary national lab and Federally Funded Research &
Development Center (FFRDC).

Contractor for U.S. DOE’s National Nuclear Security Administration (NNSA). |
Two main sites: Albuquerque, NM and Livermore, CA
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Careers at Sandia

Students: please consider Sandia and other national labs as a
potential employer for summer internships and when you graduate!

e Sandiais a great place to work!
» Lots of interesting problems that require fundamental research in applied
math/computational science and impact mission-critical applications.

» Great work/life balance. CRE G e

* Opportunities at/with Sandia:
» Interns (including PSAAP)

> Post docs
» Several prestigious post doctoral

> Staff

Please see: www.sandia.gov/careers for info
about current opportunities.



http://www.sandia.gov/careers

Motivation

h

Department of Energy (DOE) interests in climate change and sea-level rise:

» “Addressing the effects of climate change is a top priority of the DOE.”*

 DOE report on energy sector vulnerabilities: “... higher risks to energy
infrastructure located along the coasts thanks to sea level rise, the
increasing intensity of storms, and higher storm surge and flooding.”**

*http://energy.gov/science-innovation/climate-change
**http://energy.gov/articles/climate-change-effects-our-energy

Sandia
National
Laboratories



A Hierarchy of Ice Sheet Models

Full Stokes Flow Model
continental or regional simulations

Higher-Order Models
e.g. First Order Stokes/Blatter-Pattyn Model
continental or regional simulations

Hybrid Models
e.g. SIA+SSA, SIA+FS, SS+FS
regional simulations of ice sheet/shelf/stream

Zero-th Order Models
Shallow Ice Approximation (SIA)
Shallow Shelf Approximation (SSA)
regional of ice streams or shelves

Computational expense

Sandia
ﬂ'] National

Lahoratories

Model complexity

http://www.antarcticglaciers.org/glaciers-and-climate/numerical-ice-sheet-models/hierarchy-ice-

sheet-models-introduction/



A Hierarchy of Ice Sheet Models (ISMs)

Model Name Terms Kept Comments Validity
Stokes All 3D model for (u, p) continental scale
First-Order 0(6) 3D model for continental scale
Stokes/Blatter-Pattyn? (uq, uy)
L1L1, L1L2? 0(6) Depth integrated, Antarctica
2D models for
(U1, Uz)
Shallow Ice (SIA)3 0(1) Depth integrated, grounded ice with
2D model for frozen bed
(U, Uz)
Shallow Shelf (SSA)* 0(1) Closed form for u; | shelves or fast sliding

grounded ice

1Blatter, 1995; Pattyn, 2003. 2Schoof and Hindmarsh, 2010. 3Hutter, 1983. “Morland, 1987.
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Computational expense

Model complexity



A Hierarchy of Ice Sheet Models (ISMs)

Model Name Terms Kept Comments Validity
Stokes All 3D model for (u, p) continental scale
First-Order 0(6) 3D model for continental scale
Stokes/Blatter-Pattyn? (uq,uy)
L1L1, L1122 0(9) Depth integrated, Antarctica
2D models for
(ug, uz)
Shallow Ice (SIA)3 0(1) Depth integrated, grounded ice with
2D model for frozen bed
(ug, uz)
Shallow Shelf (SSA)* 0(1) Closed form for u; | shelves or fast sliding

grounded ice

* Stokes flow model is “gold standard” but expensive.

1Blatter, 1995; Pattyn, 2003. 2Schoof and Hindmarsh, 2010. 3Hutter, 1983. “Morland, 1987.
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Model complexity
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A Hierarchy of Ice Sheet Models (ISMs) ) .

Model Name Terms Kept Comments Validity |
Stokes All 3D model for (u, p) continental scale

First-Order 0(95) 3D model for continental scale @
Stokes/Blatter-Pattyn? (Uq, uy) S g
]
L1L1, L1122 0(5) Depth integrated, Antarctica 2 g
2D models for g S
(U1, uz) © T

-]
Shallow Ice (SIA)3 0(1) Depth integrated, grounded ice with g2

2D model for frozen bed S

(U1, uz)
Shallow Shelf (SSA)* 0(1) Closed form for u; | shelves or fast sliding
grounded ice

* Stokes flow model is “gold standard” but expensive.

* Simplified models are derived from full Stokes model and take advantage of the fact
that ice sheets are thin: § «< 1.

1Blatter, 1995; Pattyn, 2003. 2Schoof and Hindmarsh, 2010. 3Hutter, 1983. “Morland, 1987.



Shallow Shelf and Shallow Ice Approximation

FO Stokes(u, v) in Q € R3

Ice regime:
grounded ice with

frozen bed
0 0 0.5u,
ew={ 00 0.5v,
00 w,
p=pg(s—2z)
Shallow Ice v Y
g 3
Approximation SIA(u,v)inQ € R SSA(u
Discussion:

Ice regime:
shelves or fast sliding
grounded ice

Uy 0.5y, +vy) 0
€(w) ={ 0.5 (u, + 1) vy 0
0 0 W,

p=pg(s—2z)—2u(uy, +vy)

y

v)ing € R2 Shallow Shelf

Approximation

* Neither SIA nor SSA applies at continental scale.

