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The Albany Code Base

2

Albany: open-source1 parallel C++ unstructured-grid multi-physics finite element 

code built for rapid application development from Trilinos2 Agile Components

Distinguishing features of Albany:

• Funded entirely by applications residing 

within

• Both a “sand-box” for prototyping new 

approaches and a production code

• Algorithms/software are developed & 

matured directly on applications

• Applications are “born” scalable, fast, 

robust, performance-portable, and...

• Equipped with embedded advanced analysis 

capabilities: sensitivities, bifurcation 

analysis, adjoint-based inversion, …

1 https://github.com/sandialabs/Albany
2 https://github.com/trilinos/Trilinos

https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos


History of Albany

* Albany github repo: https://github.com/SNLComputation/Albany.

Since its creation ~2009, Albany has housed many diverse algorithmic projects & applications*:

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

* I. Tezaur et al. "Albany: a Trilinos-based multi-physics partial differential equation research tool created using the Agile Components code 

development strategy," SIAM CS&E 2019 (featured MS: "Multiphysics: Extensible, Composable Algorithms and Software"), Spokane, WA.

Andy Salinger

“Father” of 

Albany
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Albany and its Requirements Today
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Primary customer/funder: U.S. DOE SciDAC-funded project land-ice modeling 

project, FAnSSIE (Framework for Antarctic System Science in E3SM, FY23-FY27) 

• Albany houses the velocity solver of MALI (MPAS-Albany Land Ice), the land-ice 

component of the U.S. DOE’s Energy Exascale Earth System Model (E3SM)

Required capabilities in Albany for science using MALI: 

• Easy way to add new physics/PDEs

• Performance portability to advanced heterogeneous platforms 

• Fast, scalable and robust linear solves across different architectures

• PDE-constrained optimization capabilities for ice sheet inversion

• Adaptive mesh refinement (AMR) of extruded tetrahedral meshes

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-

SI)

Land 
Ice

(MALI)

Land
(ELM)

Requirements for software quality:

• Pruning of unfunded applications/unsupported code

• Version control

• Automated parameter tuning for various architectures

• Automated nightly regression and performance testing using VOTD Albany & Trilinos

See MS284 and MS318 on Thur. Mar. 2 for 

more on MALI and ice-sheet modeling.
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Requirements for software quality:

• Pruning of unfunded applications/unsupported code

• Version control

• Automated parameter tuning for various architectures

• Automated nightly regression and performance testing using VOTD Albany & Trilinos

This talk: highlight capabilities for 

achieving/maintaining performance & 

performance portability in Albany, with 

focus on pros/cons and lessons learned.



Outline
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• Albany capabilities & supporting tools 

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing 

➢ Automated performance tuning

• Summary & perspectives
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Many components are Trilinos* 

packages: 

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra 

(Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more… 

: 40+ packages; 120+ libraries
* https://github.com/trilinos/Trilinos

Components in Albany = cutting-edge technology from Trilinos, 

SierraToolKit, DAKOTA, FASTMath, Kitware, etc.

The Components in Albany

Albany developers work 

with Version of the Day 

(VOTD) Trilinos, which has 

pros and cons. 

TPL 

capability

Clean 

dashboard

Pro: code can inherit 

unexpected enhancements 

“for free”

Con: code might also 

inherit bugs/regressions 

which can be frustrating to 

track down and get fixed to 

maintain clean dashboard
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https://github.com/trilinos/Trilinos


Four Key Ingredients:

1. MPI+X programming model for performance portability

• Handled by Kokkos package

2. Template-based generic programming (TBGP) 

• E.g., Phalanx evaluators templated on evaluation 

type (right)

3.   Graph-based finite element assembly (FEA)

➢ Handled by Phalanx package

4.   Templated-based automatic differentiation 

➢ Handled by Sacado package

Shape Opt

PCE
Adjoint

Hessian
Tangent

Jacobian
Residual

Evaluators Templated 
on Evaluation Type:

<EvalT>

Template Specializations:

(Generic)

Albany Under the Hood

Albany provides the “glue” that connects 

components (via abstract interfaces).

9

For more details on these 

ingredients, please see talk by Jerry 

Watkins (MS284: Thurs. Mar. 2).



