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Abstract

This document presents a series of derivations performekebguthor, Irina Kalashnikova, a Graduate Technical
Intern in the Aerosciences Department at Sandia Nationbbiadories in Albuquerque, NM, working under the
supervision of Matthew Barone. During the months of July gst 2007, the author:

e Formulated the implementation of a linearized no-peniemmatoundary condition (BC) on the plate boundary
in terms of Reduced Order Model (ROM) coefficients.

e Formulated a weak implementation of a far-field approxityaten-reflecting boundary condition for the fluid
Reduced Order Model (ROM).

e Using the said boundary conditions and linearized equati@ssembled the coupled linear system to be solved
for the ROM coefficients. _

e Proved that the said coupled system is stable under theromifase flow assumptionly = 0) for u= 0 using
energy principles.

e Began to derive a 2nd order accurate explicit/implicit flsiclcture staggered time-integration procedure for
the linear system.

The results enumerated above are summarized in this dotcumen

1 Introduction

This document contains a number of derivations necessarhéoimplementation of a Reduced Order Model
(ROM) of fluid flow over a solid plate representing, for exampthe wing of an aircraft. Consider the flow of a
compressible fluid past a thin, elastic plate lying in zhe 0 plane. Assume the flow is in thedirection.

Let Q be a finite region surrounding the plate atd be the boundary aR. Note thatQ has two boundaries: the
plate boundary, call #Qp and the far-field boundary, call&Qr. Mathematically,

0Q = 9QpUIQF 1)

We begin by defining the relevant fluid variables.



Fluid Variable Interpretation

u= ( u v w )T fluid velocity vector
fluid density
{(=1/p specific volume
p fluid pressure
Cp specific heat at constant pressure
Cv specific heat at constant volume
y=2 specific heat ratio
U=(0 0 0Z p )T base state fluid variables
U=(u v w 7 p)" perturbed fluid variables
U =U+4Vu’

The governing fluid equations are the Euler equations, lined about the base stafie This linearization results in a
system of the form

/ f— — f—
0; +AU)-0U'+C(U,00)U’ =0 @)
In (2), A(U) is the following tensor
AU) = ( AU) AU) A) ) 3)
where
T 00 0¢ V. 0 000 wWOo 0O 00
B 0O uo0oO0O@O _ 0O v 0 0 ¢ _ Ow O 0O
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- 0 0uo 0 -¢ 0v O 0 0 -¢ w O
yp 0 0 0 u O yp 0 0 v 0 0 yp 0 w
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or ou ou op 0
ox ay 0z ox
o 9V oV Ip 0
ox oy 0z g%
— oW oW 0
cU,00)=]| % & 9 7 0 (5)
o 9 ¢ ou | 9v | ow
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These matrices were derived in [1]. As expected,
_( v v By
DU’ = ( % oy oz ) ©6)

(also a tensor), and similarly faiu .

We are interested in the flow field generated by small defaonsiof the elastic plate located in the- O plane.
The plate is square with€ x,y < L. Assume that the deformations are small enough to causesovalf perturbations
in the fluid. Assume also that the deformations are resttict¢he direction normal to the plate, leading direction



displacement field, to be denotgd= n(x,y,t). The following table summarizes the variables governirgrtfotion
of the solid plate.

Structure Variable Interpretation
a=(B y n )T displacement vector
Ps density of solid plate material
v Poisson’s ratio
E — {eisjestess Young's modulus
Dpend= R(Eﬁz—) bending stiffness

A more detailed discussion of these variables, includirgy tinits, can be found in the “Structure Equations” section
of this document.

The motion of the plate is governed by the von Karman equstigiven in the “Structure Equations” section of
this document as well as in [5]. The edges of the plate arevasdtio be simply supported.

The boundary condition for the flow problem on the plate isrtbgpenetration condition- n = f wheren is the

surface unit normal vector. Since the plate is assumed to ez = 0 plane, in this casey=e,=( 0 0 1 )T.
The linearized no-penetration boundary condition on tlagepls

0 .
V\/+ua—?(:r7 on 9Qp )

The “ * " operator represents a time derivative, irp= ‘;—’Z. A non-reflecting boundary condition is assumed at the
far-field boundary of the region surrounding the plate.

Both the fluid solutiod’ and the solid displacement (in tizelirection) are expanded in an orthonormal basis in
the ROM:

Variable Interpretation
T . .
x=(xy z) direction vector
)= gx KX @Fx Fgx @K )T fluid ROM orthonormal (vector) basis
&i(xy) z-displacement ROM orthonormal (scalar) basis
M number basis functiong; (x) kept in the fluid ROM
P number basis functiong (x,y) kept in the structure ROM

It follows that (expanding the fluid variable vector and thdirection displacement in the appropriate orthonormal
basis)

U’ = t 8
k;ak( )@ (X) (8)
p

n=">% bjt)¢xy) )
J; IR



Here,aj(t) andbj(t) are the appropriate ROM coefficients, to be solved for in tadiRed Order Model.

This document is organized as follows. In 82, entitled “BlHiquations”, the no-penetration and far-field bound-
ary conditions are derived in terms of the ROM bagp&) and &j(x,y). These expressions will be needed in
the implementation of the said BCs in the ROM code. §3, editiStructure Equations”, goes through the non-
dimensionalization of the von Karman equations, goverttirggmotion of the late. The “Coupled (Linearized) Sys-
tem” section (84) contains a stability analysis of the cedpllinearized system of fluid and structure equations.
Several stability results are derived using theorems prav§3]. Current and future work is outlined in 85, in partic-
ular, the derivation of a 2nd order accurate explicit/iraplfluid/structure) staggered time-integration scheordtie
linearized coupled system assemBled

2 Fluid Equations

2.1 Integration by Parts

In the ROM model, equation (2) is projected onto the POD moggs), by forming the following inner product:

ou’ _ , S
(@,W)H-i-((pj,A(U)-DU)H—i-((pj,C(U,DU)U)H:O (10)

In (10),H (V) is the following symmetrizing operator for an arbitrary aretera? € R to be specified in the imple-
mentation of the RONI

o 00 0 0
0p 0 O 0
H(_): 0 0 p 0 B _0 (11)
0 0 0 a?yp?p pa?
0 00 paz H

TheH operator was derived in [1] to have the property that it is s\atric and that each of tHeA| for j = x,y,zare
also symmetric. Thé,-)y inner product is defined by

(u,V)y E/QUTH(U_)VCIQ (12)

Let

AU) = ( g HU)A(U) @ HU)A/(U) @ HU)AU) ) e RS (13)

As mentioned earlier, th&x(u_),Ay(U_),Az(U_) matrices are those derived in.83L of [1] and are given explicitly in (4)

of this document. In implementing the no-penetration bamdondition (BC), one will need to express the second
term of (10) as the sum of a boundary and a volume integral $o asply the BC on the boundary. Integrating by
parts:

INote that the analysis of the proposed scheme is not comgigés time.
2The value ofa? has not been chosen at this time. It may be thattheatrix will have better conditioning for certain valuesa.



| = Jo 9T HO) [AD) 55 +A(0) 5 +AdU) 5 | de
= [LAU) - OU'dQ

= [0 A( _i ".ndS— [, (0-AU))U'dQ B (14)

)
=[50, AUV’ -ndS+ [y, AU’ nds- [, (O-AU))U’dQ
=lp+Ilg+ly

Using the fact thah = ( 0 0 1 )T in the problem being considered here and expanding thegdinee term in the
last line of (14) gives

— — — d{ T HU)ALU { oTHU)A(U a4 @T H(U)A (U
| =y T HOALLDIUASE [y o7 H( >A<u>~nU'ds—fQ( Lo MOV}, AAHONO) | AGHORO) ) yrgg
(15)

One can check that all the matrix/vector multiplicationS)(&are defined (i.e., the dimensions make the matrix/vector
multiplications possible) and each of the integrands ie@tba scalar, as it should be. The two surface integral terms
in (15) will be written out explicitly in terms of the apprapte ROM coefficients and basis functions using the plate
boundary and far-field boundary conditions. These integsdl be pre-computed prior to the assembly of the global
linear system derived in 84 of this document.

2.2 Implementation of the No-Penetration Boundary Conditon

In this section, the implementation of the weak no-penetmdioundary condition o@Qp is formulated in terms of
the a(t) and kk(t) coefficients, basis functiong(x) and &«(x,y) and pre-computable integrals.

