
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & 
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

1Sandia National Laboratories, U.S.A.  2Stanford University, U.S.A.  3Clemson University, U.S.A.SAND2023-01782C

Component-Based Coupling of First-Principles and Data-Driven Models
Irina Tezaur1, Joshua Barnett1,2, Alejandro Mota1, Amy De Castro1,3, Paul Kuberry1, Pavel Bochev1, Chris Wentland1

Unfortunately, existing algorithmic and software infrastructures are ill-
equipped to handle plug-and-play integration of data-driven models!

Objective: discover mathematical principles guiding assembly of standard 
and data-driven models in stable, accurate and physically consistent ways.

Alternating Schwarz-Based Coupling Coupling via Generalized Mortar Methods

▪ Proposed in 1870 by H. Schwarz for solving Laplace equation on irregular domains.

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values just 
obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values just 
obtained for Ω2.

Crux of Method: if the solution of a partial differential equation (PDE) is known in regularly 
shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm for Spatial Coupling

• Schwarz alternating method most commonly used as a 
preconditioner for Krylov iterative methods to solve linear 
algebraic equations.

Novel Idea: using Schwarz alternating method as a discretization method for solving multi-scale or multi-physics PDEs.

Initialize: 
• Set 𝑘 = 0 (controller time index).
Iterate until convergence:
• Step 1: Advance Ω1 solution from time 𝑇𝑘 to time 𝑇𝑘+1 using 

time-stepper in Ω1 with time-step 𝛥𝑡1, using solution in Ω2
interpolated to Γ1 at times 𝑇𝑘 + 𝑛𝛥𝑡1

• Step 2: Advance Ω2 solution from time 𝑇𝑘 to time 𝑇𝑘+1 using 
time-stepper in Ω2 with time-step 𝛥𝑡2, using solution in Ω1
interpolated to Γ2 at times 𝑇𝑘 + 𝑛𝛥𝑡2.

• Step 3: Check for convergence at time 𝑇𝑘+1.

Non-overlapping Schwarz: 
convergent with Robin-Robin or 
alternating Neumann-Dirichlet 

transmission BCs.  

• Frameworks rely on established mathematical theories to couple physics components.

• Most existing coupling frameworks are based on traditional discretization methods.

The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

Motivation for Coupling

• PDEs, ODEs
• Nonlocal integral 
• Atomistic, …

Complex System Model Traditional + Data-Driven Methods

• Physics-Informed Neural Networks (PINNs)
• Neural ODEs
• Projection-based ROMs, …

• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS) 
• Eulerian, Lagrangian, …

Traditional Methods

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)

Coupled Numerical Model

Alternating Schwarz Method for Domain Decomposition (DD) and Coupling

Overlapping Schwarz: 
convergent with all-Dirichlet 

transmission boundary 
conditions (BCs) if Ω1⋂ Ω2≠ ∅.

Schwarz for Multi-Scale Coupling of Full Order Models (FOMs) in Solid Mechanics
• Coupling is concurrent (two-way).

• Easy to implement into existing massively-parallel HPC codes.

• Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees [1, 2].

• “Plug-and-play” framework:

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement to simplify task of 
meshing complex geometries.

➢ Ability to use different solvers/time-integrators in different regions.

Time integrator for Ω2

Time integrator for Ω1

Controller time stepper

If unconverged, return to Step 1. 
If converged, set 𝑘 = 𝑘 + 1 and return to Step 1.

Schwarz Algorithm for Dynamics

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

* https://github.com/sandialabs/LCM. 

*

Schwarz Extensions to ROM-FOM and ROM-ROM Couplings

Numerical Example: Nonlinear Hyper-Elastic Wave Propagation Problem [4]

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices 𝒊𝐷𝑖𝑟
• Method I in [3] is employed 

𝒖(𝑡) ≈ ഥ𝒖 + 𝜱ෝ𝒖(𝑡),   𝒗(𝑡) ≈ ഥ𝒗 + 𝜱ෝ𝒗(𝑡), 𝒂(𝑡) ≈ ഥ𝒂 + 𝜱ෝ𝒂(𝑡)

➢ POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎.
➢ BCs imposed by modifying ഥ𝒖, ഥ𝒗, ഥ𝒂:  ഥ𝒖 𝒊Dir ← 𝝌𝑢, ഥ𝒗 𝒊Dir ← 𝝌𝑣, 

ഥ𝒂 𝒊Dir ← 𝝌𝑎.

