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Abstract

This document presents a mathematical analysis of theposkdness, stability and convergence of a GalerkinfOD
Reduced Order Model (ROM) for coupled fluid/structure iatgion problems. These results are an extension of the
author’s work during July - August 2007 [17], as well as thafeoence paper [4]. During the months of June -
August 2008, the author:

e Derived sufficient conditions for stability and well-poseds of the solid wall boundary condition for the fluid
ROM.

e Proved stability and well-posedness of the new acousgicaflecting boundary condition on the solid wall.

e Expressed the acoustically-reflecting boundary conditiclerms of the ROM coefficients and basis functions
for the purpose of numerical implementation.

e Exhibited a penalty-like formulation that is equivalentth® usual weak implementation of the acoustically-
reflecting boundary conditions and studied its stability.

e Showed stability of the coupled fluid/structure system unle new solid wall condition assuming a perturbed
fluid pressure loading on the structure equations.

e Derived error estimates for the computed ROM solution redetb the CFD and the exact analytical solutions.

e Began to extend the said analysis to the more complicatedtiit of non-uniform base flow.

These derivations and proofs are presented in detail hecele ultimately condensed into a journal article.

1 Introduction

This document attempts to provide a rigorous analysis ofsthbility of a Reduced Order Model (ROM) of
compressible fluid flow over a flat plate. It is an extensionhef ¢arlier works [2], [3], [4] and [17]. We focus on
the stability and well-posedness of the solid-wall (pldtelndary condition, which has been changed from the no-
penetration boundary condition formulated in [17] to thevn@coustically-reflecting boundary condition. The change
in boundary condition was necessary due to practical diffesiwith the former condition discovered upon numerical

1proper Orthogonal Decomposition; see Section 6.1.1 angt€ha of [16].



implementation of the ROKI We are interested in not only the stability of the fluid edprag, but also in the stability
of the coupled fluid/solid system that arises when the newdary condition on the plate is applied. This study of
stability and well-posedness leads naturally to an armbfsihe ROM’s convergence.

For a thorough discussion of the problem formulation, tlaeles is referred to [2], [3], [4] and [17]. To keep this
document self-contained, we briefly go over the notation thiedkey equations. Some of the more detailed results
from [2], [3], [4] and [17] that are used or referenced hein be found in the Appendix.

Let g denote the vector of fluid variabgssplit into a base state (denoteddjyand a perturbation (denoted b
component:

u u
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q=q+q=| W |+ \2// @)
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p P

Here,u,v andw are the three fluid velocity componenfs= 1/p is the specific volume (where is the density of
the fluid), andp is the fluid pressure. The fluid variables are governed by tiertequations, linearized about the
base statg, on an open bounded domaihc R3. Partitioning the boundary @ into two boundaries, the far-field

boundary §Qf) and the solid wall boundaryQp),
0Q=0QrUdQp, IQFNIQP=0 @)

the initial boundary value problem (IBVP) of interest is bétfornt

M +AGL +Cq=0, x€Qi=123 0<t<T

Pq =h, X € 0Qp, O<t<T 3)
Rd =g, X € 0QF, O<t<T
q(x,0) = f(x), xeQ

whereP and h specify the solid wall boundary condition®,and g specify the far-field boundary conditions and
f : Q — R%is a given function. The operatof : i = 1,2,3} andC are the following 5< 5 matrices, derived in [12]

and [19]:
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58 0 (558

Remark 1: For the sake of brevity and to focus on the solid wall boundamydition, in many derivations and
problem statements of the form (3), we intentionally omé far-field boundary conditichon dQF. The results
presented herein assume a stable and well-posed bounduatiyion has been imposed @€, so that stability and

2See Section 2.

3This vector was denoted ty in [17].

4In (3) and from this point forward, we use the so-called Eimssummation convention: when an index appears twice imglesierm, it
implies we are summing over all possible values of that iné!eg.,Ai gji/ = z?zlAi Z—ﬂ!).

5Recall that the far-field boundary condition specifiedk is the no-reflecting condition, formulated in Section 2.31f].



well-posedness of the IBVP (3) rests on the solid wall bompdandition. We refer the reader to [17] for a detailed
discussion of the far-field conditions.

We will denote the coordinate vector interchangeably as= (

X
thonormaf vector basis for the fluid ROM is denoted By (x) € RS
expanded in this basis are

y ) orx'=(x X X3 ). Theor-
tk=1,...,M}, so that the fde variables

M
q=73 at)@&Xx) (6)
K=1
Here, thea,(t) are the fluid ROM coefficients to be solved for in the reducetomodel. We denote thi@ component
of g(x) wherei € {1,2,3,4,5} by ¢ (x).

In the implementationQ is taken to be a cube with sides of finite lengith> 0: Q = Qy x Qy x Q, = (0,L) x
(0,L) x (0,L). The flat plate over which the fluid flows is in tke= 0 plane, meaning

and the outward unit normal @Qp isn' = ( 0 0 -1 ) In the remainder of this document, we will use the terms
“plate boundary” and “solid wall boundary” interchangealMote, however, that, unless stated otherwise, the &tabil
and well-posedness results presented in this work holdrigopen, bounde® c R andanyboundarydQp of Q.

We do make several assumptions on which the theoretical resisltsgssed herein rest. From this point forward
(unless indicated otherwise), assume that:

1. The base flow satisfies a no-penetration boundary condilips: Un, + vy +wng = 0 0ondQp

2. The base flow is uniformizgq=0 (8)
In1.,n' = ( Nt Ny ng ) is the outward unit normal tdQp. A direct consequence of 2. is that
% = i 1
d0 = { éXLBOforl,J €{1,2,3} ©)

whereA; andC are the operators defined in (4) and (5) respectively.

We now turn our attention to the structure side, namely tla¢eptquations. Rather than keeping the plate sta-
tionary, we will allow it to deform slightly. Assume that tldeformations are restricted to the direction normal to the
plate, leading to a non-zero displacement only inzfoérection. We will denote thig-displacement by) = n(x,y,t).

The displacemem is governed by the von Karman equation:

2
pshZ 2 + Dpend0%n) = g, (X,Y) € Qxx Qy, 0O<t<T
n(x y,t) =0, (XY) € (0 x Qy)U(Qxx 0Qy), 0<t<T (10)
gxg(x y,t) =0, (X,y) € (0Qx x Q) U(Qxx 9Qy), 0<t<T

In (10), his the thickness of the platgs is the density of the plate afdyeng= n(EThBVT) is the bending stiffneds The

functiong is the unsteady fluid pressure loading, so that

g(X,y,t) = _p/(xaya Oat) (11)

(11) couples the structure equations (10) with the fluid &qna (3). In the structure ROM, thedisplacement is
expanded in a scalar orthonoriROM basis{ &(x,y) : k=1,...,P} as follows:

P

n="73 bt)&xy) (12)

k=1

60rthonormal in the so-callegH, Q)-norm, defined in Section 2.1.
"Here,E is Young's modulus and is Poisson’s ratio; see Section 3.1 of [17].
80rthonormal in the-?(dQp) norm.



The solid wall boundary conditions on the fluid variabled Wwitther couple the fluid and structure equations.

Having given a brief overview of the equations and probleateshent, we are ready to proceed to the analysis.
The remainder of this paper is organized as follows. In $a@i we derive sufficient conditions for a set of boundary
conditions ondQ to be well-posed and stable for the fluid system (3). We themditate the new acoustically-
reflecting boundary condition on the plate and show its weledness and stability. In Section 3, a penalty-like
formulation of the acoustically-reflecting boundary cdiwh is uncovered and analyzed. Section 4 deals with the
implementation of the new boundary condition: the condit®expressed in terms of the ROM coefficients and basis
functions, which gives rise to yet another penalty-likeregsion. The resulting coupled fluid/structure systemfifer t
ROM coefficients is examined in Section 5, and its stabilggwaming a perturbed fluid pressure loading on the plate
is shown. Error bounds for the computed ROM solution redativthe CFD solution and (via the triangle inequality)
the exact analytical solution are derived in Section 6. iBecT contains a brief discussion of how to extend the
well-posedness and stability results presented herelretodse of non-uniform base flow. Conclusions are offered in
Section 8. Section 9 is the Appendix, which summarizes métlyspomathematical tools used in the analysis.

2 Stability and Well-Posedness of Plate Boundary Conditiodor the Fluid
Equations

2.1 Well-Posedness: a General Analysis for the LinearizedWter Equations

Let us denote
Uy =U-N= UM+ Vp+Wrg (13)

and

An=A-n= AN+ Aony +Asng (14)
As stated in the Introduction, we will assume= 0 and uniform base fIO\Q%—;Ai" =0fori=1,2,3andC= O). Recall
the matrixH?, the symmetrizer of the linearized Euler equations (3):

p 0 O 0 0
0 p 9 0 0
H=| 0 0 p 0 0 (15)
0 0 0 a?y?p pa?
— 9 (1+a?)
0 0 0 po —
H is symmetric positive definite and has the property that ta&imes{HA; : i = 1,2, 3} are also symmetric. Since

H is symmetric positive definite, one can define with respedtaa inner product and a nod% For any symmetric
positive definite matritM, we will denote th&M, Q)-inner product andM, Q)-norm by:

(UV)m0) = /Q u'MvdQ, ||U||(2M,Q) = (U, Um0 (16)
Similarly, define thdM, dQ)-inner product andM, dQ)-norm by

UV)pnon = [ UTMVAS (Ul gy = (U U aron (17)

Note that
(U, V) m0) = (MY2u,MY20) 2 (18)

9See [2] or Section 9.7 of the Appendix.
10see [2] and [17].



where
(u,v)Lz(Q)z/ u'vdQ (19)
0

is the usual? inner product o (and similarly fordQp) andM?/2 is the “square root” factor of1, which exists
sinceM is assumed to be positive definite.

Remark 2:Recall that the fluid ROM basis functions (modég):i = 1,...,M} are orthonormal with respect to the
(H,Q)-norm, and that the equations (3) are projected onto theskesoesing théH, Q)-inner product. This inner
product is selected over the usilidlinner product to ensure a stable Galerkin approximatios Sstion 3 of [4].

The following theorem gives sufficient conditions on the hdary conditions for the IBVP (3) to be well-poséd
We use the energy approach to study well-posedness: an I8Vli-posed if the energy associated with the anal-
ogous homogeneous IBVP (that is, the original IBVP but wittmogeneous Dirichlet boundary conditions and no
source term) is non-increasing. The notation from this paitward (in the context of the IBVP (3)) is as follows:

d,={qeR>:d—q=0 and Pd —h=0 on dQp}

di ={qeR®:qd—q=0 and Rd—g=0 on dQ¢} (20)

Uo={q€R°:qd —q=0 and Pqd =0 on 9Qp}
dio={qeR®:d —q=0 andRd =0 on dQr}

In other wordsgj, is the vector of boundary conditions @2p as specified in (3) and,, is the vector of boundary
conditions ordQp as specified in (3) but with = 0 (and similarly forg; andq}, on Q).

(21)

Theorem 2.1.1. Assuming a uniform base flowr(= 0, 0q = 0), the IBVP(3) for the linearized Euler equations is
well-posed if

> / GooHANChdS> 0 22)

and
. / foHANr0dS> 0 23)

HeredQ = 0Qp U IQE, with dQpNaIdQr = 0; in context,de is the solid-wall (or plate) boundary an@Qr is the
far-field boundary of the open bounded dom@irc R3.

Proof. By Definition 2.8 in [14] (repeated in Section 9.9 of the Apderfor easy reference), to show well-posedness
of (3), itis sufficient to show well-posedness of this IBVRwh = g = 0. We prove well-posedness by demonstrating
that the energy in théH,Q)-norm is non-increasing. To go from the third to the fourtieliof (24), we apply the
integration by parts “trick”, found in the Section 9.1 of tAppendix. This is possible becauSd A : i = 1,2,3} are

all symmetric.

:_ZL%HqIH(ZH,Q) 2dt qu/TqudQ
=- /Qq'THA.‘?q dQ

9 )
—3Jo | 7 (@THAG) —qT I q|da (24)

=0 (uniform base flow)
= 3o A (ATHAG)dO
—% [509THAdS
3 Ja0r GboHAGLAS— 5[50, droH A 0dS

<0
if conditions (22) and (23) hold. O

11Refer to Section 9.9 in the Appendix for formal definitionsnafll-posedness, quoted from [14].




Theorem 2.1.1 enables one to determine if a set of boundawgitians on a boundary d® is well-posed for (3).
Note, however, that it is a sufficient bobt a necessary condition, meaning an IBVP can be well-posed ié{22)
and (23) fail.