To be consistent with the notation and derivations of [1], le

u u
0 %
u=| o [, u=| w (16)
¢ 4
p P

where =1/p andU’' =U — U. We are interested in applying the following no-penetratioearized boundary
condition on the elastic plate (lying in the plane 0 with flow in thex-direction)

V\/—i—L_l‘;—z:ﬁ on dQp (17)

to the plate boundary integral term of (15), namely

Ip = @TH(U)A(U)U'dS (18)
2Qp

For easy reference, we repeat the matridéd) andA;(U) here, which were derived in [1] (p. 9, 881) to be

an

3The general non-linear no-penetration B@is1 =/ = bt



W o 0 00 p OO0 O 0
B Ow O 0O B 0 p O 0 0
AU)=| 0 0 w 0 ¢ |, HU=| 0 O0p 0 O (19)
00 -( WO 0 0 0 a®p’p pa?
0 0 yp 0 W 0 00 pa2 )
Multiplying these out and using the fact thaf = 1 gives
pw 0 O 0 0
0 pw O 0 0
HU)AU) =| 0 0 pw 0 1 (20)
(AL 0 0 0 a?p’pWw a’pw
2—— (1+a®)w
0O O 1 acpw v
Recall thaior? is an arbitrary real paramefeandy = cp/c,°.
Expanding the fluid solution in an orthonormal spectral ©gsies.
U =5 a(t) (%) (21)
Taking qqi(,i =1,2,...,5to be the components of the vectgre R®, one can write (21) as
u Egzlak(t)@}(x)
v XKA:lak(t)%z(X)
W= Shane (22)
¢ TECACLALS
p Tt ()@ (x)
Applying the no-penetration boundary condition (17) to)(@20Qp gives
Zgzlak(t)fﬂ&(X)
Yilia(t) @ (x)
Zgzlak(t)fﬂ?(X)
Zkzlak(t)qf(x)

(recall thatn = ﬁt) Substituting (23) and (20) into the boundary integral) (@i8es

_ pw(qoJ Sherat) @t (%) + @ Sk a(t) @ (x) ) (go3pw+<05)( _uﬁx)

o A (U)U" = M a @ (x
J[() el +apw((04VPp ‘ps)zklak ‘Rf (<p3 <p40pW QJSHG ) 18O E )
(24)

where again the boundary integral of interest is

o= [ o HOAD)U'dS (25)

4See §34.1 of [1]).
5y = 1.4 for a diatonic gas at reasonable temperatures and pressure



To complete the implementation of the no-penetration BCexyand the plate deflection fiefdin the appropriate
eigenmode, orthonormal (scalar) basis

P

n="> bkt)&xy) (26)

k=1

In terms of this basis, the no-penetration BCa®p is

) P K ;
- ”a_?( =5 be(®)é(xy) - ukZlbk(t) El}(?y) o

Plugging expression (27) into the second term in (24) yields

(8PW-+ 67) 371 (O &(x.y) — T( PP+ o) 5Ty bi(t) 25 (28)

For convenience, let us rewrite (24) grouping the coeffitsiefithe summations over tleg(t), theby(t) and thebk(t)
respectively:

OG- St PV (e o)« a® (ofypp ) of] + (0 + of ot gf e L) e a(t)
: ’ +5F., (cpfﬁvVJr quf) Ek} be(t) — 5P, qufﬁvﬂ o uw} b(t)
(29)
Recall that for this instance of the problem="0. Thus (29) simplifies to
P
¢ H(0)A(0) Z%%m +Z%&m zﬁﬁﬁ (30)

It might seem as though the orthonormality of each of the d@sand &y should be invoked at this point; however,
remark that the expressions in (29) are in terms ofdtimponent®f the basis vectors}f(,i =1,2,...,5. Atrivial
algebraic simplification of the first summation in (29) usorghonormality is therefore not possible. It follows that
the boundary integral enforcing the linearized no-petiendC is

0§
|p:/{mpgoj[() )]U'dS= Zak / qqde+Zbk / PPEAS— Zbk / TS

31)

(31) is a linear system that is written in matrix/vector fdater in this document.

2.3 Implementation of the Far-Field Boundary Condition

The boundary integral ii15) needs to be evaluated over the entire domain boundary, stttja plate boundary. The
formulation of the no-penetration BC on the plate bounday &nabled us to writelin terms of the basis functions
and ROM coefficients. We now turn our attentiongpthe far-field boundary portion of the boundary integral ove
0Q. An approximately non-reflecting boundary condition isiddse on the far-field boundary. A weak implementa-
tion of such a condition for the fluid ROM is formulated below.



2.3.1 Properties of Hyperbolic Systems

Before proceeding to the implementation of the far-fielddmary condition, let us briefly review some properties
of hyperbolic systems of PDEs that justify the upcomingdsions, in particular the diagonalization of the matrix
A(U) -n. Recall the 3D Euler equations for compressible flow, tylpraaritten as

Ut + Fi(U)x+ Fa(U)y + Fs(U). =0 (32)
with
p pu pv pw
pu p+ pu? puv puw
U=| pv |, RU)= puv |, RU)=| p+pV [, RU)= pvw (33)
pw puw pvw p+p
E u(E+p) V(E+p) wW(E + p)

The first equation in (33) represents conservation of mhsssécond three represent conservation of momentum (in
each of the three directions,y andz), and the final equation represents conservation of en&eggall also that the

Euler equations (33) form a nonlinear hyperbolic system.

If one defines the tensor

FU)=( RU) RU) RU)) (34)
then (32) can be written as
ou
¥ +Oxyz-F(U)=0 (35)

If Aj(U) € R>*®is defined to be the JacobianffU) for i = 1,2,3, it is a well-known fact that since the system (34)
is hyperbolic, the matriA(U ) = a1A1(U) + a2A2(U) + a3Az(U ) has only real eigenvalues and is diagonaliz&dte
is precisely this property that guarantees the diagortaizaf theA(U) - n matrix, performed in the next section..

2.3.2 Diagonalization of the Matrix A(U) - n

Let A(U) denote the tensor

AD) = ( AU) AD) A(D) ) e RS (36)

whereA(U),Ay(U),A;(U) were derived in §31.1 of [1] to be

T 00 0 V. 0 000 wWoOo 0O 00

- 0 GO0 O0 O B 0 Vv 00 ¢ . Ow 0 0 0
AU)=] 0 0ad o0 o0]|,AU=|l0 0 VvVoO0oO]| AU=|00 w 01
- 0 0 U0 0 - 0V O 0 0 - WO

yp 0 0 O u 0O yp 0 0 v 0 0 yp 0 w

(37)

6Seeht t p: // en. wi ki pedi a. or g/ wi ki / Hyper bol i c_equat i on for more details or almost any textbook on numerical sohstito
PDEs.



Letn = ( n np n3 )T be the unit normal to the far-field boundad2r’. In the general case of a boundary
positioned at some angkrelative to the plate (iiR3), one will be interested in diagonalizing the mathigJ ) -n =
SAS 1 s0 as to transition to the so-called “characteristic vaeisid/’ = S 1U’. In the upcoming derivations, we use
the following relations to simplify the expressions:

In[Z=r+n5+n5=1 (38)

(i.e.,n is chosen to be anit normal vector) and define

c= vt = 2 (39)

to be the speed of sound. Note that (39) implies that

c
—_— == (40)
¢ ¢
Letting
Up= UN (41)
whereli=( & v W )', one has that
0n 0 0 0 {m
B 0 Un 0 0 Im
AU)-n =| 0 0 U 0 {Ing (42)
A G G
ypm  ypre  yprs 0 un
Diagonalizing the matri( _) -n amounts to finding andA such that
AU)-n=AS? (43)

2.3.3 Jacobian Eigenvalues and Eigenvectors

We now go through the linear algebra of the computation ofefigenvalues and eigenvectors of the Jacobian
matrix A(U) - n, defined in the previous section. The eigenvalue problemussalent to finding the constanissuch
that detAls — A(U) -n) = 0, and the eigenvector problem is equivalent to finding tHevaectors ofAls — A(U) -n
wherels denotes the & 5 identity matrix.

A—ln O 0 0 -I{m
~ 0 A-Up O 0 —Im
AMs—AU)-n= 0 0 A-U, O —Im (44)

im I I A- 0
—ypm  —ypr, —yprg 0 Al

"For instance, the far-field boundary may be a square or mgatanbox around the plate, in which case- g, n = &, andn = &, depending
on the side of the box one is considering.



Setting defA Is — A(U) - n) = 0 results in the following\ matrix (where the diagonal entries A&fare the eigenvalues
of A(U) -n):

(45)

>

I
oo ooS
Oooo

The eigenvalues,, u, + ¢ andu, — c are known as the “characteristic speeds” of the propagatavgs.

We now turn our attention to computing the eigenvectorsasponding to each of these eigenvalues.

2.3.4 Eigenvectors corresponding td = up,

Let us begin by computing the eigenvectors corresponditiggidriple eigenvalue) = Gn8.

