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2 ‘ Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model

PDEs, ODEs
Nonlocal integral
Classical DFT
Atomistic, ...

Traditional Methods

Mesh-based (FE, FV, FD)
Meshless (SPH, MLS)
Implicit, explicit
Eulerian, Lagrangian...
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Coupled Numerical Model

Monolithic (Lagrange multipliers)
Partitioned (loose) coupling
Iterative (Schwarz, optimization)
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The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
* PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs
+ Classical DFT + Implicit, explicit » lterative (Schwarz, optimization) * Projection-based ROMs, ...

Atomistic, ...

Eulerian, Lagrangian, ...

« There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to

handle plug-and-play integration of non-traditional, data-driven models!



Current Projects on Coupling for Predictive Heterogeneous Models

O~ Sandi
fHNM: flexible Heterogeneous Numerical Methods &)RD @ Natinal

ABORATORY DIRECTED lahl]ra'tﬂlles
- Sandia Laboratory Directed Research & Development (LDRD) project (FY22-FY24) e oeveommean
» Co-Pls: Pavel Bochev & Irina Tezaur; Team: 5 staff, 2 post docs, 3 students, 2 consultants E
» Academic Alliance: Prof. Arif Masud (UIUC)

* Primary research objective: discover the mathematical principles guiding the assembly of standard
and data-driven numerical models in stable, accurate and physically consistent ways

M2dt: Multi-faceted Mathematics for Predictive Digital Twins f M 2 dt
* Funded by DOE’s Advanced Scientific Computing Research (ASCR) Mathematical
Multifaceted Integrated Capability Centers (MMICC) Program (FY23-FY27) Sandia
* Partnership between UT Austin (Lead Institution), Sandia National Labs (SNL), @ LNaaﬁL?';]?.'],ies
Argonne National Lab (ANL), Brookhaven National Lab (BNL) and MIT
> Directors: Karen Willcox & Omar Ghattas (UT Austin) BROOKHEAEN Ill
> Sandia co-Pls: Irina Tezaur & Pavel Bochev; Sandia team: 6 staff, 1 post doc
* Primary research objective: establish a center for research and education on multifaceted Argonneé
mathematical foundations for predictive digital twins (DTs) for complex energy systems ~  Zrrewewes
» Central to DTs is: (1) tight two-way coupling of data and models, (2) structure preservation and
(3) dynamic data assimilation



Coupling Scenarios, Models and Methods

Coupling scenarios:

Scenario Il:
multi-scale coupling
\ where decomposition
\ ) can be chosen to
| maximize accuracy,
robustness & efficiency
of coupled model

Scenario I:
multi-component
coupling with a given
domain/component
decomposition (for

reuse of single- .
component codes) @SM

— — — Schwarz “glue”

Data-driven models: to be “mixed-and-matched” with each other and first-principles models

Class A: projection-based reduced order models (ROMs)
Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

Coupling methods:

Method 1: Alternating Schwarz-based coupling
Method 2: Optimization-based coupling
Method 3: Coupling via generalized mortar methods (GMMs)



¢ I Coupling Scenarios, Models and Methods

Coupling scenarios:

— — — Schwarz “glue”

This talk
Scenario Il:

multi-scale coupling
where decomposition
can be chosen to
maximize accuracy,
robustness & efficiency
of coupled model

I Data-driven models:

« C(lass A: projection-based reduced order models (ROMs) This talk

Coupling methods:

 Method 1: Alternating Schwarz-based coupling This talk
This talk

« Method 3: Coupling via generalized mortar methods (GMMs)




7 1 Outline

1. The Alternating Schwarz Method for FOM*-ROM# and
ROM-ROM Coupling

* Method Formulation
« ROM Construction and Implementation
* Numerical Example 0 >r "

2. A lLagrange Multiplier-based Partitioned Scheme for L
FOM-ROM and ROM-ROM Coupling

* Method Formulation
« ROM Construction and Implementation
« Numerical Example

3. Summary and Comparison of Methods
4. Future Work

*Full-Order Model. #Reduced Order Model.
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9 I Schwarz Alternating Method for Domain Decomposition

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.
Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)
Basic Schwarz Algorithm overlapping
Initialize:
= Solve PDE by any method on Q; w/ initial guess for transmission BCs on TI;. oo >“ e
Iterate until convergence: \
= Solve PDE by any method on Q, w/ transmission BCs on I, based on values "
just obtained for ;. non-overlapping
= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values a, )F 0,
just obtained for Q,. \ ]

002
= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization
method for solving multi-scale or multi-physics partial differential equations (PDEs).