* SIA and SSA are referred to as “zero-th order” models

* Both models have two unknowns (u, v).

* SSAis 2D model obtained by vertically integrating the equations.




ISM Computation Cost in ESM E3SM rh) e,

Energy Exascale

High-res climate model processor layout Earth System Mods

DOE Energy Exascale Earth System
Model (E3SM)

100

>~ 200 Coupler

g grid size | component | horizontal | vertical
£ 25km | ATM/LND 0.8M 72
e 150 | Sealce 18-6km | OCN/ICE 3.7M 80
C 2-20km | AISISM 1.6M 10
o

©

c

O

O

()

wm

» ISM throughput: 1 SYPD

50 Atmosphere )
(simulated year per wallclock day)

» ISM cost: 4M core-hours per
> simulated year

0 34,000 68,000

Processing Cores
I ——
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Numerical & Computational Challenges

* Mesh adaptivity close to the grounding line.
* FO Stokes equations are highly nonlinear.

* Large, thin geometries (thickness up to 4km, horizontal extension 1000s of kms).
* Gives rise to meshes with bad aspect ratios and poorly conditioned linear
systems.

* Boundary conditions pose challenges to solvers.
* Porting of software to new architectures (hybrid systems, GPUs, etc.).
* Initialization/estimation of unknown parameters (basal friction, thickness, etc.).

* Uncertainty quantification.
* Curse of dimensionality!

* Thickness evolution (ice advancement/retreat)
* Sequential coupling with FO Stokes equations gives rise to very small time-
steps by CFL condition!
* Phase changes (temperature equation).

* Coupling to climate components.
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Mesh Adaptivity @ Rensselaer

PAALS = Parallel Albany Adaptive Loop with SCOREC*

* In collaboration with Rensselaer Polytechnical Institute (M. Shephard, C. Smith, B. Granzow):

added mesh adaptation capabilities (PAALS) to Albany. [ xecorec = scientific Computation Research
Center at RPI: https://github.com/SCOREC

PAALS provides:
e Fully-coupled, in-memory adaptation and solution transfer services.

* Parallel mesh infrastructure and services via PUMI (Parallel Unstructured Mesh
Infrastructure): an efficient, distributed mesh data structure that supports adaptivity.

* Predictive dynamic load balancing via ParMetis/Zoltan + ParMA.
 SPR**-based generalized error estimation of velocity gradient drives adaptation.

* Performance portability to GPUs via Kokkos.

**Super-convergent Patch Recovery: technique for estimating Vu using quadratic approximation within a patch of elements.



Mesh Convergence Studies

Stage 1: solution verification on 2D MMS
problems we derived.

Relative Error

12

ALl

h
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Stage 2: code-to-code comparisons on canonical
ice sheet problems.

lul
4,49797538
Eso
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»

Ezo

0

lul
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“60
~40

EQO

0

LifeV

Mesh size h

Stage 3: full 3D mesh convergence study on
Greenland w.r.t. reference solution.

Are the Greenland problems resolved?
Is theoretical convergence rate achieved?
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Mesh Partitioning & Vertical Refinement
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Mesh convergence studies led to some useful practical recommendations
(for ice sheet modelers and geo-scientists)!

processor - right).

Partitioning matters: good solver performance obtained with 2D
partition of mesh (all elements with same x, y coordinates on same

Number of vertical layers matters: more gained in refining # vertical

layers than horizontal resolution (below — relative errors for

Greenland).
Horiz. res.\vert. layers 5 10 20 40 80
8km 2.0e-1
4km 9.0e-2 | 7.8e-2
2km 4.6e-2 | 2.4e-2 | 2.3e-2
1km 3.8e-2 | 8.9e-3 | 5.5e-3 | 5.1e-3
500m 3.7e-2 | 6.7e-3 | 1.7e-3 | 3.9e-4 | 8.1e-5

Vertical refinement
to 20 layers
recommended for
1km resolution over
horizontal
refinement.




Importance of Node Ordering & )

Lahoratories

Mesh Partitioning

Our studies revealed that node ordering and mesh
partitioning matters for linear solver performance,
especially for the ILU preconditioner!

e Itis essential that incomplete factorization accurately
captures vertical coupling, which is dominant due to
anisotropic mesh.

e Thisis accomplished by:

* Ensuring all points along a vertically extruded grid
line reside within a single processor (“2D mesh
partitioning”; top right).

* Ordering the equations such that grid layer k’s
nodes are ordered before all dofs associated with
grid layer k + 1 (“row-wise ordering”; bottom

right). 0 1 e e e




Improved Linear Solver Performance
through Hinge Removal

Islands and certain hinged ol
. . Fa vk
peninsulas lead to solver failures 225 K
&g;l SUsar
* We have developed an algorithm to detect/remove problematic
hinged peninsulas & islands based on coloring and repeated use
of connected component algorithms (Tuminaro et al., 2016).