It turns out that in order to avoid considering three sepacates, one should compute tef eigenvectors of

AU) -n first. Letl = ( i I I3 Is4 s ) e R1*5 denote a left eigenvector @(U) - n, i.e., a vector such that
[ {unls — A(U) - n] = 0. Solving for the components bjives rise to the following equations:

4 =free
11 +12n2+13n3 =0 (46)
ypls = {l4

It is not hard to see that (46) offers three degrees of free@dsnexpected, implying three linearly independent (un-
normalized) eigenvectors, call thaf¥, 12 1(3):

1 7,0

@) — ( 0 nep® —npp® Z% ) (47)
2 7,2

1@ _ ( e 0 —np® @ Z% ) (48)
3 7,

13— ( ou® —np® 0 Z% (49)

where theui“),i €{1,2},j € {1,2,3} are arbitrary nonzero constants.

2.3.5 Eigenvector corresponding to\ = up+¢

This is similar to the previous case. Now one is interesteth@ennull vector ofl [(U,+c)ls—A(U)-n]. The
relevant system of equations describing the componentd o

I5 = free
I,=0
cly = yprls (50)
cly = yprpls
Cl3 = ypgls

cls = Z(n1|1 +noly+ n3l3)

80ne knows a priori that these will span an eigenspace of difaarthree. This follows from the fact that the Euler equaiare a hyperbolic
system, as discussed earlier.

10



The (unnormalized) eigenvector corresponding to the e@jeBA = Uy +cCis

|<4>:( vﬁnlcw‘” vﬁnzcu<4> vﬁnscu<4> 0 u(4)) (51)

for some 0% u® € R.

2.3.6 Eigenvector corresponding to\ =up—¢
One now solves for the null vector of the mattiXt, — c)ls —A(U)-n]. Doing so gives rise to the following
system of equations for the component$®f

Is5 = free
I,=0
cly = —ypmls
cly = —ypmls
Cls = —ypngls
cls = —Z(ngly + n2l2 4 nsl3)

(52)

Similarly to the previous case, the (unnormalized) eigetorecorresponding to the eigenvaliie= u, — cis

5 = (5 = ,(5) pau(®
15) — ( _yemu® oS ypreu® g y(s) ) (53)
for some 0% u® e R.

2.3.7 Diagonalizing Matrices

In the previous subsection, we computed the eigenvectdreahatrixA(U) - n up to some degrees of freedom.
From a theoretical perspective, the constz;uﬂtsare completely arbitrary. However, it turns out that theemtibility
of the diagonalizing matrids depends critically on the choice (pfi“); in fact, for most arbitrarwi“), S will be

singular for some normal vector. This is a problem because then! is undefined and hence the diagonalization
A(U)-n=SAS ! does not exist.

Careful inspection and analysis shows that a “good” choﬁqéB, i.e., one for whiclswill always be nonsingular

is
1 1
‘%) - 171?%) "
My = 17 " = -2 (54)
¥ =1,15% =g
4) _ 45 — <
u@ = = &
Then
(D) 0 ng -np m B
|(2> n3 0 —n —ng —%
sl == |(3) — Z_n 55
=== @ - n —-m 0 N3 y_p§ (55)
c
|(5> Ny 17] n3 0 ){:-p
- -2 —n3 73

11



Lemma 2.3.1.The diagonalizing matrix L defined {B5)is non-singular and hence invertibien = ( n np ng )T.

Proof. Recall from linear algebra that a mathkis non-singular if and only if d¢iM) £ 0. Computing the determinant

of L defined above and using the relatigh+ n3 +nZ = 1, one finds that

which is never zero provided p# 0 (which they would not be in physical applications).

2c

detl) =

(56)

O

Having verified the invertibility of. defined in (55) for all normals, we can findR = Shy computingd_'s inverse:

0
n3
M

0

n3
0
-n
-n
0

1
2

17)
0
n3
0

>
=

[N NN
> D
> S

<<
ORI

N
[¢]

_1p,

We have finished deriving the desired diagonalizatigh)) - n = RAL = SAS™! whereA is as in (45).

(57)

The above result can be verified in MATLAB by multiplying odttet computed matrices. In particular, one
computesSAS 1 to be:

—{n
ypm
Un
0
= 0
—{n
ypm

n3 17] %nl
0 —N1 ?nz
—N1 0 zng,
—hz N3 —2%
o o £
0 0
Un 0
0
~gne —ing
yprz - ypng
0 0
Un 0
0 W
~tn, ¢
yprnz - ypng

o5l o o o

oflooo

[
I

>0 D
S s

Un

oo ooS

coocooflo

cofloo

n3

n3

17)

(58)

using the relation (39) that says that= y[i_. Comparing the last line of (58) with the matm(J) -n defined in (42),
one sees that our diagonalization produces the desireld. resu

12
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REMARK: The diagonalization in question implies thay, p # 0, all reasonable physical assumptions. One must
be somewhat careful, however, since the diagonalizingicest®andS ! will become ill-conditioned for either very

large or very smalp, y andc.

2.3.8 Implementation of the Non-Reflecting Far-Field Boundry Condition

The far-field boundary condition will be written in terms bEt“characteristic variables”, i.e. the elements of the
vector S1U’ decomposed in the components of the POD bpsis). Here we write out this vector and then formulate
the explicit implementation of the far-field boundary imtddor the ROM ondQg, like was done earlier for the solid
wall BCs on the plate bounda@Qp. The far-field BC implemented is an approximately non-réfigacondition,
where the incoming characteristic variables (those cquorsling to a negative eigenvalue) are set to zero and the
outgoing characteristics (those corresponding to a pesigigenvalue) are left alone. It turns out that there arer fou
cases to consider: supersonic inflow, (< —c), subsonic inflow-{c < uy < 0), supersonic outflowuf, > c), and
subsonic outflon( < up < c). It is first assumed that the far-field boundary has only ofihese cases; in general,
multiple cases are possible, if the far-field boundary is gicample, spherical.

Recall from (16) the definition of the vectdr', namely

(59)

c
Il
TN <=

Since we will be working in the characteristic variables, V' = S U/, the first step in the derivation is to write out
theV’ vector using th&matrix which diagonalizeA(U ) n (computed in the previous section). Multiplying out gives

2\ 2
7 4
(NaV — oW +ng ') + Zp ayw N+ (é)znlp/
(ngu’—nlvV—nzZ) E% Ayw N — (%) nzp/
I — ¢/ _ -y
VIESTU= L (mu —mv +na?) + —Z—ngp/ =1 awent (£ nop (60)
uﬁ—i—y%p R
—u +Sp U+ ¢cP
n
vP —u§1+%p’
where
Vo= (U VW)
n = ( ng N N3 )
u, = u'-n
61
aw = (¢ -w \/)TT (61)
ayw = (_W’ -7 u/2
ayy ( v u ZI )

Recall that\/yp/{ =c/{.

In order to formulate the explicit implementation of the-fsld non-reflecting BCs, one needs to writéin

terms of the orthonormal ROM (vector) bagigx) = ( @(x) @(x) @(x) @(Xx) @(X) )T € R®. Expanding
the fluid solution in this orthonormal spectral basis as teefo

13



c
I
M
S

IR

2
2
N3

u S ke ak(t) E (x)
v S i1 ak(t) g (x) (62)
wolo= | S At @)
¢ Sk (b @ (x)
o Zkleak(t)Gq?(X)
Then (60) becomes
_ M Vs
ayw N+ (%)znlp’ EMkl {nl (%?+ (c) <ﬂf) N+ n3<ﬂf}
awn— (%) nop Thir | M@ e (q“ihr (¢ ) “f) e | at)
[ = _ 2
VI awen (8 nap | T st | -me 4ot (<qi‘+ (4) 415) a(t) ©3
Uy + %z SW g+ nogf -+ nogf -+ £ @8 a(t)
Tt SWs [t — nagf —nag + £ att

For completeness (and to see where this derivation is gaiagdll that the far-field integral of interest, denoted
byl in (14)is

| = o0, OTHU) (AU) -NIU'dSH [y, T H(O) (AQ) -nUdS— fo (D- gl HO)AD) JU'd gy
=lp+Ip+Iv

For ease of notation, let us denote the surface integrabpauf (64) byls, so

ls=lp+Ilg= ‘;Qp(pjTH(U)[A(U)-n]U'dS—i—/‘;QF(pjTH(U)[A( )-nU’dS (65)

§2 was devoted to writing odp explicitly; we not turn our attention to the second surfategral term in (65)r.
Using the diagonalization ¢&(U) - n,

lF = o @ HU)[AU)-nju'ds
= [y @TH(U)SAS WU'dS (66)

= Joa @ [HU)SAJV'AS

In (66), ((pjTH (U)9T € RS, Ais a diagonal matrix containing the eigenvalueé\@f ) -n andV’ € R® is the vector of
characteristic variable§U’. Since the\ matrix contains the eigenvaluesAfU ) - n, which represent the character-
istic speeds, the decomposition in (66) makes it clear wisygbnvenient to transform to the characteristic variables
V.