How We Use the Schwarz Alternating Method

| AS A PRECONDITIONER |
| FOR THE LINEARIZED
SYSTEM |
AS A SOLVER FOR THE |
COUPLED
FULLY NONLINEAR \
PROBLEM




11 I Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition

fN (ugnﬂ)) =f,in{,

9 u§n+1) = g, on aﬂl\rl
kugnﬂ) = ugn) on I

( 1 )
N(ugn+ )) =f,in(,
< ugn-l_l) - g, on 0QZ\F2

ugn+1) — u§n+1) on T,

\

h

Iy

N =f, in
Model PDE: u=g, on AN ‘

* Dirichlet-Dirichlet transmission BCs

Jo

[Schwarz 1870; Lions 1988; Mota et [
2 al. 2017; Mota et al. 2022]

= This talk: sequential subdomain solves

Non-overlapping Domain Decomposition

1

N

(N (u&nﬂ)) = f, in 4

u&nﬂ) =g, ond\TI
1 :
rN (ugn+ )) =f, in (),
ugnﬂ) =g, on 0Q,\I'
kVug"H) ‘n= Vugnﬂ) ‘n, on I

Agiq = prgn) + (1 —-6)A,,on I'forn >1

93

(multiplicative Schwarz). Parallel subdomain —
solves (additive Schwarz) also possible. |

* Relevant for multi-material and multi-
physics coupling
» Alternating Dirichlet-Neumann

a, transmission BCs [Zanolli et al. 1987]

- to convergence [Lions 1990]

6 €]0,1]: relaxation parameter (can
help convergence)

* Robin-Robin transmission BCs also lead ‘



2 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for 2,

Time integrator for (2,

Model PDE:

u+ N =f, in 0
u(x,t) = g(t), on 4.2
u(x,0) = uy, in 02




13 1 Time-Advancement Within the Schwarz Framework

Q, TO T1
Controller time stepper
I Integrate using At;
T Interpolatelfrom Time integrator for (2,
AN Q,toy
Q, Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using
solution in (, interpolated to I'; at times T; + nA4t,.

W+N@w=f, in Q0
Model PDE: u(x’ t) — g(t), on 0.
u(x, 0) = Uy, in




14 1 Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper

I
\ - l - / Interpolate

from (Q, to [,

Time integrator for (2,

Q, > Time integrator for (2,
Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using
solution in (, interpolated to I'; at times T; + nA4t,.

Step 2: Advance Q, solution from time T; to time T;,; using time-stepper in Q, with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

W+N@w=f, in Q0
Model PDE: u(x’ t) — g(t), on 0.
u(x, 0) = Uy, in




5 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper
I
- I Time integrator for (2,
Q, . Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using
solution in (, interpolated to I'; at times T; + nA4t,.

Step 2: Advance Q, solution from time T; to time T;,; using time-stepper in Q, with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;,;. u+ N =f, in 0
Model PDE: u(x’ t) = g(t), on Jdn
u(x,0) = uy, in




16 I Time-Advancement Within the Schwarz Framework

Q
1 TO Tl
I Integrate using At;
T Interpolate [from
AN Q, to I
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using

solution in (, interpolated to I'; at times T; + nA4t,.

Step 2: Advance Q, solution from time T; to time T;,; using time-stepper in Q, with time-step 4t,, using

solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;,;.
> If unconverged, return to Step 1.

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Model PDE:

u+ N =f,

u(x,t) = g(t),
u(x,0) = uy,

in 0
on ad.
in




17 I Time-Advancement Within the Schwarz Framework

Q
1 Tl
I, Integrate using At;
T, Intenpolate from
Q,t6 Ty AN
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using

solution in (, interpolated to I'; at times T; + nA4t,.

Step 2: Advance Q, solution from time T; to time T;,; using time-stepper in Q, with time-step 4t,, using

solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;,;.

> If unconverged, return to Step 1.
> |If converged, seti = i+ 1and return to Step 1.

I

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Can use different integrators with

different time steps within each domain!

Model PDE:

u+ N =f,

u(x,t) = g(t),
u(x,0) = uy,

in 0
on ad.
in




18 I Time-Advancement Within the Schwarz Framework

Q, Tl TZ
Controller time stepper
I, Integrate using At;
- Interpolate from Time integrator for (2,
O, toI; AN
Q, Time integrator for (2,
Time-stepping procedure is equivalent to doing
Step 0: Initialize i = 0 (controller time index). Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance ), solution from time T; to time T;,, using time-stepper in , with time-step A4t, using

solution in (, interpolated to I'; at times T; + nA4t,.

Step 2: Advance Q, solution from time T; to time T;,; using time-stepper in Q, with time-step 4t,, using

solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;,;.

> If unconverged, return to Step 1.
> |If converged, seti = i+ 1and return to Step 1.

Model PDE:

u+ N =f,

u(x,t) = g(t),
u(x,0) = uy,

in 0
on ad.
in




» | Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics'

Model Solid Mechanics PDEs:

Coupling is concurrent (two-way).