Albany Supporting Tools: Kokkos – Performance 
Portability
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• Kokkos1 is a C++ library that provides performance 

portability across multiple shared memory computing 

architectures via MPI+X programming model

➢ Examples: Multicore CPU, NVIDIA GPU, Intel KNL 

and much more…

• Abstract data layouts and hardware features for 

optimal performance on current and future

architectures

• Allows researchers to focus on application or

algorithmic development instead of architecture 

specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures. 

Template parameters are used to get hardware specific features.

1 https://github.com/kokkos/kokkos. 

Pros: 

• Same code runs on diff. platforms

• Code is “future-proof”

• Forces you to write better code

Cons: better performance may be 

possible with architecture-specific 

optimizations

https://github.com/kokkos/kokkos


Albany Supporting Tools: Phalanx Evaluator –
Templated Phalanx Node 
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• A Phalanx node (evaluator) is constructed 
as a C++ class

• Each evaluator is templated on an 
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine 
the data type (e.g., double, Sacado data 
types)

• Kokkos RangePolicy is used to parallelize 
over cells over an Execution Space (e.g., 
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA Execution Space; 

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION 

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

} 

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

} 

}

}

}

Pros:

• Easy to implement 

new physics

• Easy to Kokkos-ize



Albany Supporting Tools: Phalanx Evaluator –
Templated Phalanx Node 
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Albany Supporting Tools: Phalanx –
Directed Acyclic Graph (DAG)
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Pros:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Cons: Performance loss through fragmentation

• Mitigation: introduction of memoization

DAG Example 

(memoization)

DAG Example

Single CPU socket or GPU



Albany Supporting Tools: Sacado – Automatic 
Differentiation (AD)
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Pros: 

• AD provides exact derivatives − no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, Hessian

➢ Examples: optimization, sensitivity analysis

Con: AD has some overhead

• Mitigation: specify Sacado data types for deriv. components via class templates

➢ DFad (most flexible) – size set at run-time

➢ SLFad (flexible/efficient) – max size set at compile-time

➢ SFad (most efficient) – size set at compile-time

Fad Type Comparison (Serial, OpenMP (12 threads), CUDA)

Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

Significant speedups

possible when deriv. 

array sizes are known 

at compile time on 

GPU (50-250x)



Performance Portability Demonstration: Antarctica 
Weak Scalability Study

15

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44 

cores/node

• OLCF Summit-POWER9-V100 (V100): 44 

cores/node + 6 GPU/node

Benchmark:

• First-order Stokes solve in ALI

• Structured hexahedral element mesh

• 16 to 1km structured Antarctica meshes, 20 

layers

• Scaled up from 1 to 256 compute nodes

Mesh Example: 16km, structured Antarctica 

mesh (2.20E6 DOF: 20 layer, 2 equations)

Benchmark used to assess performance & performance portability.
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Setup:

• Same input file for all cases

➢ Performance portable point smoothers

➢ No architecture specific tuning

Results:

• Performance degrades at higher resolutions

➢ (645→1798 total linear iterations)

➢ GPU scaling slightly better

• Speedup on GPU

➢ 3.2-4.1x speedup Summit over Cori

➢ 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations 

without architecture specific tuning!

For additional results/analysis, please see talks 

by Jerry Watkins (MS284: Thurs. Mar. 2) and 

Mauro Perego (MS72: Tues. Feb. 28).

Performance on Cori and Summit

16
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Performance Highlights

Major improvements to finite element assembly time:

• Memoization to avoid unnecessary data movement and computation

• Boundary condition refactor to reduce memory footprint and data movement

• Tpetra::FECrsMatrix refactor to reduce memory footprint and data movement

Solver portability on Cori and Summit:

• MueLu SemiCoarsen refactor using Kokkos

• Ifpack2 portable smoothers tuned to GPU hardware
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From 

architecture-

agnostic

improvements 

to Albany FEA. 

From Trilinos enhancements, which Albany inherited.

Albany performance improves in time due to Albany’s  

development model and maintenance workflows.

J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L. 

