Sandia National Laboratories

Component-Based Coupling of First-Principles and Data-Driven Models
Irina Tezaur?, Joshua Barnett'?, Alejandro Mota!, Amy De Castro'3, Paul Kuberry*, Pavel Bochev!, Chris Wentland*

Alternating Schwarz-Based Coupling Motivation for Coupling R Coupling via Generalized Mortar Methods

. . el . The past decades have seen tremendous investment in simulation 4 o . 1. ey . . .
Alternating Schwarz Method for Domain Decomposition (DD) and Coupling frameworks for coupled multi-scale and multi-physics problems. | - Lagrange Multiplier-Based Partitioned Coupling Formulation
*  Proposed in 1870 by H. Schwarz for solving Laplace equation on irregular domains. - Frameworks rely on established mathematical theories to couple physics components. Essm : Model problem: time-dependent advection-diffusion problemon 2 = 2; U (2,
— - " . o (ot e » ith2, NN, =0
.i : al di : : : : * Most existing coupling frameworks are based on traditional discretization methods. e _ i wi 1 2 . o ] )
Crux of Mgthod. if the solutlgn of a p-artlal-dlffererimtlal equa'Flon (PDE) is known in regularly - = i - o o e . . Hybrid semi-discrete coupled formulation: obtained
shaped domains, use those as pieces to iteratively build a solution for the more complex domain. v =y ¢;i— V- -F(c)=f;,in Q; x[0T] . e e .
: n x n‘ amm—— | by differentiating interface conditions in time and
) \aQ _ u - . ¢ = 9o on [;x[0,T] (1) I L, discretizing hybrid problem using FEM in space
Initialize: Basic Schwarz Algorithm for Spatial Coupling - —p —p < — A c(x,0) = c;o(x), in Q )
hitialize: Overlapping Schwarz: Non-overlapping Schwarz: p = v ] DMD=N; - ’ M, 0 G1 ¢ f1—Kic
«  Solve PDE by any method on ; w/ initial guess for transmission BCs on I7;. convergent with all-Dirichlet convergent with Robin-Robin or : : UDE=N; <~ . _ _ -1 1 11 (2)
TV , - = - i € {1,2}, c;: unknown scalar solution field 0 M —GT ¢, |=\f,-K,c
Iterate until convergence: transmission boundary alternating Neumann-Dirichlet ) N B . ' 2 2 2 2 2 Cy
: o . conditions (BCs) if 0y N 0, % @, transmission BCs. Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods fi: body force, g;: boundary data on Fi. G, -G, 0 A 0
’ Solve PDE by any method on 'QZ W/ transmission BCs on FZ based on values Just : ;DET' O?FS | * Mesh-based (FE, FV, FD) * Monolithic (Lagrange multipliers) *  Physics-Informed Neural Networks (PINNs) Fi (Ci) = KiV Ci —uc;: total flux function Figure 5. Non-overlapping DD of 2 = £, U {2,
obtained for ();. e Schwarz alternating method most commonly used as a on oca Integrs " Meshless (SPH, MLS) *  Partitioned (loose) coupling *  Neural ODEs K;: non-negative diffusion coefficient M;: mass matrices, K;: stiffness matrices,G;: constraint matrices
8 y * Atomistic, ... * Eulerian, Lagrangian, ... « lterative (Schwarz, optimization) * Projection-based ROMs, ... - . : : ! Tt T
. Solve PDE by any method on Q; w/ transmission BCs on I'; based on values just preconditioner for Krylov iterative methods to solve linear u: given advection velocity field
obtained for (. algebraic equations. , o . L . . I . . A : : :
_ s Unfortunately, existing algorithmic and software infrastructures are ill- Compatibility conditions: on interface I’ X [0, T] Decoupling via Schur complement: equation (2) is equivalent to
