
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Achieving and maintaining performance
and performance portability within the
Albany multi-physics code: perspectives
& tools
Irina Tezaur1, Max Carlson1, Jerry Watkins1, Mauro Perego1,
Kyle Shan2, Carolyn Kao3, Kim Liegeois1

1 Sandia National Laboratories, Livermore, CA, USA.
2 Micron Technology, Boise, ID, USA.
3 TSMC, Hsinchu City, Taiwan.

SAND2023-12634C

SIAM CS&E 2023, Amsterdam, Netherlands.

February 26 – March 3, 2023

The Albany Code Base

2

Albany: open-source1 parallel C++ unstructured-grid multi-physics finite element

code built for rapid application development from Trilinos2 Agile Components

Distinguishing features of Albany:

• Funded entirely by applications residing

within

• Both a “sand-box” for prototyping new

approaches and a production code

• Algorithms/software are developed &

matured directly on applications

• Applications are “born” scalable, fast,

robust, performance-portable, and...

• Equipped with embedded advanced analysis

capabilities: sensitivities, bifurcation

analysis, adjoint-based inversion, …

1 https://github.com/sandialabs/Albany
2 https://github.com/trilinos/Trilinos

https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos

History of Albany

* Albany github repo: https://github.com/SNLComputation/Albany.

Since its creation ~2009, Albany has housed many diverse algorithmic projects & applications*:

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

* I. Tezaur et al. "Albany: a Trilinos-based multi-physics partial differential equation research tool created using the Agile Components code

development strategy," SIAM CS&E 2019 (featured MS: "Multiphysics: Extensible, Composable Algorithms and Software"), Spokane, WA.

Andy Salinger

“Father” of

Albany

3

Albany and its Requirements Today

4

Primary customer/funder: U.S. DOE SciDAC-funded project land-ice modeling

project, FAnSSIE (Framework for Antarctic System Science in E3SM, FY23-FY27)

• Albany houses the velocity solver of MALI (MPAS-Albany Land Ice), the land-ice

component of the U.S. DOE’s Energy Exascale Earth System Model (E3SM)

Required capabilities in Albany for science using MALI:

• Easy way to add new physics/PDEs

• Performance portability to advanced heterogeneous platforms

• Fast, scalable and robust linear solves across different architectures

• PDE-constrained optimization capabilities for ice sheet inversion

• Adaptive mesh refinement (AMR) of extruded tetrahedral meshes

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-

SI)

Land
Ice

(MALI)

Land
(ELM)

Requirements for software quality:

• Pruning of unfunded applications/unsupported code

• Version control

• Automated parameter tuning for various architectures

• Automated nightly regression and performance testing using VOTD Albany & Trilinos

See MS284 and MS318 on Thur. Mar. 2 for

more on MALI and ice-sheet modeling.

Albany and its Requirements Today

5

Primary customer/funder: U.S. DOE SciDAC-funded project land-ice modeling

project, FAnSSIE (Framework for Antarctic System Science in E3SM, FY23-FY27)

• Albany houses the velocity solver of MALI (MPAS-Albany Land Ice), the land-ice

component of the U.S. DOE’s Energy Exascale Earth System Model (E3SM)

Required capabilities in Albany for science using MALI:

• Easy way to add new physics/PDEs

• Performance portability to advanced heterogeneous platforms

• Fast, scalable and robust linear solves across different architectures

• PDE-constrained optimization capabilities for ice sheet inversion

• Adaptive mesh refinement (AMR) of extruded tetrahedral meshes

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-

SI)

Land
Ice

(MALI)

Land
(ELM)

Requirements for software quality:

• Pruning of unfunded applications/unsupported code

• Version control

• Automated parameter tuning for various architectures

• Automated nightly regression and performance testing using VOTD Albany & Trilinos

This talk: highlight capabilities for

achieving/maintaining performance &

performance portability in Albany, with

focus on pros/cons and lessons learned.