LetV; denote the value of’ at the far boundary. In the implementation of the far-field, B@@refore, one will
overwriteV «— V{/ on dQr. The entries 0¥/ are determined by the sign of each of the eigenvalués ifhere will be
four cases to consider. Before proceeding to these casess Verite out the following matrix and vector, which will
be needed shortly.
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0 PN3Un PNUn :—%Lénl(in“‘c) _%énl(u_n—c)
_ PN3ln 0 —pNiUn ggnz(lTnJrC) —ggnz(u_n—C)
HU)SA = —pPnUn —pn1Un 0 3PN3(Un+C)  —3pn3(Un —C) (67)
a’yp?pmin  —a?yp®prplln  a?yp®piglin 0 0
a2pn;ln —a?pnyin a’pngly, £(Un+€)  —2(Uh—0)

Note that in order to simplify the last two rows of the matrix(67), one uses the identigpp? = c?p?/{ = ¢?p.

prg? — pogf+ a2 (yooef + 47 | || ]
prs@) — prugf — a?pn (yoPef + @7 ) | Un g;g;

@ HU)SA = | |png —pmef +a’pns (yop@' + @) [Un [ = | ds(x) (68)
3 {5”1%1+5n2§0j2+5n3%3+ %‘Pﬂ (Un+c) gggg

[Pt —pag? — pnsef — 205 (G —c)

Remark that the entries of the vector in (68) are functiong,éor j =1,...,M.

2.3.9 Case 1: Supersonic Inflomf, < —c)

Note thatu, < —¢c < 0= up,—c < 0 andu, +c < 0, i.e., all the characteristics are coming into the box adoaur
plate. The approximate non-reflecting BC mandates thahediming characteristics be set to zero. The far-field BC
is thus

V\=0eR® (69)

It follows thatlg in (66) reduces to

Ir=0 (70)

2.3.10 Case 2: Subsonic Inflow-{c < uy < 0)

Now, up < 0, which impliesu, — ¢ < 0. Howeverun+c € (0,c), in particularu, +c > 0. This means that the
characteristics corresponding to the eigenvalyeandu, — ¢ are incoming whereas the characteristics corresponding
to the eigenvalue, + c are outgoing. The non-reflecting BC says to leave the ouggthiaracteristics alone. Looking
at the definition of\ in (45), we see that the characteristics to be set to zeregpond to the first, second, third and
fifth component o¥’. Thus, the far-field BC is

0 0

0 0
V= 0. = 0 _ (71)

Up+ S/ SELy | M+ ol + s + S| a(t)
0 0
Using the vector derived in (68), one has that
T T J 1 3 Z_ 5
@f HU)SAVy =da(x) S [ nugi + nagi + naggg + RAEND (72)
K=1
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It follows that the boundary integrét reduces to

I = foo, 9] [HO)SAVjdS ) 73
= SN1 () oy Ga(X) [P + Mo + o + S P | dS
2.3.11 Case 3: Subsonic Outflowd(< U, < €)
In this casep, > 0 implies thatu, + ¢ > 0 butu, € (0,¢) = uy—c € (—c,0), i.e.,uy — ¢ < 0. This means that

the characteristics correspondingup— ¢ are incoming whereas the characteristics corresponditiget@ther two
eigenvalues are outgoing. It follows that the far-field B@b&implemented is

s [ (0 (£)" ) - meg+ maf] att)

N

av'\/\/'n"'(%) npf .,
an— (9 || S| oma e (o () ) +magt] aqw
V= N2 | = " 1 7\2 (74)
aU’V"”+(_c) N3P Y {—”14&2“2% +ng (ﬁlﬁ”r(z) ﬂ?)]ak(t)
Un +O% g ) {nqu(1+ oG + N3 + %_%5] a(t)
0
Then
di(X) Sy {nl (ﬁlﬁ“r (%)2%5) — o} + nsqf} a(t
g [H(0)SNV, — o (X) TRy [ Mg — e (‘ﬂé“r (%_)2%5’) + Nag | a(t) 75)

s () Ty |~ + o+ g (<qi‘+ (%)241?) a(t)
+a(X) TRy Mt + g + o+ S g a(t)

and the desired boundary integral is

I*M ()faczp{dl {nl(Qer )—nz‘ﬂf+n3€q§}+d2 [—nﬂﬂf—nz((ﬂf—k(%)chf)Jrnscq(l]
F_kzl +d3(x [ n1§q<2+nz(q<+n3<tgf+(%_) )}+d4 ){nqu(1+n24q<2+n34q§+%_qﬂ}ds

(76)

in terms of the appropriate ROM coefficients and basis fomsti

2.3.12 Case 4: Supersonic Outflowuf > )

Here,u, > c = uUp—c,Uy+cC > 0, i.e., all the characteristics are outgoing. All the eigdnes ofA(U_) -n are
therefore to be left alone.
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a1+ ($) mp Ewdm(¢+(92¢)_m¢+%¢1
(D) || e (0 (£) ) < rodt|
B e (9 | 7| st et e (@4 (8) ) Jaw | 7
U’n/+ %E// sy [nqu} + M@ + gl + %gﬂ a(t
“thTeP i [—nlﬂf—nzﬁf—”s‘ﬂ%%ﬁﬂ a(t)
Then
w0 53 | (o + (£) 48 ) —nagit+ k| )
+02(%) iy -—f‘l‘ﬂf— o (‘Rﬁ”r (%)zﬂf’) +nagy | a(t)
@ HUSANG= | g 510, -—”1ﬂ3+”2€4<1+n3 (ﬁlﬁ“r (5_)2%5) a(t) (78)
a0 Ty magE+ o + o + S @) at
+ds() SRy [~ — o — nogf + S alt
The desired boundary integral is
a(t) oo, {dl {nl <4f+ (é) ﬂf’) — N+ ns%f}
L 000 | —mg—n, (qqf+ (g_)zqqf) + N3
- k; +d3(x) |~ Mg + g + N3 (<Qf+ (%)2%5> 79)

+mu)m¢+m¢+m¢+§@}
+ ds(x) —nl(ﬂg_ nz(‘f - n3qﬁ+ %‘ﬂﬂ }ds

2.3.13 Summary of Far-Field Boundary Condition Implementaion

To ease the notation, note that for each of the four casesdemad above, the boundary integral of interest over
the far-field boundargQr, denoted earlier bit (and defined in (66) has the form

lp—zak /mF (@)ds (80)

whereh(g;) is a function depending on the componentggpaind ¢, and which of the four cases considered above

applies. We givenhy(¢;) explicitly below:

9Note that multiple cases may apply along a smooth far-fielthdary, e.g., a sphere. For example, if the flow changed fugarsonic inflow
to supersonic outflow along a spherical boundary, one woeddino determine the precise coordinates at which thisiti@m®ccurs and compute
Ir as a sum of two integrals, one for the supersonic inflow (upédransition point) and one for the supersonic outflow (afte transition point)
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0, Up < —C
da(x) {nl(g(ﬁ— M@ + N3 + %qﬂ , —Cc<lh<O0

d1(x) :nl (qqf—i— (%)quf) — M@ + Nz | +dz(x) {—nqu— np ((Hf+ (%)2‘/&5) +n3‘ﬂ<l]

- _ O<up<c
he(@) =14 +d3(x) | —Ng +nagg +ng (qf+ (%) @ } +da(x) [nqu<1+nzgq§+ ns @ + %qﬂ

di(x) _nl(qf+(%)2qqf)—nzgaf+n3qqf + dy(x { ny nz((gf+(§)zqf)+n3(g(l]
+d3(x) —nquf+n2(,q<1+ N3 (qqf+ ( ) (qf :| + dg(x) {nqu< +n2§q<2_|- n3<q§_|_ quﬂ , Up>cC
+ds(X) :_n:L(H(l — @ — g + é_ gqﬂ

(81)

Thedi(x), i =1,...,5 are the entries of th$jT [H(U)SA] vector given in (68). These depend on the components of
@;(x). Note that the cases whep = +c can be encompassed into the four cases summarized in (81).