Novel Idea: using Schwarz alternating method as a discretization method for solving multi-scale or multi-physics PDEs. —=== /"” ’ equipped to handle plug-and-play integration of data-driven models! «  Continuity of states: c;(x,t) — c,(x,t) = 0 <M1 0 ) (é‘l) fi—Kic; —GiA (3) Equations decouple if using explicit
: : s : PN * Continuity of total flux: Fi(x,t) - np = F,(x,t) - nr 0 M;)\¢;)]  \f,—Kyc, + G2 or IMEX time-integration!
Initialize: Schwarz Algorithm for Dynamics 2, Tk I, Ti+1 _ : ‘ nz by \Pe Objective: discover mathematical principles guiding assembly of standard = Imposed weakly using Lagrange multiplier (LM) A i 7 ) 9
«  Setk = 0 (controller time index). ¢ ® Controller time stepper i : \‘ and data-driven models in stable, accurate and physically consistent ways. where (G;M7'G] + G,M;"G3)A = G M1 (f1 — K cy) — G,M;'(f, — Kycy)  (8)
I
Iterate until convergence: o
A , Time integrator for . . .
«  Step 1: Advance Q, solution from time T} to time Ty, using r . ’ ' 8 1 Implicit Value Recovery (IVR) Algorithm [5]
time-stepper in ; with time-step At;, using solution in (), G e Time integrator for () . Pick lici IMEX time-i . h for 0 40
. . N s e 2 . . . ick explicit or time-integration scheme for £2; and (2,. . 1. .
interpolated to I; at times Ty +nA't1 | | . PrOJECtlon_Ba SEd MOdel Order Red UCt|On Time integration schemes and time-steps in (2, and £, can Lagrange MUItlleer'Based COUleng of FOMs
* Step 2: Advance (), solution from time T}, to time T4 using di . o be different!
time-stepper in (0, with time-step At,, using solution in Q; Tansfer from to 0. to I deCan t:ste lffc:rent :r'rttﬁ'grato;so\lmt » cull Order Model (FOMY: M d2u N @ Approximaté LM space as trace of finite element space on (2 “Plug-and-play” framework:
. . ransrer rrom to o ijyerent time steps witnin eac omain! . — ; = ° . . . . .
interpolated to I; at times Ty, + ndt,. | . Transfer from q0 tt) - 2 . ull Order Model { ) dt2 Jint(W) = fexe or),* ! » Ability to couple regions with different non-conformal meshes, different
s Step 3: Check for convergence at time Ty 1. e . ; : ; - 2 i i imopli
If_P_ ) gs ; k+1 i Intermediate time steps associated to 0, T|m.e—stepp|ng p_rocedure is 1. Acquisition . 3. Projection-Based Reduction «  Compute matrices M, K;, G; and vectors f; eIeme.nt types and dlfferen.t levels of refinement to simplify task of
y unconver:;;e ,trc;:{turnkti 1tep d. e { Intermediate time steps associated to 0 equivalent to doing Schwarz | o edice the w(t) ~ F(E) = DA(E) ROM = Reduced Order Model - For each timestep t™: meshing complex geometries
converged, set k = and return to Step 1. ' el 1 E — . . _ ) . . . . o :
on sp i in [2] ﬁ - %7 umber of | HROM = Hyper-reduced ROM > Solve Schur complement system (4) for the LM A" éblhtlY to .use dlf{:erel:l.“ soIv.ersl/tlme integrators in different regions [6,7]
ED.- =t i unknowns > Update the state variables ¢ by advancing (3) in time oupling is non-iterative (single pass)
o . " : : ; " . Method is theoretically rigorous [5]:
. . . . . Solve ODE at different e solution data o Coupling methods are not * Ensures that dual Schur complement of (2) is symmetric positive definite
Schwarz for Multi-Scale Coupling of Full Order Models (FOMs) in Solid Mechanics i perfor oM@l 4 o7, (00) = limited to linear bases + Coupling does not introduce nonphysical artifacts