* Solves are ~2x faster with hinges removed.

* Current implementation is MATLAB, but
working on C++ implementation
for integration into dycores.

Greenland Problem

Sandia
II'] National

Lahoratories

8km/5 878 sec, 693 sec, 254 sec, 220 sec,
layers 84 iter/solve 71 iter/solve | 11 iter/solve 9 iter/solve

4km/10 1953 sec, 1969 sec, 285 sec, 245 sec,
layers 160 iter/solve 160 iter/solve | 13 iter/solve 12 iter/solve

2km/20 10942 sec, 5576 sec, 482 sec, 294 sec,

layers 710 iter/solve 426 iter/solve | 24 iter/solve

15 iter/solve

1km/40 -- 15716 sec, 668 sec,
layers 881 iter/solve | 34 iter/solve

378 sec,
20 iter/solve




Spherical Grids

Relative
difference in
surface velocity
magnitude is

Surface velocity magnitude [m/yr], ice sheet thickness not at scale (100 X)
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magnitude of surface velocity

difference [m/yr]

10% in fast flow 01— ! s ]_00
regions. 005 250
lul
500
1000
-100
10
E'l
0.1
0.05

Gometry (Cornford, Martin et al.,2014)

Bedmap2 (Fretwell et al.; 2013)
Temperature (Pattyn, 2010)

* Current ice sheet models are derived using planar geometries — reasonable,
especially for Greenland.

* The effect of Earth’s curvature is largely unknown — may be nontrivial for Antarctica.

* We have derived a FO Stokes model on sphere using stereographic projection.



Deterministic Inversion: Stiffening Factor ()&,

Glen’s viscosity with stiffening/damage: | u*(x,v,z) = o (x, Vu(x,y,z)
where ¢ (x, y) = stiffening/damage factor that accounts for modeling errors in rheology.

AlS inversion
for f(x,y) and
d(x,y)

simultaneously.



UQ Problem Definition

Qol in Ice Sheet Modeling: total ice mass loss/gain As a first step, we focus on effect
during 215t century — sea level change prediction. of uncertainty in 8 only.

Sources of uncertainty affecting this Qol include:

* Climate forcings (e.g., surface mass balance). UQ Workflow
e Basal friction (f).
* Ice sheet thickness (h). Deterministic . Sfage 1: o
e Geothermal heat flux. inversion Estimate ice sheet initial
* Model parameters (e.g., Glen’s condition (MAP point).
flow law exponent).

Stage 2:
1 11 () Update prior uncertainty in ice
p=gAarn (EZéifz +V> Bayesian sheet initial condition
? calibration using observational data
w\n Glen's law exponent and steady state model
thickness Jo8 BnEe
" Forward Propagat:t:r?ceei:ain initial
/ Basal sliding BC: propagation condition through ice-sheet
/ 2p€;-m+ Pu; = 0,on Ty
e

i , evolution model v
Basal boundary I';
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Bayesian Inference ) e

Goal: solve inverse problem for ice sheet

initial state but in Bayesian framework
UQ Workflow
* Naive parameterization: represent each degree
of freedom on mesh be an uncertain variable
ﬁ(x) = (Zli Z2) weey anof)
.Stage 2: - Intractable due to curse of
Update prior uncertainty in ice dimensionality: ng,¢ = 0(100K)!

sheet initial condition
using observational data

[ T  To circumvent this difficulty: assume [ (x) can

be represented in reduced basis (e.g., KLE
modes, Hessian eigenvectors®) centered around
mean [ (x):

d
N log(B()) = log(B) + ¥ /& b0}z,
i=1

Deterministic inversion is consistent
with Bayesian analog: it is used to find
the MAP point of posterior.

« Mean field B(x) = initial condition.




Bayesian Inference Assumptions
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= Mismatch functional to be minimized:

@) = 2 (5™ - @) Tl (v - £2)

« Additive Gaussian noise model: y°° = f(z) + €, € ~N(0,Typs)

Evaluation of misfit
Hessian is expensive!
= further approximation
required.

* Gaussian prior with exponential covariance and mean zy4p = 5.

+ linearization of
f(z) around zy;4p

ayes’ rule

<

Covariance of Gaussian
posterior related to
inverse of misfit Hessian
at MAP point™**,

Notation*:

y°PS= observations
Z = random params

f(2z) = deterministic
map from params to

« Likelihood is: fi,004(2) = e ™in(%)

 Normal Laplace posterior given by: ﬂpos(z) = Ce_vlidﬁlhood(z)npr(z)

observables.

where Cepig = fﬁlhood(z)npr(z)dz-




Bayesian Inference Workflow ) e,

—_

Two-part dimension
reduction procedure to
obtain modes ¢;(x)