2.2 Special Case: Well-Posedness Analysis whén= (0,L1) x (0,L2) x (0,L3)

It turns out that there is a particularly easy way to checkcthaditions (22) and (23) whe@ ¢ R3 is a boxX2. In
this specific case, it is convenient to do the well-posedaralysis in the characteristic variab\¢s= S1¢/. Here,S
is the matrix that diagonalizés, (14), so that

An=SAS? (25)

whereA = diag{Un, Un, Un, Un + C,Un — C}. The matricesS andS 1 were derived in [17] and can be found in Section
9.7.2 of the Appendix. In the characteristic variables lithearized Euler equations are

oV’ oV’
—— +S!AS—=0 26
ot TS S (26)
WhenQ = Qy, x Qy, x Qy, is a box, its boundaries are simply planes. The six faces@anies) ofQ along with
their outward unit normals are listed in the following table

Boundary Notation n'

Qy, X Qx, x {3 =0} 0Q; (0 0 -1)
Qxl X QX2 X {X3 = L3} an ( 0 01 )
Qyy X Qxg X {X2 = 0} 0Q;, (0 -1 0)
O x Qo x D=L} 9Qf (0 1 0)
Qu, xQux{xx=0 9Q; (-1 0 0)
QX2 X QX3 X {Xl = Ll} 0Qf ( 1 00 )

In general, we denote

0Q:* = {side ofQ normal to theé'" axis with an outward unit normal in the i*" direction:i = 1,23}  (27)

Let S be the matrix that diagonalizég fori = 1,2,3 (so thalSlA;S = /\j) and observe that
S'A-eS=S'AS=A (28)

Here,g € R3is the unit vector in the positivg-direction andA = ( AT A As ) That is,S diagonalizeg\, when
n=g. Let Q be the symmetric, positive definite, diagonal matrix thatudtaneously symmetrizE{S 1A S: i =
1,2,3}%:

2

Q= 2 (29)

and denote
AS=QSIAS (30)

We will use the(Q, Q)-norm to show well-posedness, again by showing that theggniris time in the(Q, Q)-norm,
is non-increasing.

120r, more generally, when the unit normals to the boundarfi&® are not spatially varying; see Remark 4.
13This matrix is derived in Section 9.8 of the Appendix (229).



Theorem 2.2.1.Consider the linearized Euler equations in the characterigariables V (26)onQ = Qy x Qy x Q, =
(0,L1) x (0,L2) x (0, L) with Un = 0 and 0q = 0. A boundary condition 0AQ;" is well-posed if

S VANl > 0 @)

fori =1,2,3. A boundary condition o8Q;” is well-posed if

[v 0 AMolx—0 < 0 (32)

for i =1,2,3. Here, \, is the vector of boundary conditions prescribed a’bﬁ , but homogenized (so that, for
example, if PV—h = 0is prescribed o@Q;", then ;= {V € R3:V' -V =0 and PV 0 ondQ;"}).

Proof. We show well-posedness by showing that the energy of (26gifQ, Q)-norm assuming homogeneous bound-
ary conditions is non-increasing. Consider (26XDe: Qy x Qy x Q, = (0,L1) x (0,L2) x (0,L3) butwithh=g=0.
Then
26V e = 2@ fVTQV'AQ
_ fQV/TQdV’dQ

f V/TAisﬁv’dQ
OA>
1 1%
=3l [FVTAV)-VT S V[do
~—
=0 (uniform base flow) (33)
~2 3 Jo 7 (VTAV)dQ

= 4o, Jo, VDA 57005005~ 3 o, fo M AN 000002
_% fol fQXa [ As\/lgo]xz 0 dQXsdQX1

= fol fQXz (=2 Vag AdViigho=Ls + 3 Vi ASViglia—o) A0, Qs

+ foz fo3 (_ :_ZL [Vt;-(lJ-Afvtgo]Xlle + %[Vt;gAfvt;O]Xl:O) dQy,dQy,

+ fol fQXa (_ :_ZL [Vt;-(lJ-Agvt;O]Xz:Lz + %[Vt;gA?\/éo]xFo) dQy;dQy

If (31) holds onQ;" and (32) holds o®;” for all i = 1,2,3, then the last line in (33) is non-positive, which implies
that the boundary conditions are well-posed. O

Remark 3:We emphasize that Theorem 2.2.1 is a sufficientrimita necessary condition for well-posedness. One
could have, for instance, the expression (32) on some boundag<;  but still haves €5 dt \& || ) < 0 for the net set

of boundary conditions as long as their energy contribusaufficiently negative to balance out the positive energy
contribution from the boundary condition @®;".

As implied by Remark 3, Theorem 2.2.1 is useful in analyziogrdary conditions one boundary at a time.
Suppose one of the boundaries is a solid wall boundary andethaining five boundaries are far-field boundaries
on which one knows that a set of well-posed conditions aregoenposed. Then one may check the well-posedness
of the IBVP by using the theorem to check the well-posednéskseowall condition independently of the far-field
conditions.

Theorem 2.2.1 gives rise to the following corollary thatlfi@r facilitates the task of checking well-posedness in
the case of a domain that is simply a box.

Corollary 2.2.2. Consider again the linearized Euler equations in the chegstic variables V (26) on Q = Qy x
Qyx Qz=(0,L1) x (0,L2) x (0, L) with Uy = 0 andlq= 0. LetA;| be the i eigenvalue of A A boundary condition



ondQ;" is well-posed if
112,
E[ZA;MW] >0 (34)
=1 %=Lj

fori =1,2,3. A boundary condition 08Q;” is well-posed if

<0 (35)
X =0

LS Al
2 JZ]_ ] b0/ ]
fori=1,2,3. Here, \{, is the homogeneous variant of the boundary conditioﬁﬁﬁ (see(27)).

Proof. Without loss of generality, we will show that (31) is equisat to (34); from this it will be clear that (32) is
equivalent to (35). The left-hand-side of (31) can be reamiis

1 / / 1 / / 1 / /
> (Vb AVio] i, = > [VioQS *SAIS 'SVl i, = > [V QAVgo) 1. (36)

Because is positive definite, it has a “square root” fact@:= Q¥/2Q'/2. Using this factorization, an equivalent way
of writing condition (36) is to require the boundary conelits ondQ;" to satisfy

1
5@V VS AVl QY2 > 0 (37)
or
1 > i / 2
> > Ail(Vio)j] >0 (38)
=1 %=Lj
which is precisely (34). The proof f@Q; is essentially identical, so we do not repeat it here. O

Remark 4:0ne may ask why Theorem 2.2.1 and Corollary 2.2.2 require@®a R® be a box. Actually, the only
propertyQ needs to satisfy for these results to hold is it must have ataan(that is, not spatially-varying) normal
to all its boundarie®Q; so, for instance, the results would holdifwere a rotated box.

As an example, and for later reference, consider the modélggm mentioned in the Introduction and in [17] in
which the non-free surface is a flat plate in the 0 plane. This boundary correspondQ; , meaning a sufficient
condition for well-posed plate boundary conditions on #iée is (35) withi = 3:

1 5
5 [ > Al%o)i?| <0 (39)
J:]' X3:0
Here, the ? are the eigenvalues of; = SA3S; *, with
01 0 O 0 0 01 0 0 O
100 0 O 0 10 0 0 0
1 1
33200025_—?,/\3: 0 ,g120001éﬁ (40)
I - 00 10k
oo0oo0 £ » - 00 -10 &



2.3 Acoustically-Reflecting Plate Boundary Condition

In [17], the boundary condition enforced on the fluid varésht the plate boundary was the linearized version of
the no-penetration boundary condition (BG)n = —n:

u,+u-On=-n on 9Qp (41)

Here, the *" operator represents a time derivative, irp= %—’t’ and

u'=(u v w) (42)

The no-penetration condition (41) was implemented weastpeding to Algorithm 1 below.

Algorithm 1 Weak Implementation of the No-Penetration Boundary Caémnlif41) using Integration by Parts (IBP)
1. Project the first line of of (3) onto thig" POD mode using thgH, Q)-inner product:

o (25)
(0'1_ = - (paAl_ (43)
( Yot ) o) PNo% ) ma)

2. Integrate the second term in (43) by parts and substitute into the boundary integral oveXQp:

0q/) / T / / T / / 4 T /

L — =_ Y HAGL,dS— " HANASH [ —[¢@ HAJG'dQ 44

(401 ot ) u.0) anq)J % anq)J a Q 0% 9 la 59
’ N———

=lp.
Pi

Here,q;, is the vector specifying the condition (41) 6@p, so that

mp
nop’
HAGh = nap’ (45)
0
—u-0n—n

3. Compute the boundary integral term appearing injth&0OM equation (p,): substitute—u-0n — n < uy and

the expansiop’ «+ Eﬁ":laquf into the last and first three components of (45) respectitedn substitute (45) into
the dQp contribution of (44), to get

M

o =3 &) [, @+ gty (46)

One can show that the linearized no-penetration condiddh i€ well-posed and stable for the fluid ROM (The-
orem 2.5.1). Unfortunately, numerical experiments sugties enforcing the condition by including (46) in th&
ROM equation is too weak. On a simple benchmark problem wétatonary plate, it was found that the implemen-
tation described in Algorithm 1 does not effectively enfou = 0 at the plate boundary, as it should.

A condition that turns out to be mathematically equivaletd (41) but that does not suffer from this problem is the
so-called acoustically-reflecting boundary conditionisTiiew condition is posed using the characteristic decompos
tion. Since we are assuming that= 0, it follows that the characteristic speeds 00,0, c, —c}. In particular, the

145ee Section 4 for more on weak implementations of solid walholary conditions for the fluid ROM; refer also to [17].
15Using the fact tha; = —u, + yipp’ andV{ = uj, + ;‘pp/’ (47) translates tay, = uy, in the original variables, which is precisely the no-peaiin
condition (41).



fourth characteristic is outgoing and the fifth charactiris incoming. For a stationary wall, the so-called petifec
reflecting boundary condition says to set the incoming dtaristic,Vg, equal to the outgoing characteristits, When
the wall velocity isuy, = uy(X,y,t), the condition amounts to setting

Ve=V,—2u, on dQp (47)

Since the characteristics with wave spegéd: ¢ are acoustic waves (whereas the others are entropic/artice will
call the “perfectly-reflecting condition” an “acoustiogiteflecting” boundary treatment. Condition (47) can beten
in matrix form as

PV'=h% on 9Qp (48)
with
0 0
0 0
PS= 0 ., hS= 0 (49)
0 0
-1 1 —2up,

2.4 Well-Posedness of Acoustically-Reflecting Boundary @dition

We will use the analysis in Sections12and 22 to show that the acoustically-reflecting boundary coodifs
well-posed for the IBVP (3). The following lemma féxr= (0,L1) x (0,L») x (0,L3) demonstrates how simple it is to
check well-posedness for this special case using Coradl&ry.

Lemma 2.4.1. Assumein =0, Jq= 0, andQ = (0,L1) x (0, L) x (0,L3). Then the acoustically-reflecting boundary
condition(47)for (3) on any boundaryfdQ;* :i = 1,2,3} is well-posed.

Proof. To show well-posedness, we need only consider the homogsmeoblem. Corollary 2.2.2 requires that

0 23521 A[(o)il?
=c(V))2 —c(V;—2u})? (50)
= 4ot [V — )

The right-hand-side of (50) is identically 0 if = 0 (sinceA4 = ¢ andAs = —c whenu, = 0). (50) implies that
||V’(~,T)||(2Q o) < K = const By Definition 2.8 in [14] (see Section 9.9 in the AppendiX)e tacoustically-reflecting
boundary condition 0|ziQijE is well-posed. O

Remark 5:Note that Lemma 2.4.1 shows that the acoustically-reflgdimundary condition (47) is well-posesden
for uj, # 0. One can saty, = 0 when computing the energy estimate because it is suffitberansider the homoge-
neous case according to the formal definition of stabilitjliy.

It turns out that one can show a stronger result regardingéieposedness of (47), namely that isisonglywell-
posed® on anyopen bounde® c R3. This result is proven in the following theorem. Since styovell-posedness
implies regular well-posedness, Theorem 2.4.2 shows #7gti¢ well-posedand strongly well-posed foany shape
0Qp.

Theorem 2.4.2. Assumei, = 0, 0g = 0 and letQ c R® be an open bounded domain. Then the acoustically-reflecting
boundary conditior{47) for (3) on any boundarg Qp is strongly well-posed.