Outline

6

• Albany capabilities & supporting tools

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing

➢ Automated performance tuning

• Summary & perspectives

Outline

7

• Albany capabilities & supporting tools

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing

➢ Automated performance tuning

• Summary & perspectives

Many components are Trilinos*

packages:

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra

(Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more…

: 40+ packages; 120+ libraries
* https://github.com/trilinos/Trilinos

Components in Albany = cutting-edge technology from Trilinos,

SierraToolKit, DAKOTA, FASTMath, Kitware, etc.

The Components in Albany

Albany developers work

with Version of the Day

(VOTD) Trilinos, which has

pros and cons.

TPL

capability

Clean

dashboard

Pro: code can inherit

unexpected enhancements

“for free”

Con: code might also

inherit bugs/regressions

which can be frustrating to

track down and get fixed to

maintain clean dashboard

8

https://github.com/trilinos/Trilinos

Four Key Ingredients:

1. MPI+X programming model for performance portability

• Handled by Kokkos package

2. Template-based generic programming (TBGP)

• E.g., Phalanx evaluators templated on evaluation

type (right)

3. Graph-based finite element assembly (FEA)

➢ Handled by Phalanx package

4. Templated-based automatic differentiation

➢ Handled by Sacado package

Shape Opt

PCE
Adjoint

Hessian
Tangent

Jacobian
Residual

Evaluators Templated
on Evaluation Type:

<EvalT>

Template Specializations:

(Generic)

Albany Under the Hood

Albany provides the “glue” that connects

components (via abstract interfaces).

9

For more details on these

ingredients, please see talk by Jerry

Watkins (MS284: Thurs. Mar. 2).

Albany Supporting Tools: Kokkos – Performance
Portability

10

• Kokkos1 is a C++ library that provides performance

portability across multiple shared memory computing

architectures via MPI+X programming model

➢ Examples: Multicore CPU, NVIDIA GPU, Intel KNL

and much more…

• Abstract data layouts and hardware features for

optimal performance on current and future

architectures

• Allows researchers to focus on application or

algorithmic development instead of architecture

specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

Template parameters are used to get hardware specific features.

1 https://github.com/kokkos/kokkos.

Pros:

• Same code runs on diff. platforms

• Code is “future-proof”

• Forces you to write better code

Cons: better performance may be

possible with architecture-specific

optimizations

https://github.com/kokkos/kokkos

Albany Supporting Tools: Phalanx Evaluator –
Templated Phalanx Node

11

• A Phalanx node (evaluator) is constructed
as a C++ class

• Each evaluator is templated on an
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g., double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.,
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA Execution Space;

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

}

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

}

Pros:

• Easy to implement

new physics

• Easy to Kokkos-ize

Albany Supporting Tools: Phalanx Evaluator –
Templated Phalanx Node

12

• A Phalanx node (evaluator) is constructed
as a C++ class

• Each evaluator is templated on an
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g., double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.,
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA ExeSpace;

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

}

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

}

Pros:

• Easy to implement

new physics

• Easy to Kokkos-ize

Albany Supporting Tools: Phalanx –
Directed Acyclic Graph (DAG)

13

Pros:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Cons: Performance loss through fragmentation

• Mitigation: introduction of memoization

DAG Example

(memoization)

DAG Example

Single CPU socket or GPU

Albany Supporting Tools: Sacado – Automatic
Differentiation (AD)

14

Pros:

• AD provides exact derivatives − no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, Hessian

➢ Examples: optimization, sensitivity analysis

Con: AD has some overhead

• Mitigation: specify Sacado data types for deriv. components via class templates

➢ DFad (most flexible) – size set at run-time

➢ SLFad (flexible/efficient) – max size set at compile-time

➢ SFad (most efficient) – size set at compile-time

Fad Type Comparison (Serial, OpenMP (12 threads), CUDA)

Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

Significant speedups

possible when deriv.

array sizes are known

at compile time on

GPU (50-250x)

Performance Portability Demonstration: Antarctica
Weak Scalability Study

15

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44

cores/node

• OLCF Summit-POWER9-V100 (V100): 44

cores/node + 6 GPU/node

Benchmark:

• First-order Stokes solve in ALI

• Structured hexahedral element mesh

• 16 to 1km structured Antarctica meshes, 20

layers

• Scaled up from 1 to 256 compute nodes

Mesh Example: 16km, structured Antarctica

mesh (2.20E6 DOF: 20 layer, 2 equations)

Benchmark used to assess performance & performance portability.