. T . .
2. Learning projection D fext (e g POD) and Galerkin * Theoretical convergence propertles/guarantees Figure 6. Axial pulse bar test
L.,

*  Coupling is concurrent (two-way). : : . . . . imulated with variable resolution
g g . ( . . y) . Model Solid Mechanics PDEs: Proper Orthogonal Decomposition (POD): Hyper-reduce N N prOjeCtion L M |t- | . B d FO IVI RO M |nC|Ud|ng WQ”-pOSEdness of COUpllng force simulated with variable resolutio
*  Easy to implement into existing massively-parallel HPC codes. Quasistaticc:. DivP+ppB=0 in Q nvperre finn(@) ~ A Fine (@) agra nge u |p ler-nase - system e
. ..Scalclzl?le, ]{th, robfu;t I(th target realter'm)gmeermg problems, e.g., analyses Dynamic: Div P + 0B = popp in Qx I VT terms PR TTH]1 ‘ I and ROM-ROM Cou pllng * Preserves the exact solution for conformal
involving failure of bolted components!). d ﬁ meshes
*  Coupling does not introduce nonphysical artifacts. Hyper-reduction/samele mesh * Collect snapshots using suitable monolithic FOM solve for .
Method has been app|IEd to several Figure 7. Patch test (ALEGRA-Sierra coupling)

equation (1) and subtract Dirichlet BC data on [ U I5.

application spaces:
* Partition modified snapshots into subdomain snapshot PP P . e
) , * Transport (unsteady advection-diffusion)
matrices X; and X, on (2, and (2,, respectively.

CO m p a r I SO n Of CO u p I I n g M Et h O d S * Calculate “split” reduced bases @; - and @, ,, for interface and | Ocean-atmosphere coupling

* Elasticity (e.g., ALEGRA-Sierra coupling)

*  Theoretical convergence properties/guarantees [1, 2].
*  “Plug-and-play” framework:

» Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement to simplify task of

meshing complex geometries, interior degrees Of freedom (DO FS) Figure 8. Coupling of nonconforming meshes
i z- i Lagrange Multiplier-Based IVR Couplin . : i : inati
> Ability to use different solvers/time-integrators in different regions. * hitps://github.com/sandialabs/LCM Alternating Schwarz-based Coupling srang P pine Approx!mate the SOIUtIO.n as a linear combination of the POD
BS://BILNLD. ‘ Can do FOM-FOM, FOM-ROM, ROM-ROM Can do FOM-FOM, FOM-ROM, ROM-ROM coupling modes in each subdomain and on each boundary: Online ROM-ROM IVR Solution Algorithm: at each time step t™
coupling Cio(t) = €io(t) =Cip +P;oCio(t), c;ir(t) = €;r(t) =C;r + @;rC;r(t) > Use 620 and 6;}‘ to compute updated RHS S?O and S?r‘ fori=1,2.

Overlapping or non-overlapping DD Non-overlapping DD

* Reduce LM space to size N < Np 41 + Npor, Where Np;r = # > DefineM: ., =®T M. .. ®., G: =D G D P::=M: v —
. . : H ; ; ; ca et . . . . ’ ’ ) R ’ I,jk Lj" Ljk* 1,k L LMYi™*i I L i,
Schwa rz Extensions to ROM-FOM a nd ROM-ROM Cou pllngs Itera.tlve formulatlor? (less intrusive but likely Monolithic formulation requiring hybrid formulation POD modes in @, 1, and approximate 4 ~ @ A where @y = M, oMM, g for {j, k} € {0, T} and solve:
requires more CPU time) (more intrusive but more efficient) @ -fori =12 sothat Now =N Lro,0 0LI0 ’ ’ '
. . . . i, = L4, RT = IVR,ir- T = mTAm R wirm i = mirm .
Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices ip;,  Snapshot collection and reduced basis construction g;ienr:::tps:;zferent mesh resolutions and tC;:eZOUp'e different mesh resolutions and element - Substitute above expansions into (2) and project equations onto (GP'GT + GoPy " 6))A™ = G Py (st — MyroMifsto) — GoP3 ' (s3r — MaroM35s%)
* Method lin [3] is employed *  PODresults presented herein use snapshots obtained via Can use different time-integrators with Can use different explicit or IMEX time-integrators reduced bases to obtain: . > Advance the following systems forward in time:
u(t) = u+ ou(t), v(t) =v+dv(t), a(t)=a+ @a(t) FOM-FOM couplingon Q0 = U; ;. different time-steps in different subdomains with different time-steps in different subdomains Mir,r 8 0 gr\/[or Sir Extensions to M Miro\ (€ir\ _ (sir+(-D'G;A"
. *  Future work: generate snapshots/bases separately in each ;. No interface bases required i ires i m,orip . 0 €10 s, FOM-ROM M; M; cn st
» POD modes made to satisfy homogeneous DBCs: @ (ip;., :) = O. g P / Y y i . .qUI . o Provably converge.nt varlan.t requ.lr.es mterfacg bases Lor My, My i, g QT N _ 510 e i,T0 ir i,0 i,0
. e .. . Sequential subdomain solves in multiplicative Parallel subdomain solves if explicit or IMEX time- 0 o 7 0=Gy || C2r 2r coupling Is _ _ .
» BCs imposed by modifying u, v, @: u(ipi;) < Xu V(ipir) < Xu, Schwarz variant integrator is employed 0 o Myorm,, ¢ 5 S20 straight-forward. ROM-ROM coupling with reduced LM space guaranteed to have non-singular dual
— s ~ ~ ’ 1,0 . q q r ang .
a(ipir) < Xgq- For nonlinear solid mechanics, hyper-reduction methods > Parallel subdomain solves possible with G, 0 -G, 0 O 3 0 Schur complement if underlying FOM-FOM coupling satisfies conditions in [5].
hoice of d i d . need to preserve Hamiltonian structure additive Schwarz variant (not shown)
Choice of domain decomposition «  We employ the Energy-Conserving Sampling & Weighting Extensible in straightforward way to Extensions to PINN/DMD data-driven models are not
e  Error-based indicators that help decide in what region of the domain a Method (ECSW) PINN/Dynamic Mode Decomposition (DMD) obvious . EET . . .
ROM can be viable should drive domain decomposition (future work). «  Boundary points must be included in sample mesh for DBC data-driven model Nu merlcal Exam ple . H |gh—Pec|et AdVECtIOﬂ-DIfoSIOn PrObIem [8]