163ee Definition 2.9 in [14], repeated in Section 9.9 of the Amfe

10



Proof. Consider théH?2, Q)-norm, that ig |- |l(2,0)- Itis easy to see that this defines a valid norm sidéés positive
definite and symmetric, a consequence of the symmetry antiveedefiniteness ofi. For the upcoming analysis, we
return to the original variableg. Then, writinggy, = S\, whereV is the vector specifying the solid wall boundary
condition in the characteristic variables,

%%HqHHZQ 2dt d [oqTH2qdQ
= qu/THzaq dQ
= — JoaTH?A 9L dO
d(H2A (51)
=3 o | 7% (dTH?AG) — T (axim q|da

N——
=0 (uniform mean flow)
= —3 Ja 35 (dTH?Ad)dQ
= —3 Jan, O H?AndS
Integrating (51) from 0 td gives
19Dl gy <1000~ J3 (Jag, O H2AchdS) dt (52)

For the acoustically-reflecting boundary condition,

Vi
V;
Vi=| V4 (53)
Va
V; —2u;
Using (53), one can easily compute that
pZcm(V, — up)
peeny (Vg — Up)
H2AWq, = H2SAV. = | P cnsg\g - Up) (54)
acpuy
(1+O(2) /
yp Ub
Also,
cnl(Vé - ugj)
/ !/ CHZ(VL} B UP)
Op = AV = | cme(V—up) (55)
_Zu;3
ypY,
so that
oy H?Ang = p7C? (Vi — Up)? +Ug (56)
Now, from (55),
|h|2 = aff o = (V4 — Up)? + (L2 + V?PP)u (57)
so that, using the relation thet = %3,
P?abl* = Pc*(Va — Up)? + (1+ (pC)*)uy (58)
meaning
oy H?Anth = P?|ab|? — (PO) Ui (59)

11



Substituting (59) into (52), one obtains the following psite:

19T B gy ST 0)+ 0 { Jagy (—PPI0h2+ (50)*ug) ot
=110 g+ Jo (—11P%I1Z2 ) + (PO 12 g, ) (60)
S ||f()|| HZQ +j0 ||(pC) ub|||_2 (0Qp) dt

From (57),
lab|? > v?PPug = c*puf; (61)
so that . _ 1
/12 4=2 72 —
dS>/ cpurdsS> —————||(pc 62
196/ = [, g, 1602 [, DS POy (62)
Substituting (62) into (60):
||q/( || HZQ < ||f( || HZQ +ma)99p{52}10 ||qb|||_2 (0Qp) dt

63
sK(||f<>||HZQ+fo 16122 g9 )

Here,K = max{maxmp{ﬁz},l}. Referring to Definition 2.9 in [14] (restated in Section 8fhe Appendix), we
see that (63) satisfies the definition of strong well-posssingitha = 0. Thus, the acoustically-reflecting boundary
condition (47) is strongly well-posed under the assumpstimirthe claim. O

2.5 Stability of Acoustically-Reflecting Boundary Condition

Having established well-posedness of the acousticaflgating boundary condition, let us now study its stability.
It turns out that the stability analysis is most illustratiwhen done in the original fluid variablgsrather than the
characteristic variableg’. Write g}, = SV ; ax@, that is, g}, is the numerical ROM solution. To study stability,
consider the energy estimate,||7. Let g, be the vector of plate boundary conditions@@p, so that, to weakly
enforce (47), one substituteg < of, on dQp. Then, neglecting for now the far-field boundary conditidthet is,
assuming they have been imposed in a stable fashion) anchizmgsa uniform base flow,

2dt||qM||H _%c?t(qMaqM)HQ)
:_qu ﬂquQ
:_fanq HA,ﬂde+ JoomH qudQ 64)
O(HA
= Joae O HAGLAS+ 3 Jo 7 (R HAIGY) dQ — 3 o oy % O dQ

=0 (uniform base flow)

faQPq HAMWLdS+ zfaQPq HAnqy,dS
—faQPQMHAn(ZQM Qb)ds

Note that whery, = g, on dQp, (64) reduces to
1d,, 2
Ea”qMH(H,Q) 2/ dh HAWGL,dS (65)

which is precisely the expression that arises in the prodtaforem 2.1.1; that is, the well-posedness condition (22)
is recovered.

Let us now evaluate the integrand on the right-hand-sidé4) (f the boundary condition is to be imposed in the
characteristic variableg, = Sd,, then the last line of (64) is

1d
saillohlBaa = [ ( T H Aty — i st\vb>ds (66)
P
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with V{ is as in (53). Assuming, =0,

0 0O %écnl %écnl Vlj écnl(Vé — u;))
/ 0 0O ?ecnz ?_cnz VZ, ecnz(vz} — UP)
HSAVp=| 0 0 O j3pcrng 3pcng \Z = | pcna(Vy—up) (67)
0 0O 0 0 V, 0
000 3 -3 V- 2ug up
so that, introducing the shorthand
UnM = UmN1 + Vg +WuNg (68)
we have 3
o HSAVS = pedy i U — Ub) + Uy m P + UpP (69)
Since
0O 0 0 Om U N1 Py
0 0 0 0 17] \/M nzpf\,,
HAgqu=| 0 0O 0 0 ng Wy | =1 nspy (70)
0O 0 0O O O 44 0
n mnp ng 0 O P Unm
one also has that
A HARGY = 2P\t (71)

It follows from (66) that
1d : — : — —
5t bl Bacy = [ [~PCthw Uy — ) —Uhpha] dS= | [~pefiy+ (Pethu — i) tb] S (72)
0Qp JoQp

(72) gives rise to the following result.

Theorem 2.5.1. Assumei, = 0 and g = 0. Then both the linearized no-penetration plate boundarydition (41)
and the acoustically-reflecting boundary conditi@) are stable for the fluid ROM. More specifically

d
a”q/MH(ZH,Q) <0 (73)

for the acoustically-reflecting conditiqd 7) and

d
a”q/MH(ZH,Q) =0 (74)
for the no-penetration conditiof#1).

Proof. According to the definition of stability (see Section 9.1@he Appendix), it is sufficient to consider the homo-
geneous versiofu, = 0) of each boundary condition (41) and (47) to show stabiftthe more general inhomoge-

neous condition. For the acoustically-reflecting boundanydition, whenu = 0, the integrand on the right-hand-side
of (72) reduces to

—pcyiy <0 (75)
which shows the first part of the claim.

For the linearized no-penetration boundary conditionalldcom mechanics that the velocity of the plate is by
definition the total derivative of the plate’s displacemdntthe case where the only component of the displacement
vector that is non-zero is ttecomponent, this means that

Up=—N—U-0n (76)
Whenujg, = 0, the no-penetration condition (41) is thus

/

u,=u,=0 (77)

13



It follows that, substituting (77) into the fifth componetiit(@0),

N1 Py
. . n2Py
avHAG, =du | Nspu | =UnmPy (78)
0
0
Then, making use of (71),
/T 1 / / 1 /T / /T / / / /
am HAn qu Q| = EqM HAnGy — dvHAN, = Uy Py — U =0 (79)
Thus, (74) holds. O

Theorem 2.5.1 shows that the no-penetration boundary ttond#1) is neutrally-stable, that is, under this conditio
the energy of the system remains constant in time.

Remark 6:Although the no-penetration boundary condition (41) isyardutrally-stable, meaning it lacks the energy
“stability” margin of the acoustically-reflecting conditi, it is nonetheless stable. One therefore cannot attriitnat
failure of the condition in enforcing;, = 0 at dQp on the energy estimate (74). We emphasize that there is noth-
ing wrong with thecondition(41); it is the implementation of this condition (Algorithfr) that is too weak. This
explanation may be somewhat unsatisfying in light of foe¢nd5, which shows that the no-penetration condition
(41) is mathematically equivalent to the acousticallyaetfhg condition (47), and this latter condition is enfatce
weakly in exactly the same way as (41)(that is, following pinecedure outlined in Algorithm 1). Whether there is

a mathematical explanation for precisely why the weak immgletation of one condition “works” and the other does
not remains somewhat of an open question. One reason cotiéb@ 1) is a “momentum constraint”, yet the weak
implementation involving substituting, = uj, into the boundary integrd, in (46) only enforces “energy constraints”.

3 Penalty-Type Solid Wall Boundary Treatment for the Fluid Equations

Up to this point, we have considered two possible conditairthe solid wall boundargQp: the linearized no-
penetration boundary condition (41) and the acoustiaafiecting condition (47). The usual way to weakly enforce
boundary conditions in a numerical scheme is by applyingitd@ectly into the boundary integral, as in Algorithm
1. It has been arguedf. [15], that this approach does not take into account the faait the equation should be
obeyed arbitrarily close to the boundary. To address thisnial issue, a number of workd, [5], [10] and [15] have
developed penalty and penalty-like enforcements of boyrztanditions. Formulating a boundary condition using the
penalty method amounts to rewriting a boundary value pruotas:

{ 'Z;J:frzov 0'2529 . ZLu—f=-T(Bu—h)dyy INQUIQ (80)

Here,l is a diagonal matrix of penalty parameters selected sudhsthhility is preserved and;q is an indicator
function marking the boundagQ.

In this section, we explore the penalty-formulated variaihthe condition (47), focusing as before on well-
posedness and stability.

14



3.1 Motivation

One motivation for considering a penalty enforcement ottbendary conditions for (3) is that a specific penalty

formulation of the form +A. = —I'(d —q,) arises when one applies a boundary condition to the linedriz
Euler equations d|rectly as done in (44) and “counter-iratgs” by parts (line 3 of (81) below). Lettingbe a test
function (or POD mode), we have that, denoting the vectoooiralary data 0@ Qp by g, as before,

aq __ ad
((pa ot )(H,Q) [Qq) HAI dQ )
= f30p ® THAnqbds+ Jo - HAQAQ (81)

= Joap @ HAGAS— [y, @"HAGLAS— fo ¢"HA JLdO
=~ Jaqp @ HAN(ch, — ¢)dS— o 9" HA Gl dO

so that ) )
q q / T / /
+ =— H —d)ds 82
< A'dx.>< o 0. ? An(op—d) (82)
(82) is the projection in théH, Q)—rnner product of
7} a
—q +AS —q = Anld — )0, (83)

(83) is aspecifigpenalty enforcement of the boundary conditipr— qj, ondQp; that is, it has the form of the expres-
sion on the right of (80), with-A,, playing the role of .

Remark 7:Note that— A is, in general, neither positive-definite nor diagonal, refas we had definddas a diagonal,
positive definite matrix. For this reason, we say (83) is aatgdike formulation. Actually, as we will show soon
(Proposition 3.2.2) that if (83) is rewritten in the chaeatic variabled/’, the penalty-like matrix that appears in this
set of equations in place efA; is diagonal and positive definite.

Let us take the analysis one step further. Assuroig O, for the acoustically-reflecting boundary condition (47)
HAn(qg, — o) evaluates to

pcny (U, + %p/ —u

nip/ a ; —pcm (U — Up)
o nzpj pcrp (un+ E_p’—uf3 —Ecnz(ué—u;)
HAn(q - qb) = n%p - ECHS u;'l + % p/ _ ug = —pCﬂ3(0un - ub) (84)
up, L? up — up,
b

Then, takingp = HAL(d' —q,) in (82) and letting

(UV) (2 90) = /ao uTH2vdS  [|ul/? H2.00) = (UU)(H2,00) (85)
one finds that
[[An(d —ap) |2 (H2,00p) = Jage(1+p%C%) (U, — up)?dS (86)
where
2 ~2 2 2 2
[|uh = Wbl [E2(9gp) < /dQP(ler ¢”) (up — up)?dS< <1+ rp&x{p C }) [|up — ub||L2 (09p) (87)
or
[1Uh = UblIE2(90p) < 11An(d = 0b)ll2,00p) < (1+ ?Qapx{ﬁzcz}> [1un = UblIE290,) (88)

Here, || [| 2(50) is the usual? norm overdQ. (88) relates the convergence of the vecfdo g, at the boundargQp
to the convergence af, to u;, on dQp.
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3.2 A Stable Penalty-like Formulation of the AcousticallyReflecting Boundary Condition

As mentioned above, (83) resembles a specific penalty esrfeent of the acoustically-reflecting boundary con-
dition (47). Given (83), it is natural to ask what will happiéthe A, matrix on the right-hand-side of this equation is
replaced by, a diagonal matrix of penalty parameters. If one can derirange of such parameteysfor which the
enforcement of the boundary condition is stable, one wilie@ genuine penalty method for enforcing the condition.

Since (47) is specified in the characteristic variables, Weeformulate (83) in the characteristic variables:

o +SINSGL = TPV’ —hSGsq,, XEQUAQP, O0<t<T

V'(x,0) = f(x), xeQ (89)

Here PS and hS are given in (49) and™ = diag{y1, 5,5, 4, 6} is a diagonal, positive definite matrix of penalty
parameters. A sufficient condition for stability is trﬁﬂvq |<2Q1Q) < 0 whenuy, = 0. Settingh®= 0 and computing
this energy estimate (omitting the first several steps, whie exactly the same as in (33)) gives

%%IIV’IIEQ@ =35 /oVTQVdQ
=3 [50,VTAV'dS— [;o,VTTQPYV'dS (90)
= JsgeV'" [(=3A3—TQP9)] V'dS

Here,
AS = AN + ASnp + ASns = QS IAS (91)

The matrice A = QS 1A;S: i = 1,2,3} can be found in Section 9.8 of the Appendix.
From (90),||V’||(2Q‘Q) is non-increasing if the integrand in (90) is non-positivet is if

1
vt [—EAﬁ— I'QPS} V'<0 (92)
Itis convenient to write (92) in matrix form as
VTHV' <0 (93)
where
0
1 0
H :—éAﬁ—rQPS: 0 (94)
C
2
Boo—¥t3

(93) says thaH must be negative semi-definite. Note that this matrix is gotraetric, sincé®S is not symmetric. Let
1 1
HSYymm— > (H+HT) = -5 (AS+TQP+(P9TQr) (95)

(the symmetric part o). Recall from linear algebra that a non-symmetric matrirégative definite if and only if
its symmetric part is negative definite (and likewise for sdefiniteness). Therefore to study stability, we will chec
the signs of the eigenvaluesidfy™M

Theorem 3.2.1. Assumal, = 0 andJq = 0. Then the penalty-enforced acoustically-reflecting b@amaondition
(47)is stable if
M=cls (96)

where } is the5 x 5 identity matrix.