Choice of domain decomposition

• Error-based indicators that help decide in what region of the domain a 
ROM can be viable should drive domain decomposition (future work).

Snapshot collection and reduced basis construction

• POD results presented herein use snapshots obtained via 

FOM-FOM coupling on Ω = 𝑖ڂ Ω𝑖.
• Future work: generate snapshots/bases separately in each Ω𝑖 .

For nonlinear solid mechanics, hyper-reduction methods 
need to preserve Hamiltonian structure

• We employ the Energy-Conserving Sampling & Weighting 
Method (ECSW). 

• Boundary points must be included in sample mesh for DBC 
enforcement. 

• Dynamic solid mechanics problem with nonlinear hyperelastic Hencky constitutive model.

• 1D beam geometry Ω = 0,1 , clamped at both ends, with prescribed initial condition 
discretized using FEM + implicit Newmark-𝛽.

• Two initial conditions: (i) Gaussian (Fig. 1(a)), and (ii) rounded square (Fig. 1(b)).

➢ Reproductive case: generate 
snapshots with initial condition  
(i) and predict solution with initial 
condition (i) 

➢ Predictive case: generate 
snapshots with initial condition 
(ii) and predict solution with 
initial condition (i)  

• Very stringent test case for coupling and for ROMs (traveling wave, sharp gradients in 
solution)!

• Non-overlapping domain decomposition (DD) of Ω = Ω1 ∪ Ω2, where Ω1 = [0, 0.6] 
and Ω2 = [0.6, 1.0] and same ∆𝑥 = 10−3 and ∆𝑡 = 10−7 in both subdomain.

➢ Transmission BCs: alternating Dirichlet-Neumann with no relaxation. 

Figure 2. Plots of the HROM-HROM coupled
solutions with 𝑀1 = 200 (green), 𝑀2 = 80
(cyan) compared to a single-domain FOM
solution (blue) for reproductive problem.

Table 1. CPU times, mean square errors (𝜀MSE) and total # Schwarz iterations (𝑁𝑆) for
different couplings for reproductive problem. Couplings outperforming the FOM-FOM
model in terms of CPU-time and with reasonable errors are highlighted in green.

Table 2. CPU times, mean square errors (𝜀MSE) and total # Schwarz iterations (𝑁𝑆) for
different couplings for predictive problem. Couplings outperforming the FOM-FOM model
in terms of CPU-time and with reasonable errors are highlighted in green.

Figure 3: Pareto plot showing CPU time (s) vs
average displacement MSE over all
subdomains coupled for predictive problem.

Figure 4: Solutions to predictive problem at the final time 𝑇 =
10−3. FOM solution shown in black.

(a) Single-domain ROM (𝑀1= 300)
solution (red) compared to FOM.

(b) FOM-HROM (𝑀2= 200) solution
(red-green) compared to FOM.

Figure 1: Initial conditions considered.

(a) Gaussian (b) Rounded Square

Key Takeaways

• All coupled models evaluated converge 
in <3 Schwarz iterations/Δ𝑡.

• FOM-HROM & HROM-HROM couplings 
outperform FOM-FOM coupling in CPU 
time by 12.5-32.6%.  Greater speedups 
expected in multi-D.

• All couplings involving ROMs/HROMs 
are at least as accurate as single-
domain ROMs/HROMs.

Predictive couplings involving 
ROMs/HROMs are smooth and 

oscillation-free!