Procedure for computing
covariance of normal
Laplace posterior, I,

KLE = Karhunen-Loeve Expansion
AS = Active Subspace

PCE = Polynomial Chaos Expansion
MAP = Maximum a Posteriori

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



GIS Bayesian Inference via KLE + AS

KLE modes Data-informed (AS) directions (d=73%) ) :
Gradients of mismatch

function obtained via
adjoint solve in ALI.
KLE and AS amplitudes

S

1

KLE modes = eigenvecs of
exponential covariance kernel:

(r;—r1,)?
LZ

C(ry,ry) = exp(

1 10 1w 108

AS principal component

* Above: marginal distributions of Gaussian posterior computed using 02| % %
KLE vs. KLE+AS; any shift from mean of 0 is due to observations. lﬁ"‘ o0
e KLE eigenvectors have variance and mean close to prior. ' __:-,,.:-. ¥
e Data-informed eigenvectors have smaller variance and are most - oo *
shifted w.r.t. prior distribution (as expected). I.I" . N ’
I EEEEEEE———————————.. index I
* Value of d was obtained via cross-validation.




Bayesian Inference ) e,

* There are many sources of uncertainty, e.g.

» Climate forcing (e.g., surface mass balance)

» Basal friction

» Bedrock topography (noisy and sparse data)

» Geothermal heat flux

» Modeling errors

» Model parameters (e.g., Glen's Flow Law exponent)




Bayesian Inference ) e,

* There are many sources of uncertainty, e.g.

> Climate forcing (e.g., surface mass balance) We focus initially
> Basal friction only in uncertainty in
» Bedrock topography (noisy and sparse data) basal friction /5.

» Geothermal heat flux
» Modeling errors
» Model parameters (e.g., Glen's Flow Law exponent)




Bayesian Inference ) e,

* There are many sources of uncertainty, e.g.

> Climate forcing (e.g., surface mass balance) We focus initially
> Basal friction only in uncertainty in
» Bedrock topography (noisy and sparse data) basal friction /5.

» Geothermal heat flux
» Modeling errors
» Model parameters (e.g., Glen's Flow Law exponent)

* Bayes’ Theorem: assume prior distribution, update using data:

likelihood  prior
(d]t) m(0) (d]0) m(6)
T m m m
fld) = =
mold) (d) T () 7() db
posterior




Bayesian Inference ) e,

* There are many sources of uncertainty, e.g.

> Climate forcing (e.g., surface mass balance) We focus initially
> Basal friction only in uncertainty in
> Bedrock topography (noisy and sparse data) basal friction /5.

» Geothermal heat flux
» Modeling errors
» Model parameters (e.g., Glen's Flow Law exponent)

* Bayes’ Theorem: assume prior distribution; update using data:

likelihood  prior

— N
(0]d) = m(d|0) w(0) m(d|d) w(0)
——  w(d)  [=(df)x(6)db
posterior

* Naive parameterization: represent each degree of freedom on mesh be an
uncertain variable B (x) = (24, 23, .., Zn g ()

Intractable due to curse of dimensionality: ny,s = O(100K)!




Bayesian Inference ) e,

* There are many sources of uncertainty, e.g.

> Climate forcing (e.g., surface mass balance) We focus initially
> Basal friction only in uncertainty in
> Bedrock topography (noisy and sparse data) basal friction /5.

» Geothermal heat flux
» Modeling errors
» Model parameters (e.g., Glen's Flow Law exponent)

* Bayes’ Theorem: assume prior distribution; update using data:

likelihood  prior

— N
(0]d) = m(d|0) w(0) m(d|d) w(0)
——  w(d)  [=(df)x(6)db
posterior

* Naive parameterization: represent each degree of freedom on mesh be an
uncertain variable B (x) = (24, 23, .., Zn g ()

Intractable due to curse of dimensionality: ny,s = O(100K)!
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Bayesian Inference

Approach 1: KLE + PCE + MCMC

» KLE = Karhunen Loeve Expansion: assume (x) can be represented
in reduced basis of KLE modes centered around mean f(x): First 10 KLE modes

» PCE = Polynomial Chaos Expansion: create PCE emulator for
mismatch (over surface velocity, SMB, thickness) discrepancy.

d
log(5)) = log(F) + ) & di®)z
i=1

» MCMC = Markov Chain Monte Carlo: do MCMC calibration
using PCE emulator to infer Maximum A Posteriori (MAP) point.
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Bayesian Inference

Approach 1: KLE + PCE + MCMC

I@z’no}

» KLE = Karhunen Loeve Expansion: assume (x) can be represented
in reduced basis of KLE modes centered around mean f(x): First 10 KLE modes

» PCE = Polynomial Chaos Expansion: create PCE emulator for
mismatch (over surface velocity, SMB, thickness) discrepancy.

d
log(5)) = log(F) + ) & di®)z
i=1

» MCMC = Markov Chain Monte Carlo: do MCMC calibration
using PCE emulator to infer Maximum A Posteriori (MAP) point.

Upshots:

© Can obtain arbitrary posterior distribution.
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Bayesian Inference

Approach 1: KLE + PCE + MCMC

» KLE = Karhunen Loeve Expansion: assume (x) can be represented
in reduced basis of KLE modes centered around mean f(x): First 10 KLE modes

d
log(5)) = log(F) + ) & di®)z
i=1

» PCE = Polynomial Chaos Expansion: create PCE emulator for
mismatch (over surface velocity, SMB, thickness) discrepancy.