16

Setup:

• Same input file for all cases

➢ Performance portable point smoothers

➢ No architecture specific tuning

Results:

• Performance degrades at higher resolutions

➢ (645→1798 total linear iterations)

➢ GPU scaling slightly better

• Speedup on GPU

➢ 3.2-4.1x speedup Summit over Cori

➢ 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations

without architecture specific tuning!

For additional results/analysis, please see talks

by Jerry Watkins (MS284: Thurs. Mar. 2) and

Mauro Perego (MS72: Tues. Feb. 28).

Performance on Cori and Summit

16

17

Performance Highlights

Major improvements to finite element assembly time:

• Memoization to avoid unnecessary data movement and computation

• Boundary condition refactor to reduce memory footprint and data movement

• Tpetra::FECrsMatrix refactor to reduce memory footprint and data movement

Solver portability on Cori and Summit:

• MueLu SemiCoarsen refactor using Kokkos

• Ifpack2 portable smoothers tuned to GPU hardware

0

20

40

60

80

100

120

2018 2019 2020 2021

W
a

ll-
cl

o
ck

 T
im

e
 (

s)

Calendar Year

Assembly Time

CPU GPU

From

architecture-

agnostic

improvements

to Albany FEA.

From Trilinos enhancements, which Albany inherited.

Albany performance improves in time due to Albany’s

development model and maintenance workflows.

J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L.

Bertagna, C. Kao. et al. “Performance portable ice-

sheet modeling with MALI.” (Submitted to IJHPCA, 2022)

https://arxiv.org/abs/2204.04321

https://arxiv.org/abs/2204.04321

Outline

18

• Albany capabilities & supporting tools

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing

➢ Automated performance tuning

• Summary & perspectives

Albany in February 2019

* Albany github repo: https://github.com/SNLComputation/Albany.

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

* I. Tezaur et al. "Albany: a Trilinos-based multi-physics partial differential equation research tool created using the Agile Components code

development strategy," SIAM CS&E 2019 (featured MS: "Multiphysics: Extensible, Composable Algorithms and Software"), Spokane, WA. 19

https://github.com/sandialabs/Albany

https://github.com/sandialabs/Albany

Albany Today

* Albany github repo: https://github.com/SNLComputation/Albany.

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (MPAS-Albany Land Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

Main Albany repo*: https://github.com/sandialabs/Albany

Tags: https://github.com/sandialabs/Albany/tags

Albany-LCM repo*: https://github.com/sandialabs/LCM

Albany-RPI repo: https://github.com/scorec/albany

* Maintained &

tested nightly by

Sandia teams.

20

Lesson learned:

supporting unfunded

capabilities in large

HPC code is not

sustainable long-

term…

New

capability:

PyAlbany,

a python

wrapper for

running

Albany!

New capability: Albany is know a spack-age (https://github.com/E3SM-Project/spack.git)

https://github.com/sandialabs/Albany
https://github.com/sandialabs/Albany/tags
https://github.com/sandialabs/LCM
https://github.com/scorec/albany
https://github.com/E3SM-Project/spack.git

PyAlbany: A Python Interface to Albany

21

Lesson learned: PyAlbany allows to easily and quickly…

• Use Albany without C++ or bash knowledge (convenient for students)

• Prototype applications that require multiple Albany solves

• Enable fast pre-processing and post-processing in Python

• Use Python as a glue language to couple Albany with other software: for UQ methods (PyDakota),

machine learning (TensorFlow, Keras, Scikit-learn), plotting (Matplotlib, Paraview), ...

K. Liegeois, M. Perego, T. Hartland, “PyAlbany: A Python interface to the C++ multiphysics solver Albany”.

Journal of Computational and Applied Mathematics, 425, 115037, 2023.