Bertagna, C. Kao.   et al.  “Performance portable ice-

sheet modeling with MALI.” (Submitted to IJHPCA, 2022) 

https://arxiv.org/abs/2204.04321

https://arxiv.org/abs/2204.04321


Outline
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• Albany capabilities & supporting tools 

➢ Components effort

➢ Albany under the hood

➢ Kokkos for performance portability

➢ Phalanx for template-based evaluators and DAG-based finite element assembly

➢ Sacado for automatic differentiation (AD)

➢ Some performance & performance portability results

• Maintaining software quality of Albany

➢ Code pruning

➢ PyAlbany: a Python interface to Albany

➢ Nightly regression testing

➢ Automated performance testing 

➢ Automated performance tuning

• Summary & perspectives



Albany in February 2019

* Albany github repo: https://github.com/SNLComputation/Albany.

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

* I. Tezaur et al. "Albany: a Trilinos-based multi-physics partial differential equation research tool created using the Agile Components code 

development strategy," SIAM CS&E 2019 (featured MS: "Multiphysics: Extensible, Composable Algorithms and Software"), Spokane, WA. 19

https://github.com/sandialabs/Albany

https://github.com/sandialabs/Albany


Albany Today

* Albany github repo: https://github.com/SNLComputation/Albany.

➢ Demo PDEs

➢ Quantum Devices (QCAD)

➢ Ice Sheets (MPAS-Albany Land Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran)

Main Albany repo*: https://github.com/sandialabs/Albany

Tags: https://github.com/sandialabs/Albany/tags

Albany-LCM repo*: https://github.com/sandialabs/LCM

Albany-RPI repo: https://github.com/scorec/albany

* Maintained & 

tested nightly by 

Sandia teams.
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Lesson learned: 

supporting unfunded 

capabilities in large 

HPC code is not 

sustainable long-

term…

New 

capability:

PyAlbany, 

a python 

wrapper for 

running 

Albany!

New capability: Albany is know a spack-age (https://github.com/E3SM-Project/spack.git)  

https://github.com/sandialabs/Albany
https://github.com/sandialabs/Albany/tags
https://github.com/sandialabs/LCM
https://github.com/scorec/albany
https://github.com/E3SM-Project/spack.git


PyAlbany: A Python Interface to Albany
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Lesson learned: PyAlbany allows to easily and quickly…

• Use Albany without C++ or bash knowledge (convenient for students)

• Prototype applications that require multiple Albany solves

• Enable fast pre-processing and post-processing in Python

• Use Python as a glue language to couple Albany with other software: for UQ methods (PyDakota), 

machine learning (TensorFlow, Keras, Scikit-learn), plotting (Matplotlib, Paraview), ...

K. Liegeois, M. Perego, T. Hartland, “PyAlbany: A Python interface to the C++ multiphysics solver Albany”.

Journal of Computational and Applied Mathematics, 425, 115037, 2023.

Running Albany through PyAlbany
is faster for MCMC analysis!  (don't 
need to go through the setup phase 

of Albany for every sample)

Please see talk by Kim 

Liegeois (MS284: 

Thurs. Mar. 2) for more 

on PyAlbany.



Lesson learned: since MALI uses Trilinos and 

Albany Versions of the Day (VOTD), nightly 

testing across variety of architectures is 

essential for maintaining code quality! 

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* https://github.com/sandialabs/Albany

(Automated Regression) Testing, Testing, Testing

22

https://github.com/sandialabs/Albany


… and More (Automated Performance) Testing!
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Lesson learned: nightly regression testing is not sufficient!  Performance testing is also needed to secure 

investments in performance & portability in evolving software.

• Changes in code base could cause performance deterioration

• Performance improvements in one architecture could decrease performance in another

• Manual analysis is time consuming and imprecise
Solution: changepoint detection algorithm 

automatically applied to nightly performance test 

data to identify/flag large changes in performance.

• Infrastructure is provided in a Jupyter notebook, exported as 

html to a website (https://sandialabs.github.io/ali-perf-data)

• Daily email provides nightly performance test summary

Figure below: Total simulation time for a 2-20km 

resolution Antarctica problem, executed nightly

https://ikalash.github.io/


Detecting Performance Regressions/Improvements
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Example: transition to Kokkos 3.5.0 caused a performance regression but was soon fixed

Total Fill time: for a 1-to-7 km resolution Greenland mesh, executed nightly in Albany Land Ice.