It follows that the surface integral (over the entire bouyd#¥Q = 0Qp U JQF) is:

Is =Ip+IF
= S 8(0) o GRS SE1B() g, FEIS— Tt oo, GFT2ASH S, 81) [, (9IS
=y at) (fan qoqudS—i— Jaar hk(‘Pj)dS) +30 be(t) fo0p <pj5£de— i1 bi(t ) Joce @ u%ds

(82)

2.3.14 An Alternate Expression for the Diagonalizing Matrk S1

In the previous section, the diagonalizing maixt was used to define the transformation to the characteristic

variablesV’ = S 1U’. Recall thatS ! can be chosen up to some degrees of freedom, deméfécdaarlier in this
document. A point was made that one must be very careful @atspf these constants because otherwis&thatrix
may fail to be invertible for some unit normal vectors

In some implementations, it may be useful to haveSah such that one of the components\tf can be split
into entropic, vortical and acoustic waves. It would be nifce example, if one of the components\f contains
only entropy perturbations (meaning it has oplyand{’ disturbances), two components\tfcontain only velocity
disturbancesy(, v/, and/orw’) and the remaining two components\tfare associated with acoustic pressure waves
(having the formuy, & const p’). One can see from (60) that we get the latter two componé#resacoustic ones) for
free in the previous derivation. However, looking at (60js iclear that the first three components of ¥Hevector are
a linear combination of the entropic and vortical waves.

It turns out that oneandefine matrice$ ! such thav’ = S~1U’ has the desired splitting by specifying alternate

values of the constanm(” in (54). Although these new matrices, call th&nt, are “nicer” in that they maky’
have the desired form, there is a price to pay: one now needsrsider three cases, depending on whether any of
the components af are zero. In the implementation code, this amounts to vgrigiset of “for” loops, which would
decrease efficiency and can make the program run much slower.

Recall thatS~! was derived to be
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0 ey o st Sl

2 2 2 2
nau? 0 —mp? o S
stl= nu® 0 S (83)
L 1H; Hao o yphe
ypuu®  ypru®  ypgu® g “
C c ~C u
_ Vpntu@ _ vpn%u@ _ VP”3C“<5) 0 u®

up to the degrees of freedom, tpé”. The following table gives one choice of constapifg, depending on whether
one wants to split the entropic and vortical waves and whiamny, of the components of are zero.

sl ggl §1 %1
Condition: | no enrtropic/vortical splif| split,n; #0 | split,np #0 | split,n3#0
) 1 0 1 1
s n 1 0 0
w? 1 1 0 1
u? ny 0 1 0
wd 1 1 1 0
¥ ns 0 0 1
(4) L £ £ £
H yp yp yp yp
N(5) £ £ £ £
yp yp yp yp

When the values in the above table are plugged into (83), btadres the following matrices and transformed vectors
A8

2.3.15 Caseln;#0

AU)-n=SAS* (84)
3
0 0 0o 1 v
_ N3 0 -np 0 O
S*= m -mm 0 0 O (85)
Ny 17] n3 0 VCFT
C
-n —-np —-n3 O 73]
0 n3 r;z , %nl —%nl
oo e e
S=|o0 -5 m: o ip i (86)
4 4
O
0 0 0 e e
! E 2 /
4 +(g) p entropic
_ nsu’ — nw vortical
Vi=SU'=| mu-mv |=] vortcal (87)
qu'f'%p/ acoust!c
.7, acoustic
_un"’ Ep



2.3.16 Case?2n,#0

AU)-n=SAS,t (88)
0 n3 —N2 0 Q
~ 0 0 0 1%
S'=l m, -n, 0 0 0 (89)
Ny 17] N3 0 yiﬁ
—Nip —Np —N3 0 )f-p
nin n2+n2 1
% 0 —2n2 3 %nl — Enl
B 23 , 0 —-nm 3sm —35m
S=| -T2 0 R gng —3ng (%0)
o 1 o £ £
yb yb
0 0 0 o o
N3V — now .
3 7 22 vortical
B '+ (g) o’ entropic
V=SS = mu-mv |[=] vortical (91)
v+ & o acoustic
" i acoustic
—Un + T p
2.3.17 Case3nz#0
AU)-n=SAS;t (92)
0 n3 —Ny 0 O
n3 —Ny 0 0 Q
stl=| o o o0 1 755 (93)
Ny 17] N3 0 VCFT
-n —-np —-n3 O yiﬁ
nin n2+n2 1 1
gl 1n3 . _ﬂr]'.l_rg‘I2 0 %nz - %nz
S = —Ny -ng O %ng - %93 (94)
0 0o 1 -£ -£
yb yb
0 0 0 % o
n3\/ — n2W .
Nl — ngw vort!cal
_ 7\ 2 vortical
vi=ssiu'=| '+ (g) P | =| entropic (95)
uo+ & o acoustic
" i acoustic
—Un + T p
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3 Structure Equations

3.1 Notation and Units

Parameter Meaning Formula Units
h thickness of plate m
Ps density.of plate material traxg\};‘eﬁi% o kg/m?
1% Poisson’s ratio _'WA‘O -
E Young's modulus  EEESER= Ay N/MP
. . Eh3
Dpend bending stiffness 17 N-m
a=(B y n )T displacement vector stiffnessforce m
92 ; fi
<3 acceleration oree N/kg

3.2 Assumptions and Boundary Conditions

Assume the plate is square and positioned irethé plane and is squatex L for some length. e R: 0 < x,y <
L. Assume the edges of the plate are simply supported. Matieaihg this is written as the following boundary
conditions:

nOyt) =0=n(L,yt) (96)
n(x0,t) =0=n(xL,t) (97)
92 92
220y =0=52 Ly (98)
92 92
a—yZ(Xa Oat) =0= a—yZ(X,L,t) (99)

It turns out that this assumption results in some nice pt#=eof the eigenmode basf$(x,y) in which then dis-
placement field was decomposed (see (9)).

3.3 Linearized Dimensional von Karman Plate Equations for3 =y =0

Thedimensionaplate equation (disregarding tke&ndy components of the displacement veaipmwith a source
iSlO

9%n
ot2

Dbend (DAU) + Psh = g(X7 yvt) (100)

where

_ 9% a*n  d*n

A =2 1 i S
o= axt Jr20x20y2 + oyt

(101)

. . . 2
The net units in (100) arl /m?, as the units obsh‘;TQ are% -m- kﬂg =5

10The general von Karman equations are considered.i §8more detailed discussion of these equations can be fiou{d.
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3.3.1 Non-dimensionalization of Linearized von Karman Pl& Equations (3 = y = 0)

Usually, the dimensional and non-dimensional plate equatare pulled from textbooks and it is not clear pre-
cisely how to transform from the former set of variables te kitter. Since the fluid equations ainensionabut
the structure code used in the implementation solveslifmensionlesplate equations, one would like to derive the
relation between the dimensional and the dimensionlesKaoman equations. The goal here is to figure out how to
non-dimensionalize the equation (100).

In (100), n(x,y,t) is the dependent variable andy,t are the independent variables. To perform the non-
dimensionalization, define the following non-dimensiovaiables:

N % (102)
v = (103)
t* = % (104)
"= (105)
By the chain rule,
an* a 19
on’ _on'/ox_ v o w3 _%dn_ on_modn (106)
ox*  9x*/dx 5{;;* % No 9x OX X Ox*
2 a(9L) /ox %P0 o 2 2
ox2  Jgxx \ dx ox* | 9x % No 9x2 X2 X3 ox+?
and similarly for the other derivatives. It follows that
4 @ 040* & 040* @ 04,7*
o= () 5 2 () aene () (109)
Substituting (108) into (100) gives
pshno\ 9°n*  (Dpendlo) 9*n° Dpendl0) 9*n* Dpendo) 9°n*
( tg ) at*Z +( Xg ) ax*4 +2 X(Z)yg aX*Zy*Z + yg 0y*4 =9 (109)
Dividing through by the constant in front of tl&#n* /dt*? term,
02’7* <Dbenctg) 04’7* 2 < Dbencté) 04’7* <Dbenctg> 04’7* _ gtg (110)
ot+2 Psmé x4 PshX%yS ox-2y+2 Pshyé1 ay**  pshno
To non-dimensionalize, set
5
Xo=Yo = No = h, 2= PN (111)
Dbend

where agairh is the thickness of the plate. Then (110) becomes
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azn*

Soz + 0*n* =§ (112)

whereg= E?b—ij' Equation (112) has the same form as the non-dimensionatiegigiven in [5]. The dimensionless-

ness of the equation is easily verified by checking the ufifs o

=1 (113)

unitsg': =

3.4 General Nonlinear Dimensional von Karman Equations for3,y # 0

Recall our notation for the components of the displacementor: q = ( B v n ) Before, we dealt only
with the zcomponent;, assuming the other two components are zero. This redueedoth Karman equations
substantially. We now consider the more general case Bhgg: 0. Then the von Karman equations, taken from [5],

are
2 2
Doena(14n) + psh 2 — 20 [(1-v) (%) (%) (%)
2 2 2 2
oy = +(E+3(3)) (52 +v58) +a-v (%) (33) )
F) 2 2 2 F) 2
~(3+3(5)) (5 v50) - 0w (3) (33)]
B (1-v\d%B  [(1+v\ 9%
et () 5+ () o= (119)
0%y (1-v\d% (1+v\ 9’8
TW(T)W* T> axay ~ 2 (116)
where

on (1)) () ()@ CHEE) o
- (- CH ) CAGE) o

Definingx*, y*, t* andn* as before and

(119)