Running Albany through PyAlbany
is faster for MCMC analysis! (don't
need to go through the setup phase

of Albany for every sample)

Please see talk by Kim

Liegeois (MS284:

Thurs. Mar. 2) for more

on PyAlbany.

Lesson learned: since MALI uses Trilinos and

Albany Versions of the Day (VOTD), nightly

testing across variety of architectures is

essential for maintaining code quality!

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* https://github.com/sandialabs/Albany

(Automated Regression) Testing, Testing, Testing

22

https://github.com/sandialabs/Albany

… and More (Automated Performance) Testing!

23

Lesson learned: nightly regression testing is not sufficient! Performance testing is also needed to secure

investments in performance & portability in evolving software.

• Changes in code base could cause performance deterioration

• Performance improvements in one architecture could decrease performance in another

• Manual analysis is time consuming and imprecise
Solution: changepoint detection algorithm

automatically applied to nightly performance test

data to identify/flag large changes in performance.

• Infrastructure is provided in a Jupyter notebook, exported as

html to a website (https://sandialabs.github.io/ali-perf-data)

• Daily email provides nightly performance test summary

Figure below: Total simulation time for a 2-20km

resolution Antarctica problem, executed nightly

https://ikalash.github.io/

Detecting Performance Regressions/Improvements

24

Example: transition to Kokkos 3.5.0 caused a performance regression but was soon fixed

Total Fill time: for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice.

Regression Improvement

Two STDs

Monitoring Performance Comparisons

25

Speedup of Total Fill time: from memoization for a 1-to-7 km resolution Greenland

mesh, executed nightly in Albany Land Ice

Example: Memoization comparison (with & without) shows that relative

performance has improved

99% confidence

interval for the mean

Automated Parameter/Performance Tuning

26

Lesson learned: hand-tuning solver parameters can be a long/painful process, does not translate b/w

architectures.

Solution: create a framework for determining optimal parameter values to achieve best performance

(smallest CPU time) on HPC systems using offline and real-time data.

Best runtimes for a range of total #

allotted Albany run budgets: 3-to-20

km resolution Greenland mesh

Best runtimes using GPTune Bayesian

optimization, Latin Hypercube Sampling

and Monte Carlo Sampling: 3-to-20 km

resolution Greenland mesh

Example: autotuning used to improve performance of multigrid smoothers on GPU

M. Carlson, J. Watkins, I. Tezaur. “Automatic performance tuning for MPAS-Albany Land Ice.” JCAM, 2023.

Total # allotted Albany runs

30 total # allotted Albany runs case

Outline

27

• Albany capabilities & supporting tools

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing

➢ Automated performance tuning

• Summary & perspectives

Summary & Perspectives

28

Flexibility

Efficiency

• In developing HPC codes, there is often a tradeoff between flexibility and efficiency. Libraries

like Kokkos and Trilinos can enable both to a large extent.

➢ Reasonable scalability and performance is obtained across different architectures without

architecture-specific optimizations within the Albany code base

➢ Code promised to be “future proof”

• Maintaining performance and portability is crucial for an active code base

➢ Supporting unfunded capabilities in large HPC code is not sustainable long-term

➢ Regular regression and performance testing is crucial, especially in presence of every-changing

codes

• Automatic processes like testing and parameter tuning can save developers a lot of time

➢ A change-point detection algorithm can help identify performance variation automatically

➢ Optimal solver parameters can be determined for a specific architecture automatically using

black-box optimization algorithms

29

Bridging the Gap between Sandia & Academia, and
Promoting Inclusion & Diversity through Albany

Recently-funded 5-year Grande CARES MSIPP consortium1

will connect students/academics from minority serving

institutions in U.S. southwest with Sandia National

Laboratories via tools like Albany, Trilinos, Kokkos, …

1 https://sites.google.com/view/grande-cares/home
2 https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce

-pipeline-of-scientists-and-engineers.html

2

https://sites.google.com/view/grande-cares/home
https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce-pipeline-of-scientists-and-engineers.html
https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce-pipeline-of-scientists-and-engineers.html

30

Special Issue of CiSE on Research Software Engineers

Estimated publication of

special CiSE issue:

March/April 2024.