Regression Improvement

Two STDs



Monitoring Performance Comparisons
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Speedup of Total Fill time: from memoization for a 1-to-7 km resolution Greenland 

mesh, executed nightly in Albany Land Ice

Example: Memoization comparison (with & without) shows that relative 

performance has improved

99% confidence 

interval for the mean



Automated Parameter/Performance Tuning
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Lesson learned: hand-tuning solver parameters can be a long/painful process, does not translate b/w 

architectures.

Solution: create a framework for determining optimal parameter values to achieve best performance 

(smallest CPU time) on HPC systems using offline and real-time data.

Best runtimes for a range of total # 

allotted Albany run budgets: 3-to-20 

km resolution Greenland mesh

Best runtimes using GPTune Bayesian 

optimization, Latin Hypercube Sampling 

and Monte Carlo Sampling: 3-to-20 km 

resolution Greenland mesh

Example: autotuning used to improve performance of multigrid smoothers on GPU

M. Carlson, J. Watkins, I. Tezaur.  “Automatic performance tuning for MPAS-Albany Land Ice.” JCAM, 2023.

Total # allotted Albany runs

30 total # allotted Albany runs case



Outline
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• Albany capabilities & supporting tools 
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➢ Some performance & performance portability results
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➢ Automated performance testing 

➢ Automated performance tuning

• Summary & perspectives



Summary & Perspectives
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Flexibility

Efficiency

• In developing HPC codes, there is often a tradeoff between flexibility and efficiency.  Libraries 

like Kokkos and Trilinos can enable both to a large extent.

➢ Reasonable scalability and performance is obtained across different architectures without 

architecture-specific optimizations within the Albany code base

➢ Code promised to be “future proof”

• Maintaining performance and portability is crucial for an active code base

➢ Supporting unfunded capabilities in large HPC code is not sustainable long-term

➢ Regular regression and performance testing is crucial, especially in presence of every-changing 

codes

• Automatic processes like testing and parameter tuning can save developers a lot of time

➢ A change-point detection algorithm can help identify performance variation automatically

➢ Optimal solver parameters can be determined for a specific architecture automatically using 

black-box optimization algorithms
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Bridging the Gap between Sandia & Academia, and 
Promoting Inclusion & Diversity through Albany

Recently-funded 5-year Grande CARES MSIPP consortium1

will connect students/academics from minority serving 

institutions in U.S. southwest with Sandia National 

Laboratories via tools like Albany, Trilinos, Kokkos, …

1 https://sites.google.com/view/grande-cares/home
2 https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce

-pipeline-of-scientists-and-engineers.html

2

https://sites.google.com/view/grande-cares/home
https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce-pipeline-of-scientists-and-engineers.html
https://www.utep.edu/newsfeed/2023/utep-receives-1.25m-grant-from-doe-to-produce-pipeline-of-scientists-and-engineers.html


30

Special Issue of CiSE on Research Software Engineers

Estimated publication of 

special CiSE issue: 

March/April 2024.

“The goal of this special issue is to explore the future of research software engineers in the U.S., 

with emphasis on the cultural, educational, and professional paradigm shifts that need to occur.”*

* https://www.computer.org/digital-

library/magazines/cs/future-research-software-engineer

https://www.computer.org/digital-library/magazines/cs/future-research-software-engineer
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MALI (MPAS-Albany Land Ice) Software Ecosystem
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MPAS1:

• Thickness & temperature evolution

Albany Land Ice2:

• First-order Stokes velocity solver

Trilinos3:

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear/Linear solver (NOX/Belos)

• Distributed memory linear algebra (Tpetra)

• Multigrid Preconditioner (MueLu)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Shared memory parallelism (Kokkos)

• Many more…

1 https://github.com/MALI-Dev/E3SM. 2https://github.com/sandialabs/Albany. 3https://github.com/trilinos/Trilinos.