(120)

one can apply the chain rule and substitute the derivativesims of thex variables into (114), (115) and (116). Doing
SO gives
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Ps%ﬂo) lz?zt?; + (Dbi%dno) t;if]: +2 Dt;%r;%no) 51)9:2!7);2 + (Dbri%dno) % _12 |:(1_ V) (igi%dg%g> (% . % . 0‘3{33;
o -+( () 2+ (1) () ) (3) 3%+ (2) 3% + 101 () (5 55
() 8438 (35 (2) 55 0 (B) 85) a0 (o) (348
(121)
(8)5e ()@ o (F) ) oep -2 o2
B () B)a () () oeay = o

with

0%n* 1+v nég\ /on* a%n* 1-v né on* 9%n*
—'—ax*2)+(—z >(W) <W'ax*ay*>+< 2 )<W) (W—Nz) (124)

QZ_<y8>(c9y* oy ) T\ 72 ) Geye) \ox axay ) T2 ) Uaye ) Loy "axz)) 29

To non-dimensionalize, set

psh®
Dbend

Xo=Yo=Po=w=no=h, =

whereh is the thickness of the plate (m, for example). Then the above equations become

(126)

Dpen 92n* Dpen 4n* Dpen 94n* Dpen 9%n* Dpen an* an* 92n*
e ath +( E3d) ax’34+2( ?13d) ax2y*2 ( ?13(‘) ayr*74 _12[(1_")( ?ﬁd) (%'#'ax*—aw)
* «\ 2 2 % 2 h% * 2p*
a— + (%) %3 (%) (3)) (D55 +v () 55) + v (%) (% %)
* 2 2% 2% 2%
() 83 (%) (3)°) (D 5 v (D 55 + - v) (o) (3 - 325
(227)
1\ 9%B*  [1-v\ (1) 9°B* [1+v)\ [1\ 2%y
(1) e (527) () s (557) (5) ey~ 120
1\ 9%y* 1-v\ /1) 9%y 1+v\ [1\ o°B*
(1) 5+ (52) () e (557) (5) o~ 129
with
_(1\ (on* 9°n* 1+v\ [/1\ [on* d%n* 1-v\ /1\ /dn* 9%n*
2= (5) (5 )+ (557) () (5 aear )+ (520) () (G ) o
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0 — 1_ an*OZrI* N 1+v } ari* 020* N 1—v 1_ an*OZU*
2= \h) oy ay= 2 h)\ox axay 2 h) \ oy ox2

(131)

Dividing through by the appropriate coefficients resultgha following non-dimensional set of von Karman plate

equations:

2 n*
L 12{(1— v)

—=

an* dn* | 9p* | ay* | 9%n*
ox*  oy* + oy* + ox* [ ox*oy*

- % £\ 2 2% 2% £\ 2 2 n* 2 n*
9B 1(9dn o°n o°n oy* 1 (dn 9°n 9°n
Dbend +<5x*+§(5X*))(5x2*+v5y*2)+(w+§(5)’*)>(W+V‘3X*2

92B* R (1—v) 92" R (1+v) a2y

ax*Z

where

an* 9%n* 14+v\ /dn* d%n* 1-v\ /dn* 9%n*
Ql = . *2 5 ’ * k + . 2
ox*  0x 2 ay* ox+oy 2 oxs  oy*

on* 9%n* 1+v\ /dn* 9%n* 1-v\ /dn* 9%n*
Qz = . + _ _— + .
ay*  dy2 2 ax+  ax+dy* 2 ay*  Ix2

One can check that these equations are really dimensidnjedtecking the units aj, as before:

N
unitsg: g’ = Wﬂp:N'm:
'Dbend N'm N'm

The boxed equations above are consistent with what is gineheofirst page of [5].

4 The Coupled (Linearized) System

(132)

(133)

(134)

(135)

(136)

(137)

Our aim here is to write the coupled system of equations d®sgrthe fluid motion around a solid plate in the

z= 0 plane having the form:

(§) - (e8)(%)
(5. -

The coupling matriceB andC come from the implementation of the appropriate BCs.
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Recallthaty’ = (v v w ' p )T € RS are the perturbed fluid variables (§o=U +U’ whereU is

the base state) argl= ( B v n )T € R3 is the displacement in each of tRey, z coordinates respectively (¢
andy are displacements in the plane amds the displacement out of the pldieln this Reduced Order Model, we
expanded)’ and thez-component of the displacement vector in the respective orthonormsisba

U= at)g) (139)
k=1
P

Nyt =3 b(t)&(x.y) (140)

Since the original coupled fluid/structure system of PDHslveicome a coupled system of ODEs in the context
of the ROM, theF andSvectors in (138) will contain theg(t) coefficients andby(t) andby(t) respectively:

al(t)

F=(alt) )= ; € RM (141)
aw (t)
ba(t)

/b)) _ | e

s=(bw )= | B0 [ 142
bP.(t)

The matricesA, B, C andD describing the system (138) will be determined by the liizeak Euler equations for
the fluid flow, the linear von Karman plate equations for thegg@imotion (with all non-linear terms in the full set of
equations omitted) and the appropriate no-penetratiomdiany condition, whose implementation was discussed in
§2.2.

4.1 Fluid Side

For the fluid side, we consider the linearized Euler equation

: — ouU’ — ou’ — ou’ - =
/ B JE— /:
U7+ AU) o+ AYU) o+ AU) -+ C(U, DU =0 (143)

where theA,(U),Ay(U),Ay(U) andC(U, 0U) matrices are derived in [1] and are given in (4) and (5) retiydg. Let

A( )E( AU) Ay( ) Ay )) (144)
and define the linear operator

2V’ =—AU)-0U'—C(U,00)U’ (145)

n Dan’s notation = u, y= vandn = w. The notation has been changed in this document to avoidisiomf with the fluid velocities, denoted
by u, vandw. Note also that in the notation of [3; (t) = a;(t), &;(X,y) =W;(X.Y), Bmn(X,Y) = Umn(XY), @nn(X,Y) = Vin(X,y)-

12Thex andy components will be omitted in this analysis to ensure thaltieg system is linear. See the “Structure Equations”isedor more
on this.
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Taking the Galerkin projection of equation (143) onto eaCtDAmodeg; gives

U%a), = (2V0), (146)

for

(UV)y = /Q UTH(U)vdQ (147)

TheH (U_) operator is defined in [1] and is stated explicitly in (11).irsthe orthonormality of the basis functiopg
(146) reduces to the following linear system of ODEs:

M
at) = at) (& ZLay (148)
=1

wherek =1,...,M. Applying the definition of the inner product (147) to (148)daintegrating by parts (where the
integral in (149) is over thentireboundarydQ = dQp U dQF) gives

)= _
(U)[A(U) -nj@dS+ [ (0 -¢/HU)AU) —@/HU)C(U,0U)) @dQ}  (149)

Recall that the linearized no-penetration boundary caordin the context of the problem in question (with the
fluid flow in thex-direction and a plate lying in the= 0 plane)

n=w+ LT[;—Z on dQp (150)

was implemented in 82 and an approximate non-reflectin§idltt-boundary condition was implemented in 83. In
particular, one had in (82) that

. P
t)<[9 fﬂdeJr/ k(@) dS> Zl / @& dS— Zbk /m (pﬁﬂds (151)

Substituting (151) into (149) yields, fér=1,...,M,

$1220) { = (Jooe RIPIS+ g M(BIAS) + fo (- aTHU)AU) - gHU)C(U, 00)) g}

() —
A +31bi(t) 50, ((pfuax)dS—FZ Lbi(t ) Jae (—@E)dS

(152)

whereh;(¢) depends on the four cases considere@® &hd is given explicitly in (81). (152) defines a system of
equations that can also be written in matrix form:

F=(A B)(I;) (153)
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where the entries of the € RM*M andB € RM*2P gre

([, erdst [ ntaas)+ [ (0-aTHOAD) - THUOCO.00) gdo. 1<ij <M
(154)

B(i, j) = fan( sz;i‘)dS 1§i§|\/|, 1§j§P. (155)
Joo (—4P&_p)dS 1<i<M, (P+1)<j<2P

These equations will be written in matrix form shortly. Nthat the integrals in (155) and the surface integral in (154)
areL? inner products.