enforcement. * Errors for ROM-ROM coupling with full and

Initial conditions at t = 0 Relative error ¢ for High Peclet

.  ROMROM reduced LM spaces are identical to machine
5 10° - FOM-FOM o .
Current & Future Work precision (Fig. 11).
L] L] L] L] ﬂJ 1
. - : . 2 * Asex ingr LM improv
Numerical Example: Nonlinear Hyper-Elastic Wave Propagation Problem [4] Key Takeaways Extension of Schwarz method to multi-D problems. : s expected, using reduced LM space improves
Model ‘ My /M> | Nei/Nea ‘ Lvnp((}\) ?‘SE(;-U))/ ‘ ?’H_E((i’—l))/ | ?‘SE(?J){ | Ns e ol e gt s s Exten5|on of Lagra nge multlpller_based method to e condltlon number (Flg' 12)'
* Dynamlc solid mechanics prObIem with nonlinear hyperelastlc Heany constitutive model. rom S*O//*_ :;: 1:;:121 A = B S T I h 7 ° All COUp|ed models evaluated converge dicti d li bl e 102 ° Conditioning of the Schur Complement for
_ . . . ey ey HROM 60/— 155/ 5.878 x 107 | 1.730 x 10~ 7/— | 1.063 x 10~ '/— | 4.741 x 10~ /— = ——————— 'SR, DA G . . . pre ICtive and nonlinear pro ems. ’ ’ ' ' Total subdomain basis size . . .
 1Db Q 0,1), cl d at both end h bed | d — <3 Sch terations/At x
— ) ’ ” ROM 200/— —/= 1.448 x 10° | 2.287 x 10 */— | 4.038 x 10 °/— | 4.542 x 10 2/— = . . v Y . o
eam geometry ( ) Clampe at both ends, wit prescripe Initial conaition ROM_ EITE e g.mxm’ 2387 <10 2/7 1038 <10 ;/7 RS IR/ I - ’w — . 1q] cnwarz iterations ‘ Extension of methods to PINN-PINN coupling S A ROM-ROM with reduced LM space is essentlally
i i i i ici ‘ —/- —/- 2315 x 10° - - - 24,630 I m————— o mm—— ° - - . ’ ’ ’ ’ H
discretized using FEM + implicit Newmark-£. rowroM [ [ - el Tmew ; — R FOM-HROM & HROM-HROM couplings Devel . - based DD h Figure 11. Relative errors w.r.t FOM at t = 27 the same as for the FOM-FOM coupling (proven
. . . . . _ - - . 1.253><1c|_—45 2.401 X 10‘_‘; 2.805><10_—;1 F T A T T outperform FOM_FOM Coupling in CPU eve opment O error In Icator_ ase approac es L. . .
OO0 P . FOM-HROM 780 7130 2.085 x 10 250332: 1;]0_1 1573—}?:x113_3/ 7%4?;;( 1(1)0_2/ 29,678 ’ . . e .. . to be We”_condltloned in 5 FI . 12 .
) Two initial conditions: (I) SEUBET (Flg 1(3)), and (“) rounded >quare (Flg 1(b)) FOM-ROM | —/200 /- 2.449 x 10° 47-7;5:7’;11“0 o 1;15327;12012/ 51‘.:;4%})1:1_9 7| 21630 _.V.;m AR time by 12.5-32.6%. Greaterspeedups to determine Optimal ROM-FOM pIacement (including ¢ Cone' cyllnder and smooth hump initial condition (Flg 9) ° Each coupling is capable O[f ;)tt(afn ;n error on
1 * 1421 x 10~ 7 1..724 :m T 9.567 :1lr)0 * e e CE e \ﬁ" o e . . - - . . . . . . u | | | |
> Repro:uctlve ;'ase. glenerzte FosROM | |z | e | G210 ; T T : j maw et TR expected in multi-D. on-the-fly ROM-FOM switching). * Rotating advection field (0.5 — y,x — 0.5) for 1 rotation. Condition number of Schur complement maix e ordefof ft;he relloative error for th:: - FOM