17Again, by Definition 2.11 in [14], one need only consider tetogeneous boundary condition to show stability for gdngye 0; see Section
9.10 of the Appendix.
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Proof. Due to the asymmetry ¢#° and thereforéd, we must examine the eigenvalued¥Mm= %(H +HT), given
in (95). The eigenvalues of this matrix are:

A1=0
A2=0
1 )\1320 (97)
Aa=—3¥+31/2V — 2Cy5+C?
As=—2y—3\/2y2 - 2cy5+c?

Fori =1,2,3, A = 0, which clearly satisfied; < 0. Also, A5 < 0 for all y5 > 0. Thus, the only eigenvalue that can be
positive isA4. In fact, it is non-negative for alk but for stability, is it sufficient to requiré4 = 0. Solving the equation
Aq = 0 for ¥ gives thatys = ¢. Thus, a sufficient condition for stability of the penaltyferced acoustically-reflecting
boundary condition (47) is thafs = ¢, \,---,ys > 0. To simplify the notation, we sgy = --- = y4 = ¢, so that

I =cls. O

Substituting the result of Theorem 3.2.1 into (89), we abtdie following penalty-like enforcement of the
acoustically-reflecting boundary condition (47) in the retwderistic variables:

oV’

ot

I
+ srlAis‘;l)q = —c(PV' — 1980, (98)

It turns out that (98) and the penalty-like formulation (83t arose when the governing system of PDEs in the orig-
inal variables was counter-integrated by parts are eqgrvdProposition 3.2.2). We emphasize that bothspeific
penalty formulations in which the “penalty parameter” oniethstability depends ifixed Although the penalty for-
mulation presented here is motivated by classical penadthats, the fact that stability is guaranteed only for alsing
value of the penalty parameter, rather than a range, disshgs this approach from a “true” penalty method, in which
the one typically sendg — o, reasoning that ag gets large, the constraints (in this case, the boundaryitons)

are better and better enforced.

Proposition 3.2.2. Supposel, = 0 and g = 0. If the acoustically-reflecting boundary conditi¢47) is to be en-
forced ondQp, the stable penalty formulatiaf®8) in the characteristic variablesMs equivalent to the penalty-like
formulation(83) that arises when counter-integrating the linearized Ewdguations in the original variables' dpy
parts.

Proof. Rewritten in the characteristic variables, (83) is simply
oV’ 1. OV

If the acoustically-reflecting boundary condition is apglondQp, substitutingv given in (53),

0 0 0
0 0 0
ANV =) = 0 0 =—c 0 (100)
c 0 0
—C Ve =V, +2uy Ve =V, +2uy

Now, turning to the left-hand-side of (98),

—c(PV' —h%) =—c (101)

[oNeoNoNe)

-V, + Vi +2u,
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Comparing the right-hand-side of (100) with the right-hasde of (101), we see that they are the same and that both
are enforcing the acoustically-reflecting boundary caoadif =V, — 2uy. O

Proposition 3.2.2 addresses the potential issue notedrimaRe7: while the penalty-like matrix A, in (83) is
neither diagonal nor positive definite, the matrix that gl#tye role of—A, when the penalty enforcement is done in
the characteristic variablés. Indeed, one should not expect the penalty-like matrix andhiginal variables to be
diagonal or positive definite since the boundary condit®nding imposed in the characteristic variables.

4 Implementation of the Solid Wall Boundary Condition in the Fluid ROM

Having selected a boundary condition to be used at the s@ltheundary, namely the acoustically-reflecting
boundary condition (47), let us now express this conditioterms of the ROM coefficients and basis functions. We
do this by applying Algorithm 1: projecting the linearizedlgr equations (3) onto a POD mogg integrating the
spatial term by parts, and applying the boundary conditiché boundary integral that arises. From (44), the integral
of interest is

Ip = / G HAdS= / G HSAV/dS (102)
0Qp oQp
Assume as we usual that = 0. From (67) and using the fact thé = uy, + %p’,

pcm (U —Up) +nyp’
pCnp(Up — Up) + npp’

HSAV' = | pcmg(up, — up) +ngp/ (103)
0
U
so that, denoting
gojn = qojlnl + §0j2n2 + qoj3n3 (104)
we have 3
@THSAV' = peg(u) — up) + P + upe? (105)

Inserting the modal representationsght= zk'\":lak(t)qq( into (105) leads to the following term appearing in &
ROM equation:

M
Ip = t NP ‘"ds] Y — pcoMu dS 106
P k;ak( ) {/{}QP o' (@ +pcy)dS| + /mp(fp, pcy;)uy (106)

(106) is the analog of (46) but for the acoustically-refiegtboundary condition (47). Expression (106) is differ-
ent from (46), the expression arrived at in [17] for the novgteation boundary condition (41) we had earlier. The
following table compares the expressions that arise. Heyés defined such that

Ip, = /5 fp,dS (107)
Qp

Solid Wall Boundary Condition | Expression forfp, in terms ofg andd’
Old no penetration BC (41) el +u@
New acoustically-reflecting BC (47) pc@ (U —up) + p'el + ugqoj5
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Note that the expression fdg; arising from the new acoustically-reflecting boundary dbad is the same as the
expression arising from the no-penetration boundary demsd earlier except with an additional penalty-like term:
pc(uy, —up). As up — ug, on dQp, the new boundary condition converges to the old. Yet agepenalty-like formu-
lation hidden in the acoustically-reflecting boundary dtiod is revealed. Note that the “penalty” teqfuy, — up) is
multiplied byc, which is precisely the value of the penalty parameter éerim Theorem 3.2.1 to guarantee a stable
enforcement o¥/, =V, — 2uj,.

Remark 8:It is worth pointing out that (106) is not the only possiblgesssion for the boundary integia| with the
enforcement of the acoustically-reflecting boundary ctouli(47); it is the expression arising from a weak “f8P

+ boundary integral substitution” implementation (Algbrin 1). The boundary condition can be implemented in
other ways. For instance, one could start with equation §88)project it onto the POD modg without doing any
integrations by parts. Then the integrafpdwould be(pjTAn(Q’ —qp) (instead ofqojT HALT) which, when expressed in
terms of the ROM coefficients and basis functions, woulddysal expression different from (106). We emphasize that
despite this difference, the same boundary condition, ha@), is being enforced in both of these implementations.
In other words, the total amount of information containethia starting equations (3) is retained; the difference is in
how it is distributed amongst the boundary and volume irglsghat arise in the projection step.

5 Coupled Fluid/Structure System

Recall from Sections 3 and 4 of [17] that teeomponent of the displacement of the plate is governed by th
following linearized von Karman equation:

(psh) ] + Dpend0*n) = g (108)

Here,g is the fluid pressure loadings is the density of the plate materiéiljs the thickness of the plate, abgenqis
the bending stiffneds.

Expanding the-displacemeng in its orthonormal, scalar ROM basf§y(x,y) : k=1,2,...,P}, substituting this
expansion into (108), one arrives at the following set of R&tMicture equations

(psh) bk + wEby = Gi(t) (109)
where
@ = Doend 0*&, &)12(00s) (110)
Gk(t) = (9: &) 2(a0p) (111)
g(x.y;t) = —p (xy,0,1) Z a(t) @ (x,y,0) (112)

Everything on the structure side is exactly as derived if.[D&noting
S'=(byt) -+ bpt) bit) -~ bp(t) ) eR® (113)

Fl=(at) - au(t))eRrM (114)

(110) gives rise to the following matrix system:

S=CF+DS (115)

18|ntegration by parts.
19Refer to Section A of [17] for the relation 0Dpengto Young's modulus, Poisson’s ratio, etc.

19



where

Opxm Opm
C= _pTlh (‘PLSvEl)LZ(an) _ﬁ (‘/Tavfl)u(mp) ol (116)
: _ : &,
. " : psh =PxM
—ﬁ (4"15’ EP)LZ(BQP) _% ("ﬁlvfp)u(mp)
Opxp Ipxp Opxp ‘ Ipxp
D=| -5 (0" &)2pa, O - .
: . ] : Op.p —%prp Opxp
0 S M GRS (117)

Similarly expanding the fluid equations in the orthonormattor fluid ROM basi§ @(x) : k=1,2,...,M} yields the
system .
F =AF+BS (118)

The entries of thé& andB matrices depend on the boundary conditiong@p» anddQr. They are

. . a .
Al ) :AW(I,J)—/ hj(m)d8+/ — (T HA)JdQ, 1<ij<M (119)
0QF Q 0%
[0 1<i<M, 1<j<P
B("”‘{ Bu(i,j), 1<i<M, (P+1)<j<2pP (120)
with
Old no-penetration BC (41) New acoustically-reflecting BC (47)
Au(i J) — Jog, A'dS — Joge @'(@7 + pog)dS
Buw(i, ) Joce &j—pgpdS Joce &i—p(@ — pog)ds

andh; (@) determined by the far-field boundary conditi8hsThe coupled fluid/structure system is therefore

F A B F
(5)-(c8)(5) =
Here,B andC are the coupling matrices, which are also the matrices oalwthe stability of the coupled fluid/structure
system depends.

5.1 Failure of Prior Energy Matrix Stability Analysis for Co upled System with New Acoustically-
Reflecting Boundary Condition

Of particular interest is the stability of the coupled flgigiicture system (121). Recall that stability was shown
under the old no-penetration boundary condition (41) agsgimiq = 0, u, = 0, u = 0 in [17] using energy matrices:
energy matrice&a andEp for A andD respectively were exhibited such tH&gB + (EpC)T = 0; stability followed
from Theorem 3.4 in [26]. Under the old condition (41), it was easy to defiixeandEp such thaEaB + (EDC)T =0,

20See Section 3.13 in [17].
21Restated in Section 9.10.2 of the Appendix for convenience.
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since the entries @ were negated multiples of the entriesbf

(‘PLSvEl)LZ(an) (qxf,fp)Lz(mp)

Bold = OMxp : f = ( Owxp [ Ghep ) (122)

(ﬁqaagl)LZ(an) (‘lﬁlvfp)@(mp)

Opxm

C= _pT%(@afl)LZ(aQw _ﬁ(‘/ﬁlvfl)u(mp) ol (123)

- % (4015, EP) L2(9Qp) e T ﬁ (4‘431 J EP)LZ(BQP)

The relatively simple choice of the diagonal matrices

Lexp | Opxp ) (124)

EA: IMXM7 ED = ( 0P><P | (psh)IPxP

“worked”; that is, the matrice€a andEp in (124) were energy matrices fér and D respectively and satisfied
EaB+ (EpC)T =0.

Unfortunately, things are not as simple for the new acoalifigeflecting boundary condition. Now,

- (ﬁC(p_[', El)LZ(@QP> + (¢fa El) L209p) T (ﬁC(pf, EP)LZ(gQP> + (4015, EP) L2(0Qp)

B=Bnew = Omxp

- (ECQQ,fl)Lz(@QP) + (mafl) L2oop) T (EC(AQ’EP)LZ(BQP) + ((qa ) EP) L2(0Qp)

E( Omxp | _él\-l;le_Fé&xP )
(125)

TheC matrix remains the same (123) since the structure equaiwhfuid pressure loading are not altered. However,
sinceB contains the additionai,\T,,Xp submatrix whose components do not appear anywhere i@ thatrix, defining
the relevant energy matrices so as to apply Theorem 3.4 Jnqd28&ther difficult. It turns out that any matricég and

Ep satisfyingEaB+ (EpC)" = 0 arenotenergy matrices foh andD respectively; in other words, it seems impossible
to specify an energy matria for A and an energy matrigp for D such thaEaB+ (EpC)" = 0 also holds. Note that
Theorem 3.4 in [20] is a sufficient babta necessary condition for stability. One therefore seekdtamate analysis
tool to attempt to try to prove stability of the new coupledtgyn (121).

5.2 Stability of Structure Equations

Before studying the stability of the coupled system (12} needs to make sure the fluid-only and structure-only
systemgF = AF andS= CSrespectively) are stable. Stability of the fluid equationder both condition (41) and
(47) was shown in Section 3 (Theorem 2.5.1). For the sakgof,nve formally prove stability of the structure system.