“The goal of this special issue is to explore the future of research software engineers in the U.S.,

with emphasis on the cultural, educational, and professional paradigm shifts that need to occur.”*

* https://www.computer.org/digital-

library/magazines/cs/future-research-software-engineer

https://www.computer.org/digital-library/magazines/cs/future-research-software-engineer

References

31

[1] A. Salinger, R. Bartlett, A. Bradley, Q. Chen, I. Demeshko, X. Gao, G. Hansen, A. Mota, R. Muller, E. Nielsen, J. Ostien, R.

Pawlowski, M. Perego, E. Phipps, W. Sun, I. Tezaur. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics

Analysis Code", Int. J. Multiscale Comput. Engng 14 (4) 415-438, 2016.

[2] R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, S. Price. "A matrix dependent/algebraic multigrid approach for extruded meshes

with applications to ice sheet modeling", SIAM J. Sci. Comput. 38 (5) C504-C532, 2016.

[3] S. Price, M. Hoffman, J. Bonin, T. Neumann, I. Howat, J. Guerber, I. Tezaur, J. Saba, J. Lanaerts, D. Chambers, W. Lipscomb,

M. Perego, A. Salinger, R. Tuminaro. "An ice sheet model validation framework for the Greenland ice sheet", Geosci. Model

Dev. 10 255-270, 2017.

[4] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M. Heroux. "Towards performance-portability

of the Albany finite element analysis code using the Kokkos library", J. HPC Appl. 1-23, 2018.

[5] K. Evans, J. Kennedy, D. Lu, M. Forrester, S. Price, J. Fyke, A. Bennett, M. Hoffman, I. Tezaur, C. Zender, M. Vizcaino. "LIVVkit

2.1: Automated and extensible ice sheet model validation", Geosci. Model Develop 12 1067-1086, 2019

[6] M. Hoffman, M. Perego, S. Price, W. Lipscomb, T. Zhang, D. Jacobsen, I. Tezaur, A. Salinger, R. Tuminaro, L. Bertagna, "MPAS-

Albany Land Ice (MALI): A variable resolution ice sheet model for Earth system modeling using Voronoi grid", Geosci. Model

Develop 11 3747-3780, 2018.

[7] J. Watkins, I. Tezaur, I. Demeshko. "A study on the performance portability of the finite element assembly process within the

Albany land ice solver", E. van Brummelen, A. Corsini, S. Perotto, G. Rozza, eds. Numerical Methods for Flows: FEF 2017

Selected Contributions, Elsevier, 2019.

[8] J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L. Bertagna, C. Kao, M. Hoffman, S. Price. “Performance portable ice

sheet modeling with MPAS-Albany Land Ice”, submitted to Int. J. HPC Appl.

[9] M. Carlson, J. Watkins, I. Tezaur. "Automatic performance tuning for MPAS-Albany Land Ice", submitted to J. Comput. Appl.

Math.

[10] K. Liegeois, M. Perego, T. Hartland, “PyAlbany: A Python interface to the C++ multiphysics solver Albany”. Journal of

Computational and Applied Mathematics, 425, 115037, 2023.

Funding/Acknowledgements

32

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC)

projects funded by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific

Computing Research (ASCR) and Biological and Environmental Research (BER).

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

Start of backup slides

33

MALI (MPAS-Albany Land Ice) Software Ecosystem

34

MPAS1:

• Thickness & temperature evolution

Albany Land Ice2:

• First-order Stokes velocity solver

Trilinos3:

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra (Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more…

1 https://github.com/MALI-Dev/E3SM. 2https://github.com/sandialabs/Albany. 3https://github.com/trilinos/Trilinos.

MALI = + Land Ice

https://github.com/MALI-Dev/E3SM
https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos

Basal boundary Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

Surface boundary Γ𝑠

(Neumann)

(Neumann, Stress-Free)

(Robin)

First-Order (FO) Stokes Velocity Model

35

Stokes(𝒖, 𝑝) in Ω ∈ ℝ3

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

• First-Order Stokes model: nice elliptic approximation to the full Stokes equations, derived using

hydrostatic approximation & scaling argument based on ice sheets being thin with near-vertical normal

• 3D model for two unknowns, the (𝑢1, 𝑢2) ice velocities.