snapshots with initial condition /\ o ’ \ ROM-ROM | 2080 | —/— | 2msxae® | NN | T | ewexaed | 20 SN NN p I S . g ] i ) ) ) ey . . 1 20\\ -
(i) aFI:d predict solution with initial e e HROM-HROM | 200/0 | 315/130 | 1760 x10° ~ 8.410x 1077/ | 4110 1075/ | 2485 x 107/ | 26,880 T »m All Cotulpllnig:S IhVOlVII’]i ROM_S/F:ROMS Extension of couplings to POD modes built from * Snapshots from monolithic FEM on () with 4225 DOFs (h = a). am FOM coupling (Fig 13)
e i I i ROM-ROM | 300/80 /- 2.646 x 10° | 258010 7/ | 6.226x10 7/ | 8470101 | oo { L ————— A S ———— L are at least as accurate as single- . . . . X . . T ~ : )
e n : | et | ussxint | 2o06x07 , snapshots on independently-simulated subdomains. . 5 : .
condition (i) | | A o 2 ros of te HROMHROM coupled | dOMain ROMs/HROM:S. psho pendently Two subdomains with 2145 DOFs/subdamain (Fig. 10). SRS o Reduced LM ROM-ROM coupling achieves
> Predictive case: generate T /\/\ 'b \j‘ Fable 1. CPU fimes, mean square errors (uss) and total # schars erations () fo fé’y'iﬂf"io;”lf:reﬁlﬂi Za?osi n(gglfzr;)r,na?:z ?08'\(/)' Predictive couplings involvi Application to multi-physics problems. * High Peclet regime: k; = 107>, fori = 1,2. nkessssspens = - optimal errors in less time (Fig. 13).
. . . . ° 0 ; : ; g f : ICTIV! upli Involiving .. ) ) . . . .
different couplings for reproductive problem. Couplings outperforming the FOM-FOM luti blue) f ducti blem. . . . ° Homo eneous D|r|Ch|et BCS Total subdomain basis size °
SnapShOtS with initial condition . . model in terms of CPU-time and with reasonable errors are highlighted in green. solution (blue) for reproductive problem ROMS/HROMS are smooth and Journal articles on new methods are in preparatlon. 8 ; i COUpllngS deliver solutions which are smooth
.. . . . . q q Qg . Figure 12. Condition numbers of Schur complement . .
(ii) and predict solution with Ey— (5) Rounded Square , , | oscillation-freel * IMEX version of Crank-Nicholson (treating LM explicitly), with and artifact-free (Fig. 14).
initial condition (i T p— : Modd | umet | Merves | Fom@Y | W@y | Ay | v i = 6.734 x 1073,
( ) Figure 1: Initial conditions considered. e e == == — —— = B | References SnapShOt time Step Ats 6 734 10 Pareto Plot ROM-ROM FOM-FOM
. . . . . ROM 1.358 x107 ~/= 8451x10 7/~ | 6.750 x 1077/~ | 8021 x 107/~ [ - s o . - [1] A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME, 319 (2017), 19-51. o ~ i i i —ROM-ROM, full LM space
« Very stringent test case for coupling and for ROMs (traveling wave, sharp gradients in _Tnow_Torio | s [atwox 07 Temox 0/ Tamao 21— — | 121 A Mota, 1. Texaur, G, Phiipot. "The Schwarz Alternating Method for Oynami Solid Mechanics®, CMAME. 121 (21 20 interior modes age needed and only 5 interface modes are I
