|

Il CLDERA - CLimate impact: Determining Etiology thRough pAthways

. - . - : UNIVERSITY OF UNIVERSITY OF 2 COLUMBIA
Leadgrshlp Team: Diana Bull, Kara Peterson, Laura Swiler, Lyndsay Shand, Irina Tezaur K MICHIGAN [RISENANSTE Yo CQLUMBIA
sandia.gov/cldera

j.'!:-,

URBANA-CHAMPAIGN

CLDERA is enabling multi-step attribution in the climate by developing quantitative relationships between a climate forcing and its

OVERVIEW downstream impacts. CLDERA aims to improve climate risk assessments and decision-making through its transformation in
approaches for climate attribution.

NEED APPROACH OUTCOMES

Climatic impacts (like drought, flooding, or crop yield) are Develop quantitative representations of the pathway, e.g. the spatio-temporally evolving Tools to discover and represent pathways, and analyses to establish
driving national security, legislative and legal foci. chain of physical processes, between a source and its downstream impacts. pathway robustness to changing conditions.
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of climate impacts from a localized source.
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for Roles in Climate
Security Develop data sets of increasing complexity with key characteristics of the multi-step attribution problem to Prognostic Aerosol Modeling: Simulate stratospheric volcanic aerosol in . N

explore sensitivities, establish viability, and prove usefulness of advanced methods/tools. E3SM from SO, emissions. Total global burden: 2.12 (TgS) ~ Total global burden: 4.29 (TgS)

Tiered Verification

Energy Exascale Earth System Model (E3SM)

*Advancing climate science
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Inverse Optimization: Identify source characteristics by developing deep
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