» MCMC = Markov Chain Monte Carlo: do MCMC calibration
using PCE emulator to infer Maximum A Posteriori (MAP) point.

Upshots:
© Can obtain arbitrary posterior distribution.

Issues:
@ KLE requires correlation length parameter, which is unknown.

@ MCMC only lets you use 0(10) KLE modes — many more are needed to represent basal
friction field 0(1000); more modes needed for finer resolution problems.




Bayesian Inference

Approach 1: KLE + PCE + MCMC

» KLE = Karhunen Loeve Expansion: assume (x) can be represented

in reduced basis of KLE modes centered around mean 5 (x):

d
log(5)) = log(F) + ) & di®)z
i=1

» PCE = Polynomial Chaos Expansion: create PCE emulator for
mismatch (over surface velocity, SMB, thickness) discrepancy.

> MCMC = Markov Chain Monte Carlo: do MCMC calibration

using PCE emulator to infer Maximum A Posteriori (MAP) point.

Upshots:
© Can obtain arbitrary posterior distribution.

Issues:

Sandia
National
Laboratories

First 10 KLE modes

10 KLE modes, 4km GIS:
ice too fast (mismatch at
MAP point: 1.87 X
mismatch at f)

@ KLE requires correlation length parameter, which is unknown.

@ MCMC only lets you use 0(10) KLE modes — many more are needed to represent basal

friction field 0(1000); more modes needed for finer resolution problems.




Bayesian Inference )

Lahoratories

Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Bayesian Inference )

Lahoratories

Approach 2: Normal Approximation + Low Rank Laplace Approximation*
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | }’Obs) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

y°PS = f(2) + € ~ f(zmap) + F(z — zypp) + €

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Bayesian Inference h) s,

Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

yoPS = £(z) + € =~ f(zmap) + F(z — Zyap) + € Symbols*:

V., D.: eigenvecs, eigenvals of H isfit

* Covariance of Gaussian posterior given by: i - prior-preconditioned Hessian
misfit ~

1/2
prior

_ 1/2
(HPCE n Fgl}ior) 1 of data misfit=T_": H sl

misfit prior

Fpost

H ., isrit = Gauss-Newton portion of
Hessian misfit = FHI"(;QSF

V, = F;{rizorVr, V,?= adjoint of V,.
T 5ior = MK, K= Laplace stiffness.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Bayesian Inference h) s,

Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

yoPS = £(z) + € =~ f(zmap) + F(z — Zyap) + € Symbols*:

V., D.: eigenvecs, eigenvals of H isfit

* Covariance of Gaussian posterior given by: i - prior-preconditioned Hessian
misfit ~

1/2
prior

_ 1/2
(HPCE + FI;rlior) 1 of data misfit=T_": H sl

misfi prior

rpost

H isfit = Gauss-Newton portion of
Hessian misfit = Fql"obsF

= _ 11/2 o> . -
V,=r V., V7 =adjoint of 7,
It = M7 K, K= Laplace stiffness.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

yoPS = £(z) + € =~ f(zmap) + F(z — Zyap) + € Symbols*:

- . o V., D,: eigenvecs, eigenvals of H ;i
* Covariance of Gaussian posterior given by: i - prior-preconditioned Hessian
misfit ~
1/2

_1 1/2
(HPCE., + FI;rlior) Dense! of data misfit = I' 5 Huisfiel prior

rpost

H isfit = Gauss-Newton portion of
Hessian misfit = Fql"obsF

= _ 11/2 o> . -
V,=r V., V7 =adjoint of 7,
It = M7 K, K= Laplace stiffness.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

yoPS = £(z) + € =~ f(zmap) + F(z — Zyap) + € Symbols*:

V., D.: eigenvecs, eigenvals of H isfit

* Covariance of Gaussian posterior given by: i - prior-preconditioned Hessian
misfit ~

-1 1/2 1/2
Fpost (Hrp;lclzlszfit + Fgl}ior) Dense! of data misfit = rprloeriSﬁtrprior
H ., isrit = Gauss-Newton portion of
* Low-rank approximation of I';,,s; obtained Hessian misfit = Ftl r;gs F
using Sherman-Morrison-Woodbury formula: v, - r;{rizorvr’ V,?= adjoint of ¥,
I'post = I'prior — VrDer”} I"I_n?mr = M~ 1K, K= Laplace stiffness.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

. T . . bs) _
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | ¥° S) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

yoPS = £(z) + € =~ f(zmap) + F(z — Zyap) + € Symbols*:

* Covariance of Gaussian posterior given by: i - prior-preconditioned Hessian
misfit ~

-1 1/2 1/2
Fpost (HPCE it + Fgl}lor) Densel of data misfit = rprloeriSfitrprior

misfi
H ., isrit = Gauss-Newton portion of

* Low-rank approximation of I, obtained Hessian misfit = F'T obsF
using Sherman-Morrison-Woodbury formula: V. - rt/2 V., 7o- adjoint of 7,
prior
Ipost = I'prior — I";,rlor = M~ 1K, K= Laplace stiffness.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.