4.2 Structure Side

At this stage in the analysis, we require the stability ofyahke coupledinear system (138). As discussed in the
“Structure Equations” section, the motion of the plate suased to follow the von Karman plate equations, which are
in general non-linear. In order to end up with a linear settnfcture equations, we disregard the non-linear terms,
which entails ignoring the in-plane displacements andetweikkeeping only the) component of the displacement

vector3q ( B v n )T. Let us consider thdimensionakquation (100). Doing so will make it easier to interpret
the energy matrices derived in a physical context.

Recall that thelimensionalinear von Karman equation for tt,ecomponent of the displacement is
(psh)n) = _Dbend(D4’7) +9 (156)
where* = (0%)? = (A)? is the biharmonic operator with the derivatives with respez omitted, given by

04 04 a4

04=
0x4 0y4 x20y2

(157)

andDpeng is a constant, namely the bending stiffness. The fundiary,t) will be defined later in this document to
be the pressure (and indeed has the units of presiyire?). We will project equation (156) onto the orthogonal POD
modeséy(x,y) using the standard? inner product

(uVv) 2= /an uvdS (158)

Let (u,v)7, denote thd.2 inner product over the plate boundat@p and(u,v)f, denote the.? inner product over the
far-field boundaryyQr. Earlier,thez-component of the displacement was expanded in the appteprithonormal
eigenmode basis, i.e., tlg(x,y):

P
=3 B8 () (159)

Substituting (159) into (156) one has, fo=1,...,P,

BB5ee §3.
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psh (ZF:;_E)I (t)5| ) Ek) Ez = (DbendD4 (_ zrzl by (t)fl) +9, Ek) Ez
psh3fib ® @, &)z = —Dpena[ 1 (bi()0%&,&) T+ (g, &r2 (160)
pshbk(t) = —Dbendzrzl by (t) (D4EI ) Ek) L2 + (ga EK)EZ

REMARK: Note that the units of the POD basis functidj$x,y) are taken to be units of length, e.m, This means
theL? inner product&j, &;)7, = 1 has units of area, i.en¥. It follows thatpsh = psh(&;, ;) actually has units of
mass, not mass per unit area. We call attention to this faetliecause it will come into play when the energy matrices
for the coupled system are derived later in this document.

If we consider a square plate in the- 0 plane with 0< x,y < L and impose the BC of simply supported edges, it

turns out that the functioris*& andé; are orthogonal, i.e(,D“Ek, E,-)Ez =0forall j #k. Then the last line of (160)
reduces to

(Psh) Bi(t) = —Diena( &k, &) 2 bi(®) + (0, &) 2 (161)

The ultimate purpose of this derivation will be to derive arey matrix, call itEp. It will be desired to decompose
this matrix into two submatrices, one representing the rapdsone the stiffne$§ Defining

¢ = Dpend(0*&k, &) fz = Dbend/‘;QP 0*8&dS (162)
_ P_ [
Gk(t) =(9,ék) 2 = ' /5 o 0ékdS (163)
(161) becomes
(psh) b+ wfby = Gi(t) (164)

(164) is actually the dimensional version of (14) on p. 4 §f(f@ith the non-linear terms omitted).

Let us now specify the right hand side tegtfx,y,t) in (160) to be the unsteady fluid pressure loading3g(t) is
the pressure loading term. The pressure is applied downavaddhe coordinate system is chosen in the direction of
increasinge. It follows that

g(Xv yvt) = p(Xa Y, Oat) (165)

and

G(t) = (&P = A . &Pxy.01)dS (166)

Expanding the pressure in the appropriate component afjtbasis vector,

M
P %00 =5 & t)@°(x) (167)

Substituting (167) into (166) gives

15ee §32.3.
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Gi(t) = iai (t) AQP @ EdS= i (@57 fk) fz ai(t)

Let

Ga(t)

Ge(t)

Then (160) can be written as a linear system in terms o$thector, defined in (142):

by (t) by (t)

5( : Opxp (psh) Ipxp 5( :
bp(t b

(PG| bty | = ) ba(t)
: —Lpxp Opxp :

b (t) b (t)

(psh) S = L S

wherelpyp denotes th® x P identity matrix and P«p is the zerd® x P matrix and

Dbend (DAEL El) Ez 0
Lpup = .. :
0 -+ Dpend(0%p, &p) Ez

Here,L € R?P*2P_ Using (168), the vectds in (169) can be written as

G=JF

where

Opxm

I=| (da)y . (&) | <R

((pfafp)fZ (qjﬁlafp)EZ
Alternatively, one can write (170) as
S=CF+DS

whereC = ;5JandD = p—ihL.
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4.3 Summary: Coupled Fluid/Structure System
We are now ready to write down the equations for the coupled/#tructure system in the form (138). Recalling

the definitions of the vectors andS, the first containing the fluid ROM coefficients and the secomataining the
solid ROM coefficients and their time derivatives, the systeas the form

() - (28) (5)

X = K X

Define

(u,v)dHAE/g;D-(uTH( JAU)) vd (176)

Lemma 4.3.1. (-, )gua - R® x R® — R defined in(176)satisfies the first three axioms of an inner product.

Proof. We check the first three inner product axioms:

1. The first axiom is thafu+ v,w)gua = (U,W)gua+ (V,W)gua. This follows immediately from the linearity of the
divergencél-.

2. The second axiom to check is th@tu,v)gya = a(u,v)qna for any scalara. This property is also trivial,
following directly from the linearity of the divergence ajagor.

3. We must show that the operator is symmetric, namigly) 4,5 = (V,U)yua- Applying the divergence theorem,

(UV)gna = JoO- (UTHU)AU))vdQ
= JaaUTH(U) [AU)v- n]dS JauTHU)[AU) - v dQ (177)
J)u

)N A
= [y [H(U)U [AU)v-n]dS— (u,AU) - Ov),

The first term in the last line of (177) is a surface integrabofector dot product (becaustis symmetric),
which is an inner product and hence symmetric. The métrir the second term of the last line of (177) was
actually derived such thdt, )y defines an inner product and thus satisfies symmetry. Itvislidnat, since
(U,V)gua is the sum of two symmetric operators, it too satisfies thersgiry property.

O
Now, A € RM*M B ¢ RM*2P C € R?P*M andD e R?™*?" matrices are given by
((pf q)f) q)_]_ 71)52 - (QQL,C(LZ, DLI)@-)H + ((pla (pl)dHA
((pg q)f) q)z 71)52 - (q)ZvC(U DU)QO_]_)H + ((pZ, (pl)dHA
A= e RM*M (178)

— (@, ) 2 — (nu(n), D2 — (.U, 00) @) + (M, @)apia
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B= E( Buxp | é.ﬁxM ) (179)
o . i -
(qﬁ“JaLQA)LZ (qﬁhaaixp)l_z (m’fl)Lz _(qaaEP)LZ
Op<m Opxm
C=| Z(a.&) L (&) | = (180)
pTlhéPxM
P P
pTlh ((pfafp)LZ % (qﬁhEP)LZ
0P PP Opxp ‘ Ipxp
D=| B (0%€&), O = (181)
; . : Opxp —ﬁtpxp Opxp
0 e — Do (0*Ep.&p) 2

5 Stability Analysis

The goal of this system is to prove the stability of the codjsigstem (170). To do so, we must make one additional
assumption, namely that the flow is uniform. Mathematically = 0. A consequence of this assumption is that the

C(U,0U) matrix is identically zero. This property is nice becausmikes theA matrix symmetric which makes
possible the upcoming stability analysis.

5.1 Useful Prior Results

In analyzing the stability of the coupled system (170), wk mvake use of the following theorems, proven in [3].
First, a definition, quoted from [3]:
Definition 3.1 in [3]. We say that K is ‘stable’ if and only if:
1. Kis diagonalizable irC.
2. VA e SpK),Z(A) <O0.

Theorem 3.1 in [3]. A real, symmetric positive definite (RSPD) matrixi& an energy matrix for K if and only if for

all X that solveX = KX, $ & (XTEcX) < 0.
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Theorem 3.4 in [3]. If A and D are two real, stable matrices with energy matricgsaid By, then

A B . .
{EaB+( EpC)" =0} = { ( c D ) is a stable matnx}

5.2 Energy Matrices (Structure Equations in Dimensional Cordinates)

We now derive the energy matricEg andEp for the problem in question.