Theorem 5.2.1. The von Karman equations governing the z-displacemenegiltite(10) are stable.
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Proof. As before, it is sufficient to show stability fgr= 0, which will imply stability for allg # 0 by Section 9.10 of
the Appendix. Dividing both sides of (108) Im¢h and settingy = 0, thez-displacement equation is

Dbend 4
+ —(O 0 126
n oh (0%n) = (126)
Let o
_(n _ by
(7). kzl(bk)sk 127)
Then (126) can be written as
. 0 -1
r+ < Dg:ﬁdDA 0 ) r=0 (128)
=G
or, substituting < rp and projecting ontdy,
by 0 -1 < by )
K)o : =0 129
< by ) ( %’(Ekﬂ%k)u(mp) 0 ) bk (129)
=Gy

Now, the rate of change in energy of the solid-only system is

3&lIrel 220, = 3 JoguTpredS
—1d
T 2dt

fan{Zk—12| 186 &) 2000 ( b by )< E: )}ds
' b
%dgfz?Qp{ZK—lzl 10a ( bc by )< b: )}ds
' b
%%fmp{zs—l( b by ) K

< b ) § 95 (130)
. (b
Joap Tiea (b by )( BE )dS
1

) 0
=1 (b bk)< A O)(Ei )dS
N———

7Gk

(using thatoqf = Dpend(ék; D4Ek)|_z(mp)). The Lyapunov condition for stability (see Section 9.1id.8he Appendix)
is that the real parts of the eigenvalues of the matr{ce€y : k = 1,2,...,P} be non-positive. The eigenvalues of

these matrices are —;’E i\/ “’El smcewk > 0 for all k, andps,h > 0 (recall thath is the thickness of the plate

andps is the density of the plate materlal). Since the eigenvadwesll pure imaginary or 0, the Lyapunov condition
holds, implying the last line of (130) is 0, as desired. It follows that the structure system is stable O

5.3 Stability of New Coupled System with Perturbed Fluid Pressure Loading

5.3.1 Possible Stability wherg = —p/
The task of showing stability of the coupled fluid/structsystem (121) under the new acoustically-reflecting

boundary (47) condition turns out to be a challenging one dplication of classical methods for showing stability
leads to an inconclusive result: the sufficient conditiasrsstability fail, meaning the system could be stable; but it

22



could also be unstable. Recalling the definitiorgfyfin Section 25 andrp in (127), define the total energy of the
coupled system as

1 T iH 0 O
£ = 300+ 5112 00, = ( o rp>( 0 %.Z%P)(rp (130)

Remark 9:(131) includes the coupling terms onlyuf,g # 0. One should be careful in applying the definitions of
stability in Section 9.10 of the Appendix to a coupled sysserch as (131). Naively setting andg to 0 per Definition
2.11in [14] and bounding would not show stability of the coupled system, since the couplingigained precisely
in u, andg.

First, suppose the functiapis the pressure loading, so that= —py, on dQp. Sinceu; is the total derivative
of the plate’s displacement, in the case when the plate hasa@ro displacement only in thredirection andi = 0,
one has thafj = —up so thatr " = ( n —uj ). Then, from the earlier analysis of the fluid and structusteys in
isolation, (lettinge] =( 0 1))

9 80kl By + 3800 o
= Joae pC%M—(pC%M Pl ) rB€z] dS+ fyq, 1F(~Gre— Pye2)dS
= 50 (—pCLﬁM) & —r5Grp— rppcaneg} ds

= % (Eﬂwd only) at (Estructure onIQ + faQP PCL(LM ude

(132)

Remark 10By Section 9.10 of the Appendix, a sufficient condition fatstity is that% < 0. Actually, in the case of

a coupled system such as (12%% < 0is also anecessarygondition for stability despite Definition 2.11 in [14] (see
Section 9.10 of the Appendix). This is because the couplédi$imucture equations describe a net, isolatbysical
system, whose energy cannot increase unless energy isqagiptied from an outside source, which it is not.

(132) implies that if there is a “stability margin” in the ftltonly and/or structure-only systems (that isg—tiQEﬂuid only) <
0 and/or% (Estructure only < 0), the coupled system can still be stable as long as

_ d d
/ﬁQp PCU;LM Ui)d S< - dat (Efivid only) dt — (Estructure onl)) (133)

Itwas shown in Theorem 2.5.1 that thésé@ fact a stability margin in the fluid-only system under ttewacoustically-
reflecting boundary condition, a stability margin that wed available under the old no-penetration boundary con-
dition. This observation suggests that the coupled fluigdéstire system witlg = —p’ could be stable, especially
since one could prove stability for the coupled systemrgifiom the application of the old no-penetration boundary
condition despite the fact that it lacked a stability marddecause one does not in general know the magnitude of the
term on the left-hand-side of (133), however, one is unabfEdve a general stability result for the new acoustically-
reflecting boundary condition at this time without makinglgidnal assumptions.

5.3.2 Stability wheng = —p'+ &/(up \y — Up)

It turns out that ittanbe shown tha% < 0, which implies stability for the coupled fluid/structunestem (121),
if a perturbed fluid pressure loading
g=—pu+O(Upm—Up) on 9Qp (134)
is assumed. This assumption is quite reasonable in practiee’ (uy,, — u,) term can be viewed as the numerical
error. Indeed, due to finite precision arithmetic, even & enshes to enforcg = —pj, on dQp, in implementations,
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one will only be able to enforcg = —py, + €, wheree is some numerical or round-off error. Since one expects
%,M — Uy, 0N 9Qp, 9= —py + O (U — Uy) = —Piy, With |g— (—py)| — 0 asM, the number of POD snapshots,
increases.

Remark 11:Just how quicklyy, y converges tay, on dQp is precisely the convergence rate|fof, \, — uy|| on 9Qp.

The discovery that stability of the coupled fluid/structagstem can be shown assuming a perturbed fluid pressure
load thus. leads naturally to an attempt to quantify the gftass — ug||, or more generallyjq’ — q;||, the topic of the

next section.

Theorem 5.3.1. Assumai, = 0, Jq = 0 and we enforce the acoustically-reflecting boundary coodifd7) on 0Qp.
Suppose the fluid pressure loading is-g- py; + K(up, y — U) ondQp, with K= —pc. Then‘gj—'tE < 0 (with ‘é—'f defined
in (132), so that the coupled fluid/structure systétal)is stable.

Proof. First, observe that
—peuly = —PC(Upy — Up)® — 20CU(Up y — Up) — PCUS (135)
With the new structure loading and using this relation, Braf (132) is
9 = Joaw | ~PC(Up — Up)% — 200U (U — Up) — PeUZ — (et — Py ) rhe2| dS
+ Jooe r;(_GrP + [= Py + K(Uuym — Up)le2)dS
= Ja0p __EC(UE,M —up)?— 2pCup(Up y — Up) — peu? — pCU, U — reGrp— K(upm — Uﬁ;)uﬁ} dS  (136)
= foap | ~TFGIp = PC(Uy 1 — Up)? = 2PCU (U g — Up) + PCU Uy — Uh) — K (U — U | A

— Jage | ~TRGIP — P0(Up — Up)? — Pt (Uyyy — Up) — K (U — Up | dS

If K = —pc, theuy(uy, y — up,) terms cancel. Then

d_ItE = fﬁQP {—FEGrp — ﬁc(uhM _ Ug)z} ds
= % (Estructure only — fde ﬁc(u’n!M — Ui))zdS (137)
<0
provided the structure-only system is stable, which it iShgorem 5.2.1. 0

6 Error Estimation and Convergence Analysis

Error quantification and convergence analysis of Reducegivodels has yet to be placed on firm mathemat-
ical footing. Some attempts have been made in [6], [18] a2{l [@ne difficulty in quantifying the error in a ROM
is that the span of the POD basis is not complete#iiQ), the Hilbert space to which the exact solution belongs. It
is only complete in amveragesense: since the POD basis contains only information of ienkatics of the flow
field that were already encoded in the observations, it daba@xpected to contain all the features present in the
exact analytical solution. Given the fact that a ROM is dedifrom another numerical solution, namely the full
CFD solution, it is most natural to define the error in the RCdvttee difference between the ROM solution and the
CFD solution. One may then try to bound this error as a funcifiM, the number of POD modes retained in the ROM.

Remark 12:Note that the POD/Galerkin approach used in constructiadr@M discussed herein differs from clas-
sical POD/Galerkin methods. In most reduced order modelstitiize the POD/Galerkin approach, tbiescretized
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equations are projected onto the POD modes. Our approaskstoaf two steps: calculation of a reduced basis using
the POD of an ensemble of flow field realizations, followed lyaderkin projection of the governing system of PDEs
onto the reduced basis (a la (43)). In particular, we ptdfeecontinuoudinearized Euler equations (3) onto the POD
modes, substituting the POD expansions into the arisiregiats (Algorithm 1 and Section#) One should therefore
be careful in applying error estimates derived in other 8pekg., [22], as the derivations do not carry over directly
due to this fundamental difference in the projection stefnefROM.

In this section, we derive bounds for the error in the ROM 8oty ||gy, — d[|(+,), adapting procedures presented
in [10], [18] and [22]. These estimates show that the ROMtsatuwill not blow up in finite time, which is yet another
stability result.

6.1 Mathematical Preliminaries

In the upcoming error analysis, the following three solnsiobelonging to the following three spaces, are of

interest:
Exact solutionto (151): ¢/ (x,t)€ ¥ C R®

Computed CFD solution : gj,(x,t) € yh c RS (138)
Computed ROM solution : gjy(x,t) € M c VM c R®

Here,»M c " c ¥ c R® are vector spaces. Defining an inner product on each of tipeses turns the space into
a Hilbert space. One can define more than one inner produtiese spaces, and it turns out that two inner products
are of particular interest to us: farv e 7/,

(UV).0) = /Q u"HvdQ (139)

2 1 /T
(W) = (@Vna) =5 | @vFqdt (140)

(140) is a continuous time-average of (140) (averagingddenoted by-)). Each inner product induces a norm:
[[V[|> = (v,v). It was shown in [2] that the norm induced by (139) is indeedldvnorm,H being positive definite.
For the sake of rigor, let us prove that the inner product YD induces a valid norm.

Lemma 6.1.1. Let ve ¥. Then the inner produd¢iLl40)induces the so-called time-averaggd, Q)-norm, given by

1 T
avg _
M =\ T [ 1M gt (141)

(141)defines a valid norm otf’, turning the space into the Hilbert space denoted/#4(Q).

Proof. To show that (141) defines a norm, we check the following naximras (homogeneity, positive definiteness
and triangle inequality). We make use of the fact thalj o) is known to be a norm, and hence satisfies all three
norm axioms.

1. Homogeneity: led € R. Then

avg 2 T 2 21 T 2 2 avg 2
(lavifes))” = [ lavifgydt=a25 [ VI dt=a® (IMIE%,) (142)
from which it follows tha|avi[§:%, = lall[VI[}ig)-

22There are two main reasons for projecting the continuousiteans to build a ROM: doing so enables one to construct desROM for
any approximation basis, and the ROM-building machineny loa implemented independent of the CFD simulation code, i@ mon-intrusive
approach. Refer to [2], [3] and [4].
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2. Positive definiteness: that is, we would like to show tM( > 0 with ||v||a"g =0ifandonlyifv=0

This clearly follows from the positive definiteness|pfl|y q)-

Q) =

3. Triangle inequality: Let,u € ¥. Then

1/2
R = (30 v+ Ul g dt)
1/2
<(3+7 ||v||HQ+||u||HQ) “at) (143)
1/2 T 2 1/2
< (445 VB 2 + (315 11Uy gy t)
~ M+

To go from the second to the third line of (143), one appliesNtinkowski inequality withp = 2 (see Section
9.3 in the Appendix).

Since (141) satisfies the three norm axioms, it is indeed i oory”. O

avg

We will call || - [ o) the “(H,Q)-norm”, and|| -|[1%,, the “time-averagedH, Q)- -norm”?3,

Let us now define the following inflnlte-d|menS|0naI Hilbspaces, obtained by specifying an inner producton
Hilbert Space| Vector Space + Inner Product

A(Q) v () 0)
«%’fa\vg(Q) 4 (" ')(H?Q)

and similarly for the subspaces” and 7™M (that is, for example#"(Q) is the Hilbert space defined by equipping
the vector space" with the inner produc(-, J(H,Q); ji’g'\‘,g(Q) is the Hilbert space defined by equipping the vector

spacey " with the inner product:,-)2" (H Q))

6.1.1 Proper Orthogonal Decomposition (POD) and the Methodf Snapshots

The Proper Orthogonal Decomposition (POD) is a mathemgpicecedure that, given an ensemble of data,
constructs a basis for that ensemble that is optimal in a-deflhed sengé. Let {@ € #":i=1,2,...,N} be a
basis for?" (assuming dirt™ = N). POD seeks aM-dimensional 1 << N) subspace#" spanned by the set
{@evM":i=1,2,...,M} such that the total square distance betwejeand its orthogonal projection ontgM is
minimized,; that is, it seeks the spfi } solves the following constrained optimization problemmy&yg(Q):

2
; / avg
ming g (116h— Ml 5, ) (14
subjectto  (@,¢)na) &,,1§|§M1§j§i

Here, My : R> — M is an orthogonal projection operatdronto the subspacg™. By definition, My has the
following properties:

1. Forallue ¥, Mu(Mnu) = Myu [that is,My isidempoterit

2. Forallu,ve 7, My(u+v) = Nyu-+MNyv [that is, My is linear].

3. ||Mm|| =1 for any norm|| - || on ¥’ [a consequence 1. above].

23Note that]| - H?;QQ as defined in (141) is eontinuoustime-average. In reality, one is likely to have the discietalog of averaged norm; see
Remark 13.

24Refer to Chapter 3 of [16] for an in depth overview of POD.