MALI = + Land Ice

https://github.com/MALI-Dev/E3SM
https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos
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Stokes(𝒖, 𝑝) in Ω ∈ ℝ3

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

• First-Order Stokes model: nice elliptic approximation to the full Stokes equations, derived using 

hydrostatic approximation & scaling argument based on ice sheets being thin with near-vertical normal

• 3D model for two unknowns, the (𝑢1, 𝑢2) ice velocities.

• Highly nonlinear rheology with viscosity 𝜇 given by Glen’s flow law

• Valid for both Greenland and Antarctica continental-scale simulations

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

,    in Ω

ቊ
−𝛻 ∙ 𝝉 + 𝛻𝑝 = 𝜌𝒈

𝛻 ∙ 𝒖 = 0
,    in Ω

➢ Fluid velocity vector: 𝒖 = 𝑢1, 𝑢2, 𝑢3

➢ Isotropic ice pressure: 𝑝

➢ Deviatoric stress tensor: 𝝉 = 2𝜇𝝐

➢ Strain rate tensor: 𝜖ij =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

➢ Glen’s Law Viscosity: 𝜇 =
1

2
𝐴(𝑇)−

1

𝑛
1

2
σ𝑖𝑗 𝝐𝑖𝑗

2

1

2𝑛
−
1

2

➢ Flow factor: 𝐴(𝑇) = 𝐴0𝑒
−

𝑄

𝑅𝑇

Ice behaves like a very viscous non-Newtonian shear-thinning 

fluid (like lava flow) and is modeled quasi-statically using 

nonlinear incompressible Stokes equations.

Implicit solver:

FEA* = 50% 
CPU-time

Linear solve = 
50% CPU-time

* Finite element 

assembly



Albany Under the Hood
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Albany finite element assembly (FEA):

• Tpetra manages distributed memory linear algebra 

(MPI+X)

• Phalanx manages shared memory computations (X)
➢ Gather fills element local solution

➢ Interpolate solution/gradient to quad points

➢ Evaluate residual/Jacobian

➢ Scatter fills global residual/Jacobian

Trilinos Packages

FEA Overview

Memory Model

Albany provides the “glue” that connects 

components (via abstract interfaces).

Adding new PDEs requires just 

implementing a new Evaluate routine

Albany design highlights:

• Piro manages the solve (e.g., Newton, time-stepper)

• Jacobians (+ sensitivities, Hessians, etc.) obtained via 

automatic differentiation (Sacado)

• Kokkos achieves performance portability using MPI+X



Albany Supporting Tools: Belos/MueLu – Preconditioned 
Iterative Solver 
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Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Solution: Matrix dependent semi-coarsening 

algebraic multigrid (MDSC-AMG)1

• First, apply algebraic structured multigrid to coarsen 

vertically

• Second, apply SA-AMG on single layer

Problem: Ice sheet meshes are thin with high aspect 

ratios

1 See (Tezaur et al., 2015), (Tuminaro et al., 2016)



Future Performance Overview
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Applications

E3SM + MALI

MALI-standalone

DOE Exascale

NERSC Perlmutter

OLCF Frontier

ALCF Aurora

Performance

Algorithmic improvements

Performance Optimization



Summary & Perspectives
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• Maintaining performance and portability is crucial for an active code base

➢ Supporting unfunded capabilities in large HPC code is not sustainable long-term

➢ Regular regression and performance testing is crucial, especially in presence of every-changing 

codes

➢ A change-point detection algorithm can help identify performance variation automatically

• Optimal solver parameters can be determined for a specific architecture automatically using 

black-box optimization algorithms

TPL 

capability

Clean 

dashboard

• HPC architectures changing rapidly poses a significant challenge for mod/sim codes

➢ The Albany, Trilinos and Kokkos software stack offers an efficient way to meet this 

challenge for large scale finite element analysis

➢ There are both pros and cons to using ever-changing TPLs like these

❖ Pro: code can inherit unexpected enhancements “for free”

❖ Con: code might also inherit bugs/regressions which can be frustrating                     

to track down and get fixed to maintain clean dashboard

➢ Performance portability to next-generation architectures including GPUs is enabled     

via Kokkos

❖ Reasonable scalability and performance can be obtained across different 

architectures without architecture-specific optimizations

❖ Code promised to be “future proof”