Ease of implementation into existing massively-

Quasistatic:

Dynamic:

DivP +poB =0 in

Div P + pgB = po¢

Q)
in OQxI

parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees?.

“Plug-and-play” framework:

> Ability to couple regions with different non-conformal meshés, different element types
and different levels of refinement to simplify task of meshing complex geometries.

> Ability to use different solvers/time-integrators in different regions.

"Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.



https://github.com/sandialabs/LCM.git

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics'
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Figure above: tension specimen simulation coupling

composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.

*.i]k
L

Single Q Schwarz

Schwarz

" Mota et al. 2017; Mota et al. 2022.
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,, | Dynamic Solid Mechanics Formulation

1
* Kinetic energy: T(@) = Ej p@ - @ dV
0
* Potential Energy: V(¢) = f A(F,Z)dV — j pB - @ dV
Q Q
* Lagrangian: L(p,¢) =T(@) —V(p)

e Action functional: S[e] ==j L(p, @) dt
1

 Euler-Lagrange equations: (DivP + pB=pp,  inQxI
o(X, ty) = xo, in Q
P(X, ty) = v, in Q
L(p(X, t) = x, on 0Q X [

e Semi-discrete problem following FEM discretization in space:

Mu + fint(u» il) — fext

» A(F,Z): Helmholtz free-energy
density

» F:= V¢: deformation gradient

> Z: collection of internal variables
(for plastic materials)

» p:density, B: body force




23 | Projection-Based Model Order Reduction via the POD/Galerkin

Method

Full Order Model (FOM): M 2% + fini(w) = foxt

1. Acquisition

Number of
time steps
<«
| A
,, v
| / \_> Eo _ +—
L & il gy -S -
g I ~| m m
5 2
I | S
“" i Eli;::i /. / | B ‘:
\ A 2
I D = >
& S
it =z
\ 4

Solve ODE at different

. . Save solution data
design points

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U ) v’

3. Projection-Based Reduction

Reduce the u(t) ~ u(t) = Pu(t)

number of I
unknowns

Perform
Galerkin
projection

d2u ~
thMtbd—t’; + @Tf (D) = BT oy

Hyper-reduce fin(@W) ~ A Fint (D)
nonlinear

i

Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM



24 I Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices ip;,
* Method | in [Gunzburger et al. 2007] is employed ‘
u(t) = U+ @), v(t)=v+ (), a(t) =~ a+ da(t)
» POD modes made to satisfy homogeneous DBCs: ®(ip;i.,:) =0
» BCs imposed by modifying u, v, a: u(ipi.) < xvu, V(ipir) < Xv, @lipir) < X4

Choice of domain decomposition

» Error-based indicators that help decide in what region of the domain a ROM can be viable should
drive domain decomposition [Bergmann et al. 2018] (future work) |

Snapshot collection and reduced basis construction

« POD results presented herein use snapshots obtained via FOM-FOM coupling on Q = U; Q;
« Scenario I: generate snapshots/bases separately in each Q; [Hoang et al. 2021, Smetana et al. 2022] :

For nonlinear solid mechanics, hyper-reduction methods need to preserve Hamiltonian structure
We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al. 2015]
« Boundary points must be included in sample mesh for DBC enforcement
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26 I Numerical Example: |D Dynamic Wave Propagation Problem

1D beam geometry Q. = (0,1), clamped at both ends, with

prescribed initial condition discretized using FEM

Simple problem but very stringent test for discretization/

coupling methods.

Two constitutive models considered:

» Linear elastic (problem has exact analytical solution)

» Nonlinear hyperelastic Henky This talk

1

+ Newmark-f

1 Subdomain
2 Subdomains, 511

2 Subdomains, 5?2

Figure: POD energy
decay for nonlinear
Henky problem

0.1
10° 10t 102 103
# POD modes (M)

ROMs results are reproductive and predictive, and are based on the POD/Galerkin method, with

POD calculated from FOM-FOM coupled model.

» 50 POD modes capture ~100% snapshot energy for linear variant of this problem.
» 536 POD modes capture ~100% snapshot energy for Henky variant of this problem.

Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]
> Ensures that Lagrangian structure of problem is preserved in HROM.

Couplings tested: overlapping,| non-overlapping,

FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM,

HROM-HROM, implicit-explicit,| implicit-implicit,

explicit-explicit. This talk



27 I Numerical Example: |D Dynamic Wave Propagation Problem

hot 1, time =0

Two variants of problem, with different initial conditions (ICs): o |
» Symmetric Gaussian IC (top right) D
» Rounded Square IC (bottom right) L  velciy,srapsho e =0

______________________________

Non-overlapping domain decomposition (DD) of Q = Q, U Q,, where Q,
= [0, 0.6] and Q, = [0.6, 1.0]

> DD is based on heuristics: during time-interval considered (0 <t <
1 x 103), sharper gradient forms in Q,, suggesting FOM or larger
ROM is needed there.