25Note thatfy can project from either of the spacsor ¥"; we therefore write the domain &, as this larger space contains batrand ¥ .
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4. Forallue 7, W =Mwm (%) [thatis,My is a spatial-only operator, so time-differentiation contesuwith
projection].

5. Forallve M, Myv=v.
6. Forallve (#M)L, Myv =0 [here(¥»M)+ denotes the subspace orthogonattd].

Itis a well-known resultdf. [2], [16], [18] and [22]) that the solution to (144) reducesan eigenvalue problem:
ZPp=A¢@ (145)

where
2= (h(%h, @) (H.0)) (146)

The operato#Z is self-adjoint and non-negative definite. If one furthesuases thatZ is compact, then there exists
a countable set of non-negative eigenvaldewith associated eigenfunctiogs These eigenfunctions form an or-
thonormal subspace o#ay4(Q), namelyjfg'\\f'g(Q). In the context of the ROM, the natural definition of the potien

operatoy : R® — #Mis: forq € ¥
M

Mud =5 (@) g & (147)
K=1 ’
LettingA; < --- <Am < --- < Ay be the ordered eigenvalues#t the minimum value of the objective function
in (144) over allM dimensional subspacesM is Z’J-\‘:MH/\J-, thatis, adN — oo

N
lloh — MMtk () = A (148)
j=M+1

The set ofM eigenfunctiong @ : i =1,2,...,M} corresponding to th& largest eigenvalues o is precisely the
set of{@} that solves (144). Note that it is constrained to be orthom@in the(H,Q)-norm. As mentioned at the
beginning of Section 6, we emphasize that the POD basistisomplete in#ay(Q). It is, however, complete in the
sense that, on average, any snapshot used to construcbi¢ capresented, that in’ =3, @) 0@ \ \?;?Q) =0.

Remark 13:Note that in the derivations presented herein, we have ass$tinat the norm ows,4(Q) is computed
as acontinuoudime average (141). In actual ROM computations, one willehawiscrete analog of this continuous

norm:
avg 1 N ) N
IMlo) =1/ 5 2 IVl ) = Aj (149)
LR j:%Jrl J

whereN is the total number of snapshots. Since

im LS vet)2y 0 = £ [ 2 od 150
N@mﬁi;HV('atl)H(H,Q)—f/o V(- D[ g dt (150)

technically the results of Section 6.3 below are technyoadlid in the limit asN — o; see also Remark 15.

In preparation for the upcoming convergence analysisslstimmarize the key equations that each of the solutions
q’, o, anday, in (138) are assumed to satisfy.
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6.1.2 The Exact Solutiong/

The exact solutionf € ¥ is the solution satisfying

/
a -a—q:O, XeQ, 0<t<T
I%;
o (151)

qd—q,=0, XeoQp, 0<t<T
q(x,0)=f(x), xeQ

Heref : Q — R is a given function and;, = S\{,, whereV} is the vector defining the plate boundary condition in the
characteristic variables (see (53) and (55)Mpandgqj, respectively for the acoustically-reflecting boundarydition
(47) considered here)? is a linear, spatial differential operator.

6.1.3 The CFD Solutiongj,

The CFD solutior,(x,t) € 7" c R% in (138) is piecewise continuous in space and in time. In th@erical
implementation, the CFD solutiagj, will actually be semi-discrete: it is discrete in sp#eand continuous in time.
Discretizing the domai® into n grid-points and denoting the CFD solution at tHegrid-point asgy,(xi,t), the CFD
solution vector (containing values of the solution at eafcthen grid-points) at time is then

qf‘\(xlvt)
ah(t) = : (152)
qfq(xnvt)

In the current implementation, the CFD data are represexsti@iecewise linear fields and the vector (152) belongs to
the finite element space of linear tetrahedral elemep($) satisfies a linear dynamical system of the form

dn’ = Agp+u (153)

whereA is a ; x 5n matrix andu is a ;-vector.

6.1.4 The ROM Solutiongy,

The analysis in Section 6.2, motivated primarily by [10ju@es an equation far,, € ™M, the computed ROM
solution. We will say thaty, satisfies the following IBVP with a penalty-type correcttrthe plate boundary:

%“\'% = —T[0y — )00, X€QUAIQP, O<t<T

O (x,0) = f(x), xeQ (154)

Here,I is a penalty-like matrix specified such that (154) is staBlecall that this matriX was determined in Section
3.1to be—A,. In the subsequent analysis, we will make use of this resettingl” = —A, in (154).

26Discretized by a finite element representation.
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6.2 Error Estimates in the Hilbert Space.7#(Q)

We first bound the error in théH,Q)-norm, that is, viewing the solutiog’ as belonging to the Hilbert space
2(Q). Our ultimate goal is to relate the error in the ROM solutifdq, — dy || 4,0), to bounded quantities such as
o, — Mmdy| 1,0y @and||d’ — o[ |(H,@) for which one can obtain some kind of numerical estimates.

The upshot to selecting thHél, Q)-norm over the time-averageéti, Q)-norm is that the resulting error bound is

valid for any timet € [0, T] rather than in an average sense. The downside is that theityu, — Mmay||+,0) iS

unknown, whereafq, — HM%”%?Q) is given by (148) above. In Section 6.3, we will derive the sasror bound,

except in the other Hilbert spacﬁé%vg(Q) using the time-averagé€tt , Q)-norm so as to make use of (148).

Letq € ¥ andgy, € M. DenoteE = Nud — g}y, wherely : R® — 7'M is an orthogonal projection operator
satisfying properties 1-6 listed in Section 6.1.1. Apptyimy, to (151) gives
WD AU Iy (AL ) -AZGD] 0, xeQ,  0<t<T
Mu(q —ay) =0, XxcdQp, 0<t<T (155)
Mg (x,0) = My £ (x), xeQ

Now, subtracting (154) from (155), one has that
e +AGE + Wi = AdE — Ep|dyq,, X€QUIQp, 0<t<T

156
E(x,0) =Mu f(x) — f(x), xeQ (156)
whereE, = My, — g, and
_ aq o(Nuq)
W =My (A.a—xi) Ak (157)

Using the shorthand defined in (16) and applying the intémraty parts “trick’2’ with uniform base flow to go from
line 4 to line 5,

%%HEH(ZH,Q) :%%(EvE)(H,Q)
= (E,BE)h.0)
_ . 0E T T
-—( TK+W,E)(H,Q)+/MPE HAEdS— [30, ETHAGEAS
= — JoETHASEdQ — (W,E) 14 ) + fyqp ETHAEAS— [y, ETHAE,dS (158)
T .
=1/ ‘”Eai';A'E)dQ — (W,E)H.0) + Jygp ETHAEAS— [50, ETHAE,AS

=1 _fﬁ%P ETHAEAS— (W,E)1.0) + [y, ETHAEAS— [5o, ETHAGELDS
= Jaqe ETHA (3E—Ep) dS— (W,E) (.0

In order to proceed, let us examine further the first term énldist line of (158). Expanding out this integral using
the definitionsE = MNuq — qy, andEp = Mua, — o,

Jagp ETHAN (3E —Ep)dS = [50,(NMud —diy)THA, (3Mmd’ — 304 — Mwd, + o) dS
= Jage {3(Mmd) THAMMY — 3 (Mmd)THAWGY — (Md) "HAG(MMd)) + (Mwd’) THAGG
—3 (o) "HAGMMG + 5 (o) "HARGY + (i) THAWMMA, — (o) THAGG, } S
= Jaae {3(Mmd)THANMMY — (Mwd)THAGGY — (M) THAG(Mway) + (Mwd’) THAGGE
+3(ah) THAGGY, + (afy) THAMMaE — (dhy) THAGG, } dS

(159)
Denote
U un
/ \/M / \/rl
v = \A/M , Mug = \N,I'I (160)
T 4
P Ph

27See section 9.1 of the Appendix.
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Recall from (55), (67) and (70) that

Cy (Un v — Up) + NPy pem(Uy v — Up) +N1py 1Py
Cp (U — Up) + N1 Py PCNR (U — Up) + 2Py N2 Py
Oh=| Crs(Upm—Up)+mpy |, HAWp=| pcrg(upy —up)+nspy |, HAGw = [ nspy [ (161)
_ ZUE, 0 0
ypY, Uy, Unm

Sincely is linear (by property 2 in Section 6.1.1), for any index 1,...,5, [Muay] (i) = [o,(i)]n (hered/(i) denotes
theit" component off). Then

1

5(Mud)THAMMY = Uy Py (162)
—(Mmd)THAGY = —Uhn Py — PRt (163)
—(Mmd) THA(MmG,) = —PC(Un [ — Up)Uh 1 — Un PR — PRp (164)
(Mmd')THAKG, = PC(Up v — Up)Un  + U n Py + PRUp (165)

1
i(quHAanw = Uy mPum (166)
(o) T HAWMMG, = PC(Un n — Ub) U + Unm P + UpP (167)
—(O) THANG, = —PC(Un v — Up) U v — Un v P — Up P (168)

Summing (162)-(168) and substituting this value into thegnand of (159) gives
1 o
Jogp Jogp

By Young’s inequality® with £ = 1,

2Upmn < (UE,M)Z‘F (U/n,rl)2 (170)
Substituting this bound into (169), we have that
1 _
[ ETHA, (EE - Eb) ds< /d o Pe[=(Unn)® = (Uhm) + (Uhw) + (Uhn)?] dS=0 (171)
P P

(171) implies that the first term in the last line of (158) candmitted, that is,

d
GilElfuq) < —2W.E)ma) (172)

Continuing the analysis, note that, for any inner product,

(U+V,u+V) = (u,u) +2(u,v) + (%, V) = | [u]|2 + 2(u,v) + ||v[[2 > 0 (173)
or
—2(u,v) < [Jul[?+ M2 (174)
Applying this fact to (172), we have that
d
aHEH(ZH,Q) < Elff0) + W[ ) (175)
By Gronwall's Lemma&®,
ECTIR g <€TIECO)R, o)+ Ja WD, gt (176)

28See Section 9.4 of the Appendix.
29See Section 9.5 of the Appendix.
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From (157),

Wlo) = HM(N%)—A 20ud) A.§2+A. HHQ
=[N (2of $q||HQ+HAM ) o a77)
= ([0 (5) = |y 12 Ol = Dl

= & IMud —dllnq) +||$(|'|Mq ~Dllna)

Before proceeding, let us say a few things about the secomdtethe last line of (177) that involves the norm of
the differential operata defined in (151).

6.2.1 Norms Involving the Differential Operator .Z ()

Let #1(Q) be the Sobolev space that results when the vector spaiseequipped with the norr - lam.0)
defined by: for &! functionv € #1(Q),

ov

% (178)

Q)

We will refer to this norm as the “Soboléid, Q)-norm” (to distinguish it fronﬂ Il(h,q), the “Hilbert(H, Q)-norm”).
Now

L2~ @)y < MaXe oz AR ) 52 || (el — )| o
=K (gl =141 ) — 1Ml — 124 ) 79)
< K|IMmg — | Py g
whereK = maxjc(1 231 ||A] ||(2H)Q)30
One can also bound? (Mudq' — q')||(H,q) Using the sub-multiplicativity property of tHgi, Q)-norm:
112 (Mg — d)ln,0) < 1Ll H,0) MMA = dl|H.0) (180)
The norm ofZ in the (H,Q)-norm can be related to the norm of Dy ¢ = aq forg € 27(Q),
12d|e =A%, o
- HHl/ZA‘_ L2(Q) (181)
< IIHY21 o g M2 |G g
< ||H||L2(Q)||Al|||_2(Q) ||D><.q |||_2
so that an estimate OfZ || q) is
1 .0) < M1y 1Az 1Dz (182)

(note the implied summation on tite in (182)). It follows that, if one can obtain an estimatetioé L> norm of the
differential operatobDy, = aixi* one can use (182) to estimate i Q)-norm of . in (180)2.

30See Section 9.6 of the Appendix for a definition of the operatwms of theA, matrices.
31For inequalities involving Sobolev and norms, refer to Chapter 6 of [9].
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Given the discussion on how to define norms of expressiorvimg .Z, (177) can be bounded in two ways,
depending on whether or not one wishes to use the Sobolev ol o)

S MM =l ) + 120 1(Mmd = )l 4q)  (if using Hilbert(H, Q)-norm)

W < . . 183
] ”(H‘Q)—{ %||I'|Mq’—q/||(H,Q)+K1/2||ﬂMq/—Q’II(1;H,Q) (if using SoboleyH, Q)-norm) (183)

Here,K = maxc (153 |A2, o)-

We are now ready to state and prove the following lemma, wiikets a bound ofj (0 —ay) (-, T)||,0) In 2 (Q).