• Highly nonlinear rheology with viscosity 𝜇 given by Glen’s flow law

• Valid for both Greenland and Antarctica continental-scale simulations

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

, in Ω

ቊ
−𝛻 ∙ 𝝉 + 𝛻𝑝 = 𝜌𝒈

𝛻 ∙ 𝒖 = 0
, in Ω

➢ Fluid velocity vector: 𝒖 = 𝑢1, 𝑢2, 𝑢3

➢ Isotropic ice pressure: 𝑝

➢ Deviatoric stress tensor: 𝝉 = 2𝜇𝝐

➢ Strain rate tensor: 𝜖ij =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

➢ Glen’s Law Viscosity: 𝜇 =
1

2
𝐴(𝑇)−

1

𝑛
1

2
σ𝑖𝑗 𝝐𝑖𝑗

2

1

2𝑛
−
1

2

➢ Flow factor: 𝐴(𝑇) = 𝐴0𝑒
−

𝑄

𝑅𝑇

Ice behaves like a very viscous non-Newtonian shear-thinning

fluid (like lava flow) and is modeled quasi-statically using

nonlinear incompressible Stokes equations.

Implicit solver:

FEA* = 50%
CPU-time

Linear solve =
50% CPU-time

* Finite element

assembly

Albany Under the Hood

36

Albany finite element assembly (FEA):

• Tpetra manages distributed memory linear algebra

(MPI+X)

• Phalanx manages shared memory computations (X)
➢ Gather fills element local solution

➢ Interpolate solution/gradient to quad points

➢ Evaluate residual/Jacobian

➢ Scatter fills global residual/Jacobian

Trilinos Packages

FEA Overview

Memory Model

Albany provides the “glue” that connects

components (via abstract interfaces).

Adding new PDEs requires just

implementing a new Evaluate routine

Albany design highlights:

• Piro manages the solve (e.g., Newton, time-stepper)

• Jacobians (+ sensitivities, Hessians, etc.) obtained via

automatic differentiation (Sacado)

• Kokkos achieves performance portability using MPI+X

Albany Supporting Tools: Belos/MueLu – Preconditioned
Iterative Solver

37

Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

Algebraic
Structured MG

Unstructured
AMG

Algebraic
Structured MG

Solution: Matrix dependent semi-coarsening

algebraic multigrid (MDSC-AMG)1

• First, apply algebraic structured multigrid to coarsen

vertically

• Second, apply SA-AMG on single layer

Problem: Ice sheet meshes are thin with high aspect

ratios

1 See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Future Performance Overview

38

Applications

E3SM + MALI

MALI-standalone

DOE Exascale

NERSC Perlmutter

OLCF Frontier

ALCF Aurora

Performance

Algorithmic improvements

Performance Optimization

Summary & Perspectives

39

• Maintaining performance and portability is crucial for an active code base

➢ Supporting unfunded capabilities in large HPC code is not sustainable long-term

➢ Regular regression and performance testing is crucial, especially in presence of every-changing

codes

➢ A change-point detection algorithm can help identify performance variation automatically

• Optimal solver parameters can be determined for a specific architecture automatically using

black-box optimization algorithms

TPL

capability

Clean

dashboard

• HPC architectures changing rapidly poses a significant challenge for mod/sim codes

➢ The Albany, Trilinos and Kokkos software stack offers an efficient way to meet this

challenge for large scale finite element analysis

➢ There are both pros and cons to using ever-changing TPLs like these

❖ Pro: code can inherit unexpected enhancements “for free”

❖ Con: code might also inherit bugs/regressions which can be frustrating

to track down and get fixed to maintain clean dashboard

➢ Performance portability to next-generation architectures including GPUs is enabled

via Kokkos

❖ Reasonable scalability and performance can be obtained across different

architectures without architecture-specific optimizations

❖ Code promised to be “future proof”