) - 155 10" —/- —/—— - /- 3, s ; : _ . — (2022) 5036-5071. i i i 5107 JTOW
Solutlon)! FOM-ROM | 2.084 x 10 == 1i?1(?7'7()>;110076/ 15.4;812211%75/ 31,?775372110073/ 23,288 f . B : i . e BIM. Gunzpurgher'bj' Pe;erw;,J‘"Shgﬂj/\:]iefguec?;(_)g;?il;)r;(;)‘igljl;g of time-dependent PDEs with multiple needed to ca pture 99% of their respective SnapSh ot energies. g
. . og® - . x 10% -/ 1.967 ““:i 1.986 x 10:: 2.768 x lﬂ:f 9, 'Egﬁuigl‘. . .......’ . ) : — i X param‘:‘;‘: o izaoul:'n aryoaata"‘ e Schwarz alternatin mt_e o . or the seamless coupling of nonlinear s an ¢ i i 2
+ Non-overlapping domain decomposition (DD) of Q = Q; U Q,, where Q; = [0, 0.6] FONHROM | mmex 0 /253 Lroxio | oamaxio | aascio | BT o | AN VN VWS - FOMs" CSft cmmmer Proveedings 2022, SN p 1B e codping ofnerlinear ROMsand Full LM space has dimension 63. § 00
ROM-ROM 2.502 x 107 = \ -4 ] x 1072 '. x 1072 26,220 HROMHROM] | L e ; ' ; e . leerson . Bochev, P. Kubern ”’x iéi s. ncl ro.nous artitioned algorithms for interface problems based on 1 1 ®
and Q, =[0.6, 1.0] and same Ax = 1073 and At = 1077 in both subdomain. oo | s T T DT TR BRI T Th w w m me | E ] ' 1K Peterson, . Bochew . Kuberry, "Explt synchvanous partitioned algoriths fo interface problems based * Reduced LM space has dimension:
1.960 x 10 4.630 x10 2.580 x10 CPU time (s) (a) Single-domain ROM (M;= 300) (b) FOM-HROM (M= 200) solution [6] J.M. Connors, K. Sockwell, A Multirate Discontinuous-Galerkin-in-Time Framework for Interface-Coupled 5 10 15 20
> TransmiSSion BCS: alternatlng DIriChIet-Neumann Wlth no relaxation' Table 2. CPU times, mean square errors (eysg) and total # Schwarz iterations (Ng) for Figure 3: Par.eto B E T CH i (E) T soluton red) compared o FOM. red-areen) compared to FOI. |[)7r]0|l()|esr:csl,<v5vleA||I§/’|(J Iizr;i;rfr:’all(luaj'?\:: i.agi_czrfgf‘li?jrzce Flux Recovery Framework for Constructing Partitioned N ir — min 1N i 63 o orine e (9 . .
different couplings for predictive problem. Couplings outperforming the FOM-FOM model ~ average displacement MSE  over all Figure 4: Solutions to predictive problem at the final time T = Heterogeneous Time-Integration Methods, to appear. H B Figure 13. Pareto plot for various couplings.
in terms of CPU-time and with reasonable errors are highlighted in green. subdomains coupled for predictive problem. 10~3. FOM solution shown in black. 8] : IdebCaero, P. Kuberry, I.dTezadur, Z Bct:chev.f “A syncfhronouds partitioned sg:\eme for coupled reduceddorder Relative errors are w.r.t. FOM at t = 2m Figure 14. ROM-ROM (left) and FOM-FOM (right) solutions at final time
models based on separate reduced order bases for interface and interior variables”, CSRI Summer Proceedings 2022,
SNL, pp. 78-92.
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