Projection-Based Model Order Reduction
Full Order Model (FOM): 𝑴

𝑑2𝒖

𝑑𝑡2
+ 𝒇int 𝒖 = 𝒇ext

ROM = Reduced Order Model                                
HROM = Hyper-reduced ROM    

Comparison of Coupling Methods

Lagrange Multiplier-Based Partitioned Coupling Formulation
Model problem: time-dependent advection-diffusion problem on 𝛺 = 𝛺1 ∪ 𝛺2
with 𝛺1 ∩ 𝛺2 = ∅

𝑖 ∈ 1,2 , 𝑐𝑖: unknown scalar solution field
𝑓𝑖: body force, 𝑔𝑖: boundary data on Γ𝑖
𝐹𝑖 𝑐𝑖 ≔ 𝜅𝑖𝛻 𝑐𝑖 − 𝒖𝑐𝑖: total flux function
𝜅𝑖: non-negative diffusion coefficient
𝒖: given advection velocity field

Compatibility conditions: on interface 𝛤 × 0, 𝑇

• Continuity of states: 𝑐1 𝒙, 𝑡 − 𝑐2 𝒙, 𝑡 = 0
• Continuity of total flux: 𝐹1 𝒙, 𝑡 ∙ 𝒏Γ = 𝐹2 𝒙, 𝑡 ∙ 𝒏Γ
⇒ Imposed weakly using Lagrange multiplier (LM) 𝜆

ሶ𝑐𝑖 − 𝛻 ∙ 𝐹𝑖 𝑐𝑖 = 𝑓𝑖,  in    Ω𝑖 × 0, 𝑇
𝑐𝑖 = 𝑔𝑖 , on Γ𝑖× 0, 𝑇
𝑐𝑖 𝒙, 0 = 𝑐𝑖,0 𝑥 , in Ω𝑖

(1)

Figure 5. Non-overlapping DD of 𝛺 = 𝛺1 ∪ 𝛺2

Hybrid semi-discrete coupled formulation: obtained 
by differentiating interface conditions in time and 
discretizing hybrid problem using FEM in space

𝑴1 𝟎 𝑮1
𝑇

𝟎 𝑴2 −𝑮2
𝑇

𝑮1 −𝑮2 𝟎

ሶ𝒄1
ሶ𝒄2
𝝀

=
𝒇1 −𝑲1𝒄1
𝒇2 −𝑲2 𝒄2

𝟎

(2)

𝑴𝑖: mass matrices, 𝑲𝑖: stiffness matrices,𝑮𝑖: constraint matrices

Decoupling via Schur complement: equation (2) is equivalent to 

𝑴1 𝟎
𝟎 𝑴2

ሶ𝒄1
ሶ𝒄2

=
𝒇1 − 𝑲1𝒄1 − 𝑮1

𝑇𝝀

𝒇2 − 𝑲𝟐𝒄2 + 𝑮2
𝑇𝝀

where (𝑮1𝑴1
−1𝑮1

𝑇 + 𝑮2𝑴2
−1𝑮2

𝑇)𝝀 = 𝑮1𝑴1
−1 𝒇1 − 𝑲1𝒄1 − 𝑮2𝑴2

−1 𝒇2 − 𝑲2𝒄2

(3)

(4)

Equations decouple if using explicit 
or IMEX time-integration!

* Ensures that dual Schur complement of (2) is symmetric positive definite

Lagrange Multiplier-Based Coupling of FOMs 
“Plug-and-play” framework:

• Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement to simplify task of 
meshing complex geometries

• Ability to use different solvers/time-integrators in different regions [6,7]
• Coupling is non-iterative (single pass)

Method is theoretically rigorous [5]: 

• Coupling does not introduce nonphysical artifacts
• Theoretical convergence properties/guarantees                                             

including well-posedness of coupling force                                                        
system

• Preserves the exact solution for conformal                                                                                  
meshes

Method has been applied to several                                                                   
application spaces: 
• Transport (unsteady advection-diffusion)
• Ocean-atmosphere coupling
• Elasticity (e.g., ALEGRA-Sierra coupling)

Figure 8. Coupling of nonconforming meshes

Figure 7. Patch test (ALEGRA-Sierra coupling)
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Online ROM-ROM IVR Solution Algorithm: at each time step 𝑡𝑛

➢ Use ො𝒄𝑖,0
𝑛 and ො𝒄𝑖,Γ

𝑛 to compute updated RHS 𝒔𝑖,0
𝑛 and 𝒔𝑖,Γ

𝑛 for 𝑖 = 1,2. 