Lemma 6.2.1. Let d € »#(Q) satisfy(151)and d, € #M(Q) satisfy(154) LetMy : R> — »M be an orthogonal
projection operator satisfying properties 1-6 of Sectioh., and let E= NMuq — qy,. Then

1 8
1T = a) D) <€ TNECO) .0y +2[1(Mmd =) T)llg) +Jo [12(Md — )|yt (184)

where - .
||.$||(H)Q)||I'IMq’—q/||<H’Q) (if using Hilbert(H,Q)-norm)

/ /
12 Md =)l .0 < { K1/2|||'|Mq’—q’||(1;H’Q) (if using SoboleyH, Q)-norm) (185)

Here, K= maXxc 123 ||Ai||<2H’Q). The SoboleyH, Q)-norm is defined if178)and ||.Z || o) is bounded as in e.g.,
(182)

Proof. Note thaty —qj, = o — NMmd + Mud — gy = (4 — Mmd’) + E. By the triangle inequality,

(e = aw) (Dl < 1M =) Tl e +IEC TR (186)
where||E(-,T)(H,Q)||2 is bounded according to (176). From (176) and using the Fattft, f2dQ < ([, | f|dQ)? for
some integrand : Q — R,

i 1/2
ECDl e < (STIECOIR g+ fo IWE DI, o dt)
1 X 1/2
ATIECO)lloy + (JG WD)y ) (187)
1 3
€2 ||E(,0)[|m.a)+ Jo IW(1)]|.0t

IN

e

IN

Now, substituting (177) into (187),
1
IECTma) < eTIECOma + 5 (§IMud —dlipa)+ 12 (Mg — @)l g ) ot
1
<eT[[E(,0)[[m.a)+ 1(MMd = &) Dllg) + Jo 112 (Mud — )l 0 it

Substituting (188) into (186) and bounding the term invoyiZ in the chosen norm following the discussion of
Section 6.2.1 gives the desired result. O

(188)

Although Lemma 6.2.1 gives a bound for the quantity of irsgraamely the error in the ROM solutidfiq’ —
q{v,)(-,T)||(H,Q), the estimate (184) is not practically useful, as it cord@rpressions for which one does not possess
any bounds, e.gliMmd’ —d[|1,q)- It would be useful to relate this expression to quantitiet ¢anbe estimated, at
least in theory, such @ Tmay, — || (H,0) (the error between the CFD solution and the projection of¥AB solution
onto¥M) and||q — dhll(H,q) (the error in the CFD solution relative to the exact solution

Thanks to the triangle inequality, it is straight-forwacdextend Lemma 6.2.1 into the following theorem, in
which the right-hand-side of the error estimate contairlg erpressions liké|[Mmaj, — o/ |H,0). || — dill(H,0), and
IIE(+,0)||(H,q), which one should be able to estimate in some way. In thises¢he bound (189) is a “closed” expres-

sion for || (o — oy ) (- T)l|H.0)-
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Theorem 6.2.2.Let d € /7 (Q) satisfy(151)and d, € M (Q) satisfy(154) LetMy : R® — »M be an orthogonal
projection operator satisfying properties 1-6 in Sectiot., and let E= Mud — qy,. Let d, € #"(Q) be the CFD
solution. Then

1
ld —ap) (Tl <e2TIE(, )|| n.0) + 2| (g — Mvop) (- || H.O) (189)
+4|[(df —ap)( HHQ-+bIMﬂﬂMq q ”HQ
where
Lm0 [l19h —mah| 1.0 +2l1d — dhllH,g)]  (if using Hilbert (H, Q)-norm)
LMud —d <{|| (H,Q) [114h hll(H,Q) hil(H,Q) e

12 (md =)l .0) < KY2{]af, — M|l m.0) + 21 = dill.0)] (if using SoboleyH, Q)-norm)

(190)

Here, K= maxc(1 23 ||Ai||%H’Q>. The SoboleyH, Q)-norm is defined if178)and||.Z || q) is bounded as in e.g.,
(182)

Proof. Letgf, € #"(Q) be the CFD solution. By the triangle inequality,

g —wd e = ld —Nmd +a, —Nmd, — oy + Mwdhl o)
< lgh— Mmahlln,e) + 119" = bl o) + MM —ap)llH.)
< gy — MmahllH,9) (1+||”M|| Ho)d = a0
<ok — NMmaillH.0) +2||Q’—QE||(H,Q)

(using the fact thatMw |1 .o) = 1, Mm being an orthogonal projector; see Section 6.1.1 above)lylpy the triangle
inequality to (185),

Z||n. [llgh =Mkl lH.0) +2/1d = dhllm.)]  (if using Hilbert(H,Q)-norm)
G =l = K22 g~ Mudh ey + 20~ Ghllwa)] (i using SoboleyH, 0)-norm)
(192)
Substituting (191) and (192) into (184) and rearranginggif{d89). O

(191)

Remark 14:At first glance, it may appear as though tﬁ}}Hq’h— Mmahl|(H,0)dQ term in (189) is simplyi|af, —

Mmch| (%) whichis given by (148). However, thisiimtthe case, al$aj, — Mdy [ %, \/foT 1 — MmaRl 174 )00
from (140) (in particular, note the exponent in the integian

avg

6.3 Error Estimates in the Hilbert Space 7yy(Q)

Recall from Section 6.1.1 that we have at our disposal anessjon for||q}, — I'I,\,|qh||‘5“’g the norm of the

difference between, andMygj, in the Hilbert space#ayg(Q) in terms of the eigenvalues of the operatdr(146).
What more, this expression can be evaluated, as the eigesvaf#Z are computed in determining the POD basis.
We cannot use this result in bounding the error in the sp&t€) (Remark 14); however, weanuse it if we instead
bound the error iZa,y(Q).

Let us now derive the analogs of Lemma 6.2.1 and Theorem Bi 22 space’avg(Q). Since our goal is to use
the estimate (148) which involves a time-average of a HildérQ)-norm (and not the Sobole¥,Q)-norm defined
in Section 6.2.1), we will use the boufid? (Mmd' — ) |1.0) < [|-Z]lH.0)| MM —d'l|(H,q) from this point forward.

Lemma 6.3.1. Let € #ay(Q) satisfy(151)and d, € #;vy(Q) satisfy(154) LetMy : R> — #M be an orthogonal
projection operator satisfying properties 1-6 in Sectioh.®, and let E= Nuq — qy. Then

1/2
I~ G T < (€ DVECOlla + [1+ (14 12lmar + T ug) | I = )Tl
(193)
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Proof. As before, sincef —qy =d —MNud +MNudq —ay = (4 —MNmd’) + E, by the triangle inequality,
1 = aw) (D) < (MM = d) (TG +IEC TG, (194)

Where||E(-,T)(H,Q)||2 is bounded according to (176). From (176),

av /
IECTIES, = (405 IEC DI, g 1)
T 1/2
S{%foT(eTIIE(-,O)IIZ I IWC )|y g ) dT} (195)

:{%(GT—l)HE( )|| otT ]0 Jo IIW(-,t )||€H,Q>dtdr}l/2

From (177),

2
.fOTHW('vt)H(ZH,Q)dt <l (% MM = | .0) + -2 H.a) ||an’_q/||(H,Q)) dt
2
= for{(% ||an/_q/||(H,Q)) +1Z o) % ||an/_q/||(2H,Q)+||$||%H,Q)||an/_q/||2}dt

< (15 & Mgy - ¥l 0t) 4112 [l — ) D1 oy 112113 S5 M — |l
<11l =)Dy + 1200 0 11wl = &) ) + 12034 ) 5 1Ml — el
(196)
so that
LIS I IWCOIR gtar < 3 5 {1+ 1201 ) 11T = o)1) ) + 121 o) J3 1l (Ml — ) (0] Pt} de
< (141120 ma) + TILIR, 0)) # 15 11 =) )1 ) 0T

L2l + T2 By ) (11— TS )
(197)
Substituting (197) into (195) gives

1/2
IEC, DI S{%(eT—1)||E(',O)||(2H,Q)+(1+||f||(H,Q)+T||$||(2H,Q)) (H(an/_q/)( lltia ) }

1/2
< 2@~ VVECOllmay+ (1 1L ey +TIZ B g) Tl — o) Tl

(198)
Substituting (198) into (194) gives the desired result.
O
As before in the space?’(Q), the next step is to relatér — diy[[(%, to I, — ﬂMqh||a"g and||d’ — o[

using the triangle inequality. The former of these is raldtethe eigenvalues of by (148) and therefore computable.

Theorem 6.3.2.Let d € ayg(Q) satisfy(151)and d, € %VQ(Q) satisfy(154) LetMy : R® — #M be an orthogonal
projection operator satisfying properties 1-6 in Sectioh.@, and let E= NMyq —qy. Letd, € %@Q(Q) be the CFD
solution. Then

1/2
6= G, < 24 (14 120mr + T2 ) | 5w

1/2
42 [1+ (1412l + T2 |1 =TI,
+ (e - ) Y2EC,0)

Here,A; <--- <Am < --- < Ay are the ordered eigenvalues of the operatddefined in(146)

(199)
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Proof. Asin (191), by the triangle inequality,

avg

1o — a8y < 1ok — Mman| I, +211d" —ahllfy, (200)

Substituting (200) into (193) gives

1/2
1~ @) - Tl sL1+(1+||f||<H,Q>+T||.$||§H,Q)) | (et~ Mk 5%, + 210 - 135
+ﬁ(eT—1)1/2||E('70)||(H,Q)
(201)
Rearranging (201) and substituting (148) in for tfus — I'IMqh||aV9 term gives (199). O

The results shown in Lemmas 6.2.1 and 6.3.1 and Theoren @#.6.3.2 are convergence estimates. These
bounds show that ag, — o andMuq;, — of, gy — o, that is the ROM solution converges to the exact analytical
solution to (3). We emphasize that the bound (199) (Theoréh2pis acomputablenot merely a theoretical error
estimate.

Remark 15:By Remark 13 above, Theorem 6.3.2 is validMisthe number of snapshots; «. It may be worth

examining the validity of substituting the expressjdmwa, — qh||a"g — 4 /z’J-\':MH/\j, which holds for the discrete

time-average norm, for a term that is defined using the coatis tlme -average norm. Making this substitution would
add an additional error term to the bounds in Theorem 6.3.thal be possible to quantify this error using Taylor
expansions.

7 Extension to Non-Uniform Base Flow(ﬁ—xj #0,C # O)

As explained in the Introduction, in this document we hawased several things about the flow, including that
the base flow is uniform. This enables one to neglecmaatrix in (3), as well as omit all terms of the foré%i,

i,] € {1,2,3} that arise in integrating the linearized Euler equatiossthay are identically zero under the uniform
base flow assumption.

The next step in extending the stability analysis of the R@Nbiconsider the more general case of non-uniform
base flow. Thel€ # 0 in (3) andg—fji # 0 in all the derivations performed herein. A natural questmask is whether
this change in assumptions alters the well-posedness alititgtof the IBVP (3). In Section 7.1 below, we begin this
more general analysis by considering for now only the is§uegeti-posedness. In particular, we show that if an IBVP
assuming uniform base flow is well-posed, then the same IBMRvith non-uniform base flow is also well-posed.
This suggests that the well-posedness and stability seslatiwn in this document assuming a uniform base flow will
still hold if one considers the more general case of noneumfbase flow.
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7.1 Well-Posedness

Consider the following IBVP for the linearized Euler eqoats, call it “IBVP":

%—‘3’+A§—§i’+cq=o, XeQ, O<t<T

IBVP: Pq =h, xedQp, 0<t<T (202)
q(x,0)=f(x), xeQ

(note that, as before, we are neglecting the far-field baqmtmditions assuming they are well-posed). Suppose we

have a non-uniform base flow, so titat~ 0, ﬁA‘ #0 and ;é 0,i,j € {1,2,3}. Then the following result holds.

Theorem 7.1.1.Let IBV P* be the IBVP corresponding {@02) but assuming uniform base flow:

ﬁd—?/JrAiZ—;*::O, XeQ, 0<t<T
IBVP": Pq = h, xXedQp, O0<t<T (203)
q(x,00=f(x), x€Q

where, for IBVP, ﬁ—p“ B—H =0,1i,j € {1,2,3}. Suppose the boundary condition’Rgh is well-posed for IBV P
with

d
Gilld1lfq) <0 (204)
under the assumption of uniform base flow. Then the probléf® iB (202)is well-posed with the energy estimate:
16/ Tl ) < €SI 0 (205)
where
oH oA oH oA oH v
h(G0) = H—+Hl ‘A-x|| = /(—A“Jr oA 2c) H<—A'+ oA 2C>dQ
(H,Q) Q 0Xi dx.
(206)
(Note that fig, 0q) > 0).
Proof. ForIBV P*,
1 "
équIH(ZH,Q) :—Q'AQQITHAnq/dSSO (207)
by the hypothesis (204). Now consid&V P. For non-uniform base flow,
%%Hq/”(ZH,Q) =Jo q/TH %_?dQ

—— Jod"H AL +cd]da
= 2an>q['THA|Q]dQ+ Jad "M fda - f,qTHCqdQ
= 2/ qTHAN S+ [oqTH [1H 10( A) ¢l gda

<0 by (207) (208)

= ([sH125 —cfa. q) H.Q)

<[ (s claa),.,

%HBA.+H LoRA ZCH IIQ'IIme
3h(@ 0g)|ld'[[%

In going from line 6 to line 7 in (208), we have applied the QapSchwarz inequality (see Section 9.2 of the
Appendix). Now, by Gronwall's lemma (Section 9.5 of the Appi),

19 T gy < €GN ()[40 (209)
According to Definition 2.8 in [14] (Section 9.9 of the Appéx)d (209) impliesIBV P* is well-posed. O
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The estimate (209) shows well-posedness according to Defird.8 in [14], witha = h(q,0q) > 0. The proof of
Theorem 7.1.1 compared with the proof of Theorem 2.2.1 abaggests that, in the well-posedness energy estimate
(233),a = 0 when the base flow is uniform, whereasz 0 when the base flow is non-uniform.