Bayesian Inference rh) e,

Approach 2: Normal Approximation + Low Rank Laplace Approximation*
e Gaussian prior, likelihood = Gaussian posterior: 7Tpos(z | }’Obs) = N(zmap, rpost)

* Linearize parameter-to-observable map around MAP point:

y°PS = f(2) + € ~ f(zmap) + F(z — Zuap) + € Symbols*:
* Covariance of Gaussian posterior given by: ~ _ . ,
H ,,isfit = prior-preconditioned Hessian
-1 . e pl/2 1/2
rpost = ( rp;lci:]safit + Fgl}ior) Dense! of data misfit = rprioeriSﬁtrprior
H .,isfit = Gauss-Newton portion of
e Low-rank approximation of I’ post obtained Hessian misfit = 1!:'tl r;gs F
using Sherman-Morrison-Woodbury formula: v - r:){'izorvr' V,?z adjoint of 7,
Ipost = I'prior — I";,rlior = M~ 'K, K= Laplace stiffness.

~

* H,, s and its eigenvalue decomposition can be computed efficiently using a parallel
matrix-free Lanczos method.

* Rank (I',s:) = # modes informing directions of posterior (active subspace vectors**).
-

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. ** Constantine, Kent, Bui-Thanh, SISC, 2016.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Upshots:

© Eigenvalues of prior-preconditioned misfit Hessian Hmisﬁt decay rapidly and decay is
independent of # parameters.

Greenland Antarctica*

- 40,';3,545 paralmeters
1,190,403 parameters

— —

(o) c

o —
eigenvalue

eigenvalue
[u—
<
~

p—
o
—
sl

10°

0 1000 2000 3000 4000 5000 0 10000 2000 pero00 4000

index

Figures above: eigenvalue decay of prior preconditioned misfit Hessian

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.
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Lahoratories

Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Upshots:
© Prior preconditioned misfit eigenvectors have physical interpretation:
» First modes correspond to regions which are highly informed by data

» Modes become more global as eigenvalues decay

» :
‘ ":.' .
@ 8
n
&€ v N
7

Mode 1 Mode 2 Mode 3 Mode 200

v By
.-
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Lahoratories

Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Upshots:

© Prior preconditioned misfit eigenvectors have physical interpretation:
» First modes correspond to regions which are highly informed by data
» Modes become more global as eigenvalues decay

© The use of data has drastically reduces the posterior variance

2 | G
. A
%
¢ ;;,

Mode 1 Mode 2 Mode 3 Mode 200

Prior variance Posterior variance
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

@ PDF will be Gaussian — general PDFs cannot be
obtained.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

@ PDF will be Gaussian — general PDFs cannot be
obtained.

@ Laplace equation (regularization) involves
correlation length parameter that changes decay of
eigenvalues of prior preconditioned Hessian.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

@ PDF will be Gaussian — general PDFs cannot be
obtained.

@ Laplace equation (regularization) involves
correlation length parameter that changes decay of
eigenvalues of prior preconditioned Hessian.

@ Dimension of parameter space is too high 0(1000)
for forward propagation.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

@ PDF will be Gaussian — general PDFs cannot be
obtained.

@ Laplace equation (regularization) involves
correlation length parameter that changes decay of
eigenvalues of prior preconditioned Hessian.

@ Dimension of parameter space is too high 0(1000)
for forward propagation.

@ Log-normal prior may be cause of (nonphysical)
bias towards mass increase when performing forward
propagation.

1012
10"
10t

l”"

104
10°°

10712

1401

1201

1001

200 100 600 800 1000

Histogram of boostrapped mean

-17.7 -18.9 -20.2
net GIS sea level change (mm) over 100 years
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Ongoing work:

» Use low fidelity models (e.g. SIA) to study problems (such as bias in SLR on previous
slide) with the large-scale, high-resolution, expensive end-to-end framework.

» Use dimension reduction, leveraging transient adjoints obtained from new model
suite, to reduce cost of propagating uncertainties through transient model.

- |

-1
~1 0 1

-0.231

10 15 20 25 30 35 10 0 5 10

Figure 1: ISMIP-HOM B test + SIA and BP Figure 2: gradients can determine
models is >1000X less than GIS. directions that significantly impact SLR.

» Dimension reduction by adding physics: subglacial hydrology models rely on only a
handful of parameters that, to first approximation, can be considered uniform

|u| )q 1 n Thickness equation
|

B(w) = pusN <|u| + AAN™ ) |u| (subglacial hydrology)




MPI+X FEA via Kokkos ) e,

e  MPI-only nested for loop:

for (int cell=0; cellcknumCells; ++cell)
for (int node=0; node<numNodes; ++node)
for (int gp=0; qp<numQPs; ++gp)

compute A; MPI process n




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

for (int cell=0; cellcknumCells; ++cell)
for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qgp) Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

A 4

compute A; MPI process n

Single Threading




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

Single Threading

* Unified Virtual Memory.



MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

Single Threading




MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

Single Threading




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. Single Threading

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

i . (cell,node,qp)=(0,0,1)
for loops via Kokkos: Kokkos parallelization in

ALl is only over cells.

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. SRS Tpcaong

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch_add

e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.




MPAS + ALl Coupling rh) 5o

Lahoratories
output file
MPAS Land-Ice ST T
Land| (Fortran) « i CatfFortran  ic ____ Albany Land-
" dce|_ > Thickness evolution, ;i Interface, Mesh i E Ice (C++)
mode temperature solve, i Conversion : velocity solve
couplingto DOE-ESM ~ TTTTTTToTTToTmooommooooooes '
v [y (2ué,) 0s
3 ot o= . s -V - UE) = —pg —
E Er§£xascale at B V (uH) + b < g);
Earth System Model aT —V . (Zuéz) — _pga_
pe—- =7+ (KVT) = pcu - VT + 2é0 \ Y

=

Model for Prediction Across Scales

“Loose” sequential/staggered coupling between u and (T, H).




FO Stokes-Thickness Coupling )

Laboratories
output file
MPAS Land-Ice ST T
: ++ . a
Landlce (Fortran) < C++/Fortran < Albany Land
q |_ > Thickness evolution, ;: Interface, Mesh : E Ice (C++)
mode temperature solve, i Conversion : velocity solve
couplingto DOE-ESM ~ “TTTTTTTTTmoooooTTmmomooooes '
OH [y 2ué;) 0s
3 - V(T . = -V - UE) = —pg =
Iw —=—-V-(uH)+»b 0x
E Eg Exascale at ( ) < a S
Earth System Model . . . . —V . (2 é ) — _ s
H equation is solved with upwind k HE; PY 3y
scheme + incremental remap.

Model for Prediction Across Scales




FO Stokes-Thickness Coupling )

Laboratories
output file
MPAS Land-Ice
: ++ . ]
Landlce (Fortran) «— i ¢ [Fortran '« Albany Land
q |_ — Thickness evolution, ;: Interface, Mesh i E Ice (C++)
mode temperature solve, i Conversion : velocity solve
couplingto DOE-ESM ~ TTTTTTToTTToTmooommooooooes '
oH - (2ué,) 0s
3 v a4 V- Qué) = —pg
—=—-V-(uH)+b Ox

Energy Exascale
Earth System Model

ds

H equation is solved with upwind =V - (2u€;) = —pg E

scheme + incremental remap.

Model for Prediction Across Scales

\

© Upside: scheme fits nicely into existing codes




FO Stokes-Thickness Coupling )

Laboratories
output file
MPAS Land-Ice T T T
: ++ . -
—— [ ) . C++/Fortran S Albany Land
q |_ > Thickness evolution, ;: Interface, Mesh : E Ice (C++)
mode temperature solve, i Conversion : velocity solve
couplingto DOE-ESM ~ TTTTTTTTTooommmmmooooooooes '
OH [y 2ué;) 0s
3 . V _ . felaciey -V . ﬂel = —pg—
Iw —=-V-(uH)+b ox
E Er§ Exascale at ( ) ) as
B 2 equation is solved with upwind k—V - (2u€y) = —pg ay
scheme + incremental remap.

Model for Prediction Across Scales

© Upside: scheme fits nicely into existing codes

® Downside: for problems with shallow ice on frozen bedrock, need to
satisfy very restrictive diffusive CFL condition*: At < CFLg;¢(AX)?




Lahoratories

FO Stokes-Thickness Coupling )

output file

[

pAS andc o albany
Landlce (Fortran) ' f h | e
model_ > Thickness evolution, Intertace, Mes S Ice (C++)

temperature solve, : Conversion : velocity solve
couplingto DOE-ESM  "TTTTTTmoTommooToooomooooees

E3SM %—IZ= —V-@H) + b

Energy Exascale
Earth System Model

( ) ds
—V-(2ué) = —pg -

, ds
—V - (2u€;) = —pg B

H equation is solved with upwind

: \
scheme + incremental remap.

Model for Prediction Across Scales

© Upside: scheme fits nicely into existing codes

® Downside: for problems with shallow ice on frozen bedrock, need to
satisfy very restrictive diffusive CFL condition*: At < CFLg;¢(AX)?

@ Downside: Very crude representation of ice advancement/retreat




Semi-Implicit Coupling ) i,
MPAS . "o ez by

Unstructured explicit finite Unstructured finite element
volume on Voronoi grids

Solves for thickness
(upwind method)

* MPAS computes thickness H, uses it to define geometry, which is passed to ALI.