➢ Define ෩𝑴𝑖,𝑗𝑘 ≔ 𝜱𝑖,𝑗
𝑇 𝑴𝑖,𝑗𝑘𝜱𝑖,𝑘 , ෩𝑮𝑖 ≔ 𝜱LM

𝑇 𝑮𝑖𝜱𝑖,Γ, ෩𝑷𝑖 ≔ ෩𝑴𝑖,Γ −
෩𝑴𝑖,Γ0𝑴𝑖,0

−1 ෩𝑴𝑖,Γ0 for 𝑗, 𝑘 ∈ 0, Γ and solve: 

(෩𝑮1෩𝑷1
−1෩𝑮1

𝑇 + ෩𝑮2෩𝑷2
−1෩𝑮2

𝑇)𝝀𝑛 = ෩𝑮1෩𝑷1
−1 𝒔1,Γ

𝑛 − ෩𝑴1,Γ0𝑴1,0
−1𝒔1,0

𝑛 − ෩𝑮2෩𝑷2
−1 𝒔2,Γ

𝑛 − ෩𝑴2,Γ0𝑴2,0
−1𝒔2,0

𝑛

➢ Advance the following systems forward in time:
෩𝑴𝑖,Γ

෩𝑴𝑖,Γ0

෩𝑴𝑖,Γ0
෩𝑴𝑖,Γ

ሶො𝒄𝑖,Γ
𝑛

ሶො𝒄𝑖,0
𝑛

=
𝒔𝑖,Γ
𝑛 + (−1)𝑖෩𝑮𝑖

𝑇 𝝀𝑛

𝒔𝑖,0
𝑛

ROM-ROM coupling with reduced LM space guaranteed to have non-singular dual 
Schur complement if underlying FOM-FOM coupling satisfies conditions in [5]. 

Numerical Example: High-Peclet Advection-Diffusion Problem [8]

• Cone, cylinder and smooth hump initial condition (Fig. 9).

• Rotating advection field (0.5 − 𝑦, 𝑥 − 0.5) for 1 rotation.

• Snapshots from monolithic FEM on Ω with 4225 DOFs (ℎ =
1

64
).

• Two subdomains with 2145 DOFs/subdomain (Fig. 10). 

• High Peclet regime: 𝜅𝑖 = 10−5, for 𝑖 = 1,2.

• Homogeneous Dirichlet BCs.

• IMEX version of Crank-Nicholson (treating LM explicitly), with 
snapshot time step Δ𝑡𝑠 = 6.734 × 10−3.

• ~20 interior modes are needed and only 5 interface modes are 
needed to capture 99% of their respective snapshot energies.

• Full LM space has dimension 63.

• Reduced LM space has dimension: 

• Errors for ROM-ROM coupling with full and 
reduced LM spaces are identical to machine 
precision (Fig. 11).

• As expected, using reduced LM space improves 
condition number (Fig. 12).

• Conditioning of the Schur complement for 
ROM-ROM with reduced LM space is essentially 
the same as for the FOM-FOM coupling (proven 
to be well-conditioned in [5]) (Fig. 12).

• Each coupling is capable of attaining an error on 
the order of the relative error for the FOM-
FOM coupling (Fig. 13).

• Reduced LM ROM-ROM coupling achieves 
optimal errors in less time (Fig. 13).

• Couplings deliver solutions which are smooth 
and artifact-free (Fig. 14).

ROM-ROM FOM-FOM

Figure 14.  ROM-ROM (left) and FOM-FOM (right) solutions at final time

Current & Future Work

Figure 9.  Initial condition. Figure 10. Mesh and DD. 
Figure 11. Relative errors w.r.t FOM at 𝑡 = 2𝜋

Figure 12. Condition numbers of Schur complement

Figure 13. Pareto plot for various couplings.
Relative errors are w.r.t. FOM at 𝑡 = 2𝜋

• Can do FOM-FOM, FOM-ROM, ROM-ROM
coupling

• Overlapping or non-overlapping DD 
• Iterative formulation (less intrusive but likely 

requires more CPU time)
• Can couple different mesh resolutions and 

element types 
• Can use different time-integrators with 

different time-steps in different subdomains
• No interface bases required
• Sequential subdomain solves in multiplicative 

Schwarz variant
➢ Parallel subdomain solves possible with 

additive Schwarz variant (not shown)
• Extensible in straightforward way to 

PINN/Dynamic Mode Decomposition (DMD) 
data-driven model

Coupling methods are not 
limited to linear bases 

(e.g., POD) and Galerkin
projection. 