5.2.1 TheEa Matrix

If the flow is assumed to be uniform, tlematrix reduces to

_(‘vaqlf)gz—(hl(q’l)al)EZ‘f‘(‘Plaﬁol)dHA —(40137443);—(hM(col)vl)fer((pl,w)dHA

—(B. B~ (@) D+ (@ @ana - — (66) 12— (u(@2). D)z + (@2, B)gria
A=

— (&%, 4"15)|_2 (), Dz + (M, @)aua - —(‘lﬁaﬂa)fz—(hM(W)al)EZ+(WaW)dHA

If F=(ai(t) ax(t) --- am(t))T € RMis the vector of fluid ROM coefficients; satisfies the system
F=AF

Recall the definition of th&? inner product:

(u,v)Lzz/ uvdS
Flo}

Under the uniform flow assumption, tlie-), 5 integral reduces to

(UV)gua = JoU ( (V) (g))VdQ
= JoV' O (H(U)AU)u)d _
ZJQVT[D Q*( (U)U+H( J)AU) - (Ou)] dQ
= JoV' [H(U)AU)]- (Ou)dQ

By Theorem 3.1, in order fdEa to be an energy matrix with respectAgit must be that

d )
r (FTEAF) =FTEAF =FT[EAAIF <0

NI =

Lemma 5.2.1. Ep = | is an energy matrix fo(184)
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Proof. LetEa =1 in (187). Then

(FTEAF) = (UUn=E (188)

I\)ll—‘

FTE) =5 3 40

using the orthonormal POD representatitin= M | a(t) g(x), the fact that/, ¢H (U ) g = ojx and the definition of
E= 2(U U’)n, an energy-like quantity derived from the flow disturbandewas shown in [1] thag u’,u),=0

for C(U,0U) = 0. It follows from (188) thats & (FTEAF) = 0 for Ea = |, meaning (187) holds. By Theorem 3.1 in
[3], Ea = | is an energy matrix.

NI =
I\)IH

o
5.2.2 TheEp Matrix
We now derive an energy matrp. Recall that
by (t) by (t) 0
Opxp (Psh) Ipxp
be(t) be(t) 0
hyd | - = - +
Pt | by (1) - ba(t) Gi(0) (189)
: —Lpxp Opxp : :
b (t) b (t) Gp(t)
(psh) = L S + JF
where
4 P
Dbend(D Elafl)l_z 0
Lpxp = : : (190)
0 -+ Dpend(0%p, &p) Ez
By Theorem 3.1, in order fdEp to be an energy matrix with respecty it must satisfy
1d o1 T &_ ol
o (S'EpS) =S'EpS=S'[EpD]|S< 0 (191)

sinceS= DS (recall thatD = pTth)' A sufficient condition for (187) to hold is if the matripL were non-positive
definite (assumings, h > 0, which they have to be to make sense as physical quantities)

Lemma 5.2.2. The matrix

Lpxp Opxp

Ep = (192)

Opxp | (psh)Ipxp

is an energy matrix fo(191)
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Proof. Itis sufficient to show thaS" EpLS < 0 whereS= (b(t) b(t))T. Multiplying out this quadratic form:

Crxp | Opxp Opxp ‘ (psh)lpxp
: b(t)
T _ T T
STEpLS = ( b(t)T bt)" ) - b(t) )
Opxp | (Psh)lpxp / \ —Lepxp | Opxp
Opxp ‘ (psh)Lpxp
. b(t) (193)
_ T T :
= (b b7 ) | —— o) )
—(psh)Lpxp Opxp
= (psh) [~b(t)TLpxpb(t) +b(t)TLpxpb(t)]
=0
It follows from (193) that% % (ST EDS) = 0, meaning=p defined above is an energy matrix. O

5.2.3 TheEp Matrix in terms of Kinetic and Potential Energy

Recall the linearized, dimensional von Karman equationgepted onto the POD modeg(X,y) for the b(t)
coefficients can be written as a second order system

P
(Psh)bk(t) +Doena 3 bi(t) (01, &) > = (P, &2 (194)
=1
In matrix form, this system is
d’b -~
(psh)lPxPW +Lpxpb=G (195)

wherel is theP x P identity matrix and

Dbend@“flfl)fz 0

Cpxp = (196)

: . : .
0 .-+ Dpend(0%p,8p) 2
Compare (195) with equation (2) in [4]. In this contepdsh)lp.p represents the mass matkikand the matrixt. plays

the role of the stiffness matrik. Note thaiG is the vector of external forces acting on the structurehénrtotation of
[4], the damping matrix is zero, as (195) containgdhgdt term.

The mathematical definitions of kinetic and potential eseng
1 . T .
KE = 54 Mq (197)
PE = %qTKq (198)

whereM is the structure mass matriK, is the structure stiffness matrix and the equation for $tmat displacement
has the form

d?g _dg ext
Moz + D5 +Ka=T (199)
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As stated a few lines abov®] = (psh)lpxp, K = L andD = 0. Note thatpsh has the units of mass per unit area;
however, the inner produ¢f;, EJ)EZ =1 thatis implicity present in this quantity (see (160)) ha#siof area, meaning
the units of the mass matrix are actually units of mass, aigatdes

It follows that theEp matrix has precisely the form

ED_< 'g |8| > (200)

whereM represents a mass matrix akda stiffness matrix. In this notation, the quadratic fdBYEpS decomposes
into a KE and PE component:

lac o T ORT K 0 b\ 1+ 1o
SSTEpS=5 (b7 b )(o M)(b>_§b Kb+ 5b"Mb = KE + PE (201)

NI =

O

5.3 Stability Results

Theorem 5.3.1. Under the uniform base flow assumpticmaz 0), K= cC D

A B ) defining the coupled system
(given in(175)with A, B, C, D defined if178), (179), (180)and(181)respectively) is a stable matrixuf= 0.

Proof. By Theorem 3.4 in [3]K is a stable matrix iEaB+ (EpC)" = 0. To simplify the notation, write

(&) - — (&)L

B= : : : : =( Buxe | -Chw ) (202)

(0 @8), - (d02), | - @&l - (&)

Opxm bt
X
= P P —

C=| H(@&a). - @& |= (203)

1 P 1 P

@ ((pf’EP)LZ @ ((ﬂavfp)LZ

In this notation, the matrix sum of interest becomes
EaB+ (EDC)T = EAB—FCTES .
Lpxp Opxp
:l( éMXP | _CNEXM )+( Om<p ‘ pTlhéll—xM )

204
Opxp | (psh)lpxp (204)

=( Bwxp | —Chm )+ ( Ouxp | Chim )

= ( Bumxp | Opxm )
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(204) is the zero matrix iByp = 0 where

Bumxp = : : (205)

o), - (),

Clearly this holds ifu= 0, sou= 0 = EaB+ (EpC)" = 0. By Theorem 3.4 in [3]K is stable under the hypotheses
of the claim.

O

Note that the systernanbe stable for non-zerg; it is just not guaranteed to remain stable. In the case where
u= 0, the structure cannot extract energy from the mean flongasre in flutter. Fou'# 0, an aero-elastic analysis
proceeds by determining the conditions under which thensijaes oK will have positive real part. For supersonic
flow, it turns out that oncea exceeds a certain threshold (the flutter speed), the systeomies linearly unstable.

6 Current and Future Work: Staggered Time Integration Scheme for Cou-
pled Linearized System

Having studied the stability of the coupled linear syster@8(] the next step is to derive a staggered time-
integration scheme for this system. We are considering a2l accurate explicit/implicit (fluid/structure) schem
similar to the 1st order accurate explicit/implicit schentiscussed in [3]. The scheme currently being considered
involves 2nd order Runge-Kutta (RK-2) time integration tiee fluid field and an implicit, Crank-Nicholson scheme
for the structure side. For example, the scheme might hav&tm:

1. Start with some initial guess€$ and< .

2. Advance the fluid system forward in time using the RK-2 @fpscheme:

F*_Fn n
o =AF +BS (206)
E** _ F*
= AF*+BS 207
A + (207)
n+1 1 * Kok
Pl = 2 (F"+F™) (208)

3. Correct the updated fluid field to enforce stability and @rder accuracy:
Fn+l _ Fnrd [Fnﬂ } (209)

4. Computes*t1 using the trapezoidal family of schemes for a chogea [0, 1] (note that the scheme will be
implicit for a € [1/2,1]).

37



gHl_g

T CF"l 4 pgra (210)

where

S = (1-a)S + a9+ (211)

5. Correct the updated structure field to enforce stability 2nd order accuracy:

gHl_gig [S”ﬂ (212)

One might also try some variations of the scheme above wightér” coupling of the fluid and structure fields.
Proving stability of such a scheme is likely to be far mordiclift. Current work is focussed around deriving the
corrector terms[F ”*lc} and [S”*lc] to enforce 2nd order accuracy and stability of schemes ssitheaone given
above.
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