An extensive study of the stability of the linearized Eulguations (3) under the more general case of non-uniform
base flow goes beyond the scope of this work. The preliminaayysis of well-posedness performed in Section 7.1
suggests that the stability results proven herein assumiifgrm base flow will carry over to the non-uniform base
flow case.

8 Conclusions and Future Work

The analysis presented in this document has shed a greatfdigak on well-posedness, stability and convergence
issues in the context of Reduced Order Models. The acoligtiedlecting boundary condition (47) and its relation
to the penalty method is now well understood. It is partidyleeassuring that different analyses of this boundary
condition lead to the same stability result and equivalemglty-like formulations. Convergence estimates andrerro
bounds of the type derived in Section 6 are, to the authos@dge, novel in the area of Reduced Order Modeling.
These bounds combine techniques found in [10], [18], an§i @& the reader is referred to these sources to better
understand and/or extend the analysis in Section 6. Th§liékis recommended for a thorough discussion of stability
and well-posedness; Chapter 3 of [16] is recommended forvarview of the Proper Orthogonal Decomposition
(POD) and reduced order models.

Itis worth noting that the analysis presented here has Ieevteral unanswered questions that should be addressed
in the future. For one, it is still not entirely clear why weakplementation of the old no-penetration boundary
condition (Algorithm 1) did not properly enforag, = uj, at the plate. We showed in Section 2.5 that this condition
is stable for the fluid ROM (neutrally stable, but stable rtbekess), and also that it is mathematically equivalent
to the new acoustically-reflecting boundary condition, ebhis enforced in the same weak fashion. One has yet to
come up with a precise mathematical explanation for exadtly this implementation seems to be “too weak” for the
no-penetration condition (41).

Another issue that merits further thought, highlighted ienfarks 13 and 15, is the issue of substituting the
expressior|[Mmd, — o[> = Z'J-\‘:MH/\J-, valid for the discrete time-average norm, for a term thatefined using
the continuous time-average norm. One would expect thaimgakis substitution would add an additional error
component to the error estimates in Section 6. One may tryiémtify these using, for instance, Taylor’s theorem
with remainder.

Besides addressing these and other questions that remamimgight of the preceding analysis, future work
should focus on loosening the assumptions on which the at@rivs presented herein rely. The first step would be to
look at the more general case of non-uniform base flow, as warb® do in Section 7. Ultimately, one would like to
extend this analysis (and the Reduced Order Model) to thdinear Euler equations.
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9 Appendix

9.1 Integration by Parts “Trick”

Let G € R™" be a symmetric matrix anale R" be a vector. Then

G
T T
(u'Gu)—u dxu (210)

ou 1[0

TcE_- |2
Ude 2| 0x

9.2 Holder Inequality

Let Q be a bounded region iR" and supposé € L,(Q) andg € Lq(€Q) with % + %1 =1. Then

o (fjoeaa)’” (f orn) "

gl < IflIpllgllq (212)
The Holder inequality wittp = g = 2 is theCauchy-Schwarz inequality

or, using norm notation,

9.3 Minkowski Inequality

Let Q be a bounded region R" and supposé € L,(Q) andg € Lp(Q) with 1 < p < . Then

1/p 1/p 1/p
(/ |f+g|de) < (/ |f|pd§2) +(/ |g|de) (213)
Q Q Q

It +gllp<IIfllp+Ilgllp (214)

or, using horm notation,

9.4 Young’s Inequality

Leta andb be non-negative real numbers anddet 0. Then

2 2
ab< % + % (215)
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9.5 Gronwall's Lemma

Let| denote an interval of the real line of the fofm ) or [a,b] or [a,b) with a < b. Let 8 andu be real-valued
continuous functions defined dénlif u is differentiable in the interioky of | and satisfies the differential inequality

Y1) < BMut), tel (216)

then

u(t) < u(a) exp( /a t B(s)ds) (217)

for allt € I. Note that there are no assumptions on the signs of the &mggliandu.

9.6 Operator Norms

In general, the definition of an operator nofim||o, 0N some normed spageis, for a mapAonXis

[|Allop=min{ce R :||Ax|| < c||x||, forall x e X} (218)

9.7 Symmetrizer of a Matrix

The following lemma is quoted from [13] (Lemma 6.1.1, p. 211 pives a sufficient condition for there to exist
a symmetrizeH for the first order linear system
U = Al (219)

whereA is ann x n constant diagonalizable matrix with real eigenvalues.

Lemma 6.1.1 in [13]. Let A be a real matrix with real eigenvalues and a completeoeigenvectors that are the
columns of a matrix S. Let D be a real positive diagonal matffixen

H=(s')'Ds;t (220)

is positive definite and Hermitian, and HA is Hermitian; tigtH “symmetrizes” A.

9.7.1 Symmetrizability of Linear Systems of PDEs

All hyperbolic systems of conservation laws arising in @dontim physics are symmetrizable (see Chapter 6 of
[11]). This is not a mere coincidence, but rather a resultndbeeing the second law of thermodynamics by judicial
selection of the equations. In the field of fluid mechanicssetrizable systems include, for example, the shallow
water equations and the linearized Euler equation. For ailddtdiscussion on deriving symmetrizers for linear
systems of PDEs, see [1]. Chapter 6 of [13] may also be ofaater

9.7.2 Application to the Linearized Euler Equations in the Criginal Variables

Lemma 6.1.1 in [13] can be easily applied to derive the symimeatH of the matriceg\;, A, andAg that arise in
the linearization of the Euler equations (3). Here we usdttherem to derive the symmetrizdrgiven in [2].
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Recall that

1 _ <
0 ng m ?nl —in 0 n o Mmoo gsm
ng. 0 -—-m ?nz —gnz ns 0 -n —m —fﬁnz
- — 1 _1 1_
S= R, -m 0 3 nzg, 2?3 , S*= nn -n O Na VZﬁn3 (221)
N -2 N3 —3 —x Ny Ny n3 0 £
0 0 0o yp vp
2c 2c —-n —-np —-ng O v
Un
Un
A= 0n (222)
Un—+¢C
U,—C

whereun = Uy + Vp +Wng. TakeAz = SSA3S;* with n™ = (0 0 1)in(221)and (222). To derive the entries of
D, write
di
d>
D= ds (223)
ds
ds
Then
dz
dy
H=($)7Ds; = it ds volda~ ) (224)
ds L ds

v5(da—ds) ﬁds 721—52 Flzds +c(ds+ ds)}

To recover thd given in [2], letdy = dp = p, d3 = a?yp?p, anddy = ds = 1p:

o
P
D= a’yp’p (225)
T
2P
Then _
P
P
H= P (226)
a?yp?p po’
52 1+a?
pac i

One can check that witH given by (226)HA; for i = 1,2, 3 are all symmetric. (226) is exactly the symmetriker
givenin [2]. Thus we have derived this symmetrizer with tlegplof Lemma 6.1.1 in [13]. One could similarly derive
symmetrizers by specifying different normal vectarim (221) and (222) [thus, the symmetrizer of the system is not
unique].
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9.8 Application to the Linearized Euler Equations in the Chaacteristic Variables

We now derive the symmetrizer of the linearized Euler equustin the characteristic variab$= S 1q:

o'y OV
S tS A'Sﬁ_xi_o (227)
Then
u 0 O 0 0 v 0 O icng  icmg
0 u 0 3em  icm 0 v 0 0 0
s'as=|0 0 gcnz gcn2 , S™AS=| 0 0 v —dem —3em |,
0 cg cmp u+cmy 0 cg 0 —cnp v+cmp 0
0 crs cp 0 u—cm cns 0 —cm 0 V—Chp
(228)
W 0 0 —icn, -—3cm
0 w 0 —%cnl —%cnl
S1a3S= 0 0 W 0 0

—cnp —cnp 0 w+cm 0
—-cnp —cm O 0 W— Chg

Although one can apply Lemma 6.1.1 in [13] to find the matrbxtt!;ymmetrizes{AiS: i = 1,2,3} simultaneously, it
is easier to do this by inspection. Observe that if one lets

2
2
Q= 2 (229)
1
1
then, denotingy® = QS A Sfori =1,2,3,
20 0 0 0 0 v 0 0 cng chg
0O 2u O cng chg 0O 2 O 0 0
A= 0 0 2i cn crny , A= o 0 & -cm -cm |,
0 cmg crp u+cm 0 cg 0 —-cm v+cm 0
0 cns cmp 0 u—cm cg 0 —-cm 0 V—Chp

(230)
2w 0 0 —cmp —Chp
0 v 0 —cy —chy
AS= 0 0 2w 0 0
—cnp —cm 0 w+cm 0
—cnp —-cnp O 0 W—Cg

In particular, each of thAiS in (230) are symmetric. It follows th& symmetrize§ SA;S:i = 1,2,3}. Not only is
the matrixQ symmetric and positive definite, it has the added benefit imigheiagonal.

9.9 Well-Posedness

Consider a general initial-boundary value problem (IBVPhe form

XM —Pu+F, t>0
Bu=g (231)
u=f, t=0
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Here,P is a differential operator in space, aBds a boundary operator acting on the solution at the spatiahtary.

The usual “strong” definition of well-posedness for an IB\#3Z) is as follows (Definition 2.9 on p. 32 of [14]):

Definition 2.9 in [14]. The IBVP(231)is strongly well-posed if there is a unique solution satrsfy

Il < ke (111 + [/ IFC 02+ lg(ofr) 232)

where K anda are constants independent ofj, F(x,t) and gt).

A weaker definition of well-posedness is Definition 2.8 on p.o8[14]:

Definition 2.8 in [14]. The IBVP(231)is well-posed if for F= 0, g = 0, there is a unique solution satisfying
u(-,t)]| < Ke™|[ £ ()] (233)

where K anda are constants independent ofxj.

It is common to use the energy method to check well-posednEss quantity%||u||2 iS an energy measure.
Clearly, if

2 JucniR<o (234

then (integrating both sides of (234))(-,t)||?> < K = const meaning (233) is satisfied, so that (231) is well-posed.

9.10 Stability
9.10.1 Definitions
Consider the following semi-discrete problem:

& —Qui+F, j=12..,N-1

Bhu=g(t) (235)
Uj()ZfJ‘, i=12,....,N

whereQ is a discretizing operatoF; and f; are the discretized version Bfand f respectively, an@nu denotes the
complete set of discretized boundary conditions.

Let||-||n be a discrete norm. The following is the strongest definitibstability (Definition 2.12 on p. 37 of [14]):

Definition 2.12 in [14]. The semi-discrete IBVR35)is strongly stable if there is a unique solution satisfying

-l < ke (I111R+ [ IFCDIE+lgmer) (230)

where K andax are constants independent of f, F and g.

A weaker definition of stability is Definition 2.11 on p. 37 d4]:
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Definition 2.11 in [14]. The semi-discrete IBVR35)is stable if there is a unique solution satisfying
UG )]In < Ke™|[£(-)][In (237)

where K andx are constants independent of f and g.

As with well-posedness, it is common to use energy estinateseck for stability: if

d
GlluC Dl <0 (238)

then (237) is satisfied and we have stability.

9.10.2 Energy Matrix Analysis of Coupled Fluid/Structure Systems ([20])

The following results, presented in [20], are useful in giag the stability of coupled fluid/structure systems
such as (121). These results were used to prove stabilibyeafdupled system under the old no-penetration boundary
condition at the plate in [17].

Definition 3.1 in [20]. We say that K is ‘stable’ if and only if:
1. Kis diagonalizable irC.
2. VA e SpK),Z(A) <O0.

Theorem 3.1 in [20]. A real, symmetric positive definite (RSPD) matrix i& an energy matrix for K if and only if
for all X that solveX = KX, 3¢ (XTExX) < 0.

Theorem 3.4 in [20]. If A and D are two real, stable matrices with energy matricgsad B, then

{EaB+ (EpC)" =0} = {K = ( é g ) is a stable matrix} (239)

9.10.3 Lyapunov Stability Condition

A continuous-time linear time-invariant systen= AX is Lyapunov stable if and only if all the eigenvalues’dfiave
real parts less than or equal to 0, and those with real paunisl €0 are non-repeated.

10 Distribution

This Internal Memorandum is to be distributed to the follogvrecipients:
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Recipient Mail Stop
Matthew F. Barone 1124
Jeffrey L. Payne 0825
Daniel J. Segalman 0557
Heidi K. Thornquist 0316

Lawrence J. Dechant 0825
Basil Hassan 0382
Matthew R. Brake 0346
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