Alternating Schwarz-based Coupling Lagrange Multiplier-Based IVR Coupling

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling

• Non-overlapping DD
• Monolithic formulation requiring hybrid formulation 

(more intrusive but more efficient)
• Can couple different mesh resolutions and element 

types
• Can use different explicit or IMEX time-integrators 

with different time-steps in different subdomains
• Provably convergent variant requires interface bases
• Parallel subdomain solves if explicit or IMEX time-

integrator is employed

• Extensions to PINN/DMD data-driven models are not 
obvious

• Extension of Schwarz method to multi-D problems.

• Extension of Lagrange multiplier-based method to 
predictive and nonlinear problems.

• Extension of methods to PINN-PINN coupling.

• Development of error indicator-based DD approaches, 
to determine optimal ROM-FOM placement (including 
on-the-fly ROM-FOM switching).

• Extension of couplings to POD modes built from 
snapshots on independently-simulated subdomains.

• Application to multi-physics problems.
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Journal articles on new methods are in preparation.

Figure 6. Axial pulse bar test
simulated with variable resolution
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Lagrange Multiplier-Based FOM-ROM 
and ROM-ROM Coupling

• Collect snapshots using suitable monolithic FOM solve for 
equation (1) and subtract Dirichlet BC data on Γ1∪ Γ2.

• Partition modified snapshots into subdomain snapshot 
matrices 𝑿1 and 𝑿2 on 𝛺1 and 𝛺2, respectively.

• Calculate “split” reduced bases 𝜱𝑖,Γ and 𝜱𝑖,0, for interface and 
interior degrees of freedom (DOFs).

• Approximate the solution as a linear combination of the POD 
modes in each subdomain and on each boundary: 

𝒄𝑖,0(𝑡) ≈ 𝒄𝑖,0(𝑡) ≔ ത𝒄𝑖,0 +𝜱𝑖,0ො𝒄𝑖,0 𝑡 , 𝒄𝑖,Γ (𝑡) ≈ 𝒄𝑖,Γ(𝑡) ≔ ത𝒄𝑖,Γ + 𝜱𝑖,Γො𝒄𝑖,Γ(𝑡)

• Reduce LM space to size 𝑁𝑅,Γ < 𝑁𝑅,1Γ + 𝑁𝑅,2Γ, where 𝑁𝑅,𝑖Γ = # 

POD modes in 𝜱𝑖,Γ, and approximate 𝝀 ≈ 𝜱LM
𝝀 where 𝜱LM =

𝜱𝑖,Γ for 𝑖 = 1,2, so that 𝑁𝑅,Γ = 𝑁𝑅,𝑖Γ.

• Substitute above expansions into (2) and project equations onto 
reduced bases to obtain: 

Can use different integrators with 
different time steps within each domain!

Time-stepping procedure is 
equivalent to doing Schwarz 
on space-time domain [2].

Implicit Value Recovery (IVR) Algorithm [5]

• Pick explicit or IMEX time-integration scheme for 𝛺1 and 𝛺2. 
Time integration schemes and time-steps in 𝛺1 and 𝛺2 can 
be different! 

• Approximate LM space as trace of finite element space on 𝛺1
or 𝛺2*

• Compute matrices 𝑴𝑖 , 𝑲𝑖, 𝑮𝑖 and vectors 𝒇𝑖
• For each timestep 𝑡𝑛: 

➢ Solve Schur complement system (4) for the LM 𝝀𝑛

➢ Update the state variables 𝒄𝑖
𝑛 by advancing (3) in time

Extensions to 
FOM-ROM 
coupling is 

straight-forward.

𝑁𝑅,𝑖Γ = min
1

4
𝑁𝑅,𝑖0, 63

https://github.com/sandialabs/LCM