Semi-Implicit Coupling ) e,

Lahoratories

H

v

| Model for Prediction Across Scales

Unstructured explicit finite Unstructured finite element

volume on Voronoi grids
Solves FO Stokes for velocity-

thickness together

Solves for thickness
(upwind method)

* MPAS computes thickness H, uses it to define geometry, which is passed to ALI.
* ALl computes coupled velocity-thickness (u, H) pair:

—2u(u™) - e(uV) = —pgV(b + H®D), in Qs
HmtY) _ g®m)

At

= -7 (@D 4 )

Idea: the velocity computed by the coupled system FO-thickness equation will be more
stable than the one computed by FO Stokes only and will allow use of larger At
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AS H |
waor Prediction Across Scales » |
Unstructured explicit finite Unstructured finite element
volume on Voronoi grids u

Solves FO Stokes for velocity-
thickness together

Solves for thickness
(upwind method)

* MPAS computes thickness H, uses it to define geometry, which is passed to ALI.
* ALl computes coupled velocity-thickness (u, H) pair:

—2u(u™) - e(uV) = —pgV(b + H®D), in Qs
HmtY) _ g®m)

At

= -7 (@D 4 )

Idea: the velocity computed by the coupled system FO-thickness equation will be more
stable than the one computed by FO Stokes only and will allow use of larger At

* Only velocity u is passed back to MPAS.



Semi-Implicit Coupling ) e,

H

v

| Model for Prediction Across Scales

Unstructured explicit finite Unstructured finite element
volume on Voronoi grids u

A

Solves FO Stokes for velocity-
thickness together

Solves for thickness
(upwind method)

* MPAS computes thickness H, uses it to define geometry, which is passed to ALI.
* ALl computes coupled velocity-thickness (u, H) pair:

—2u(u™) - e(uV) = —pgV(b + H®D), in Qs
HmtY) _ g®m)

At

= -7 (@D 4 )

Idea: the velocity computed by the coupled system FO-thickness equation will be more
stable than the one computed by FO Stokes only and will allow use of larger At

* Only velocity u is passed back to MPAS.

 Downside: more intrusive implementation; larger system; expense associated to geometry
changing between iterations (use Newton to compute shape derivatives).



Semi-Implicit Approach: Dome Test Case

H at t=200 v1s

H at t=4 yrs

)
R i
0XO 0 10000 20000
S [ETHIN)
A000 F
0
O i

Solutlon obtamed wnth sequentlal
coupling, dt =1 yr

Top left: reference
solution computed
using sequential
approach and time
step of 5 months
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Solution obtained with semi-
implicit coupling, dt =5 yrs
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Lahoratories

Semi-implicit
approach allows the
use of much larger
time-steps than
sequential approach!
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Semi-Implicit Approach: Antarctica ) .
e Variable-resolution Antarctica grid with maximum

resolution of 3km.

* Compared semi-implicit with adaptive At based
on advective CFL condition vs. explicit scheme
based on diffusive CFL condition.

» Sequential approach: At = O(days)
» Semi-Implicit approach: At = O(months)

* Cost of iteration is larger for semi-implicit scheme
because of increased dimension of nonlinear
system (more expensive assembly and solve).

* Nonetheless, with semi-implicit scheme, we
obtained speedup of 4.5X (~2 year run).

Basal friction: obtained with inversion.
Geometry: Bedmap2 (Fretwell et al., Cryosphere, 2013), managed by D. Martin and X. Asay-Davis.
Temperature: Cornford, Martin et al, 2014; Pattyn et al., 2010.

Mesh: unstructured Delaynay mesh refined based on surface velocity (MPAS planar Voronoi grid
generator by M. Duda, NCAR).
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Towards Fully Implicit FO Stokes-Thickness
Coupling

* We are looking at the following fully implicit formulations:

» Level set formulation coupled with the thickness evolution equation is
used to track the front position*: no need to modify mesh, can handle
changes in topography.

» Thickness equation as an obstacle problem/variational inequality**: no
need to track boundary, amenable to implicit integration

Z—’:=—\7-(ﬁﬂ)+b, inx+

Jaa—IZ(v—H)zj(ﬁH)-V(v—H)+f9(v—H), H>0,vv=0,in X
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*Bondzio et al. 2016. **Bueler, 2016.



PISCEES & E3SM Coupling Validation

Sub-shelf melt rates (RRS30to10km resolution)

model observations® model — obs.

it
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* Rignot et al., Science, 2013




Summary Scac ) o

Laboratories
Advanced Computing

Probabilistic Sea-Level Projections from Ice Sheet and Earth System
Models (ProSPect) is a new 5 year (2017-2022) SciDAC project on:

1) Ice sheet and ocean model physics critical for accurate projections of sea-
level change (e.g., subglacial hydrology, damage evolution + fracture +
calving)

2) Ice sheet, ocean, and ESM coupling critical for accurate projections of sea-
level change

3) Ice sheet model initialization and optimization methods needed for
realistic coupling of ISMs and ESMs

4)  Frameworks for quantifying parametric and structural ice sheet model
uncertainties

5) Performance portability on new, heterogeneous HPC architectures

New developments will be targeted at standalone and
coupled simulations of sea-level rise from ice sheets