Figure above: Symmetric Gaussian IC problem solution

RePrOdUCtive prOblem: Figure below: Rounded Square IC problem solution

» Displacement snapshots collected using FOM-FOM non-overlapping

coupling with Symmetric Gaussian IC dis"'“"'“'i?a"s"“ 1{’{“"’““’“
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with 1 | | | | .
Symmetric Gaussian IC oty st 101 e 10t
Predictive problem: fg{ Y _
» Displacement snapshots collected using FOM-FOM non-overlapping R o5 08 )
coupling with Symmetric Gaussian IC I
> FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with ] gt

Rounded Square IC 0 02 02 05 03 1



28 I Numerical Example: Reproductive Problem Results

CPU Emse(uy)/ Emse(t1)/ Emse(ar)/
Model My / M. N.1/N. : SEL X SEL SELT Ng
ode 1/ Mz 1/ Nez time (s) Ensel(Uz) Enmsel(v2) Enmselas) S
FOM - —/— 1.871 % 10° - - - —
ROM 60/ — iy - 1.398 x 10° | 1.659 x 10” °/— 1.037 x 10~ 4.681 x 10™ ' /— -
HROM 60,/ — 155/ — 5.878 x 10° | 1.730 x 10~ /— | 1.063 x 10~ ' /— | 4.741 x 10" /— -
ROM 200/ — - 1.448 x 10° | 2287 x 10"~ /— | 4.038 x 10" °/— | 4.542 x 10~ */— -
HROM 200/ — 128/ — 9.229 x 10° | 8396 x 10” " /— | 8947 x 10" °/— | 7.462 x 10" °/— —
FOM-FOM -/- —/— 2.345 x 103 — — — 24,630 . . .
FOM-ROM — /80 — /- 2.341 x 103 2.171 x 10°%/ 3.884 x 10~/ 2.982 x 10~%/ 25,227 Green Shad]ng h]ghl]ghts
1.253 x 1075 2.401 x 10~4 2.805 x 1073 PIC
FOM-HROM — /80 —/130 2.085 x 10° 2.022 x 10~/ 1.723e x 1073/ 7.421 x 1073/ 29,678 most Compet]tlve
5.734 x 10~ 4 5.776 x 1073 3.791 x 102 coupled models
4.754 x 10712/ 1.835 x 10719/ 5.550 x 1077/
1-ROM - -/- 3 ’ 24,630
FOM-ROM /200 / 2.449 % 10 7.357 x 10~ ! 4.027 x 107 1.401 x 10~ 7 '
1.421 x 107>/ 1.724 x 10~%/ 9.567 x 10~ %/ i
1-HRONM - — /2 3 3 27,156
FOM-HROM /200 /252 2.352 x 10 4583 % 10—4 2943 3% 10=9 1.364 x 10-2 :
4.861 x 10 °/ 1.219 x 1077/ 1.586 x 10~/
ROM-ROM 200/80 e ) 3 27,810
/ / 2778 > 10 3.093 x 10~° 4.177 x 10~* 3.936 x 1077 '
HROM-HROM | 200/80 315/130 1.769 x 10° 3.410 x 1073/ 4.110 x 10”2/ 2.485 x 1071/ 29,860
6.662 x 104 6.432 x 103 4.307 x 1072
2.580 x 10~ °/ 6.226 x 10" °/ 9.470 x 10~ T .
ROM-ROM 300/80 —/— .6 3 25,059
/ / 2.646 > 10 1.292 x 10°° 2.483 x 10~* 2.906 x 107 >
HROM-HROM | 300/80 405/130 1.938 x 10° 6.960 x 1072 6.328 x 102 3.137 x 10 ° 29,896
7.230 x 104 7.403 x 1073 4.960 x 10~ 2

* All coupled models evaluated converged on average in <3 Schwarz iterations per time-step
» Larger FOM-ROM coupling has same total # Schwarz iters (N5) as FOM-FOM coupling
» Other couplings require more Schwarz iters than FOM-FOM coupling to converge
> More Schwarz iters required when coupling less accurate models
» Larger 300/80 mode ROM-ROM takes less wall-clock time than smaller 200/80 mode ROM-ROM
« FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms of CPU time by 12.5-32.6%
» All couplings involving ROMs/HROMs are at least as accurate as single-domain ROMs/HROMs



29 I Numerical Example: Reproductive Problem Results

Average EMSE(U)

T T T | T
X |
|
= o . %<
-4 L .
10 | oo
| O
. [
10° F |
5 |
[
|
- |
108 FOM |
: ROM |
HROM |
- FOM-FOM |
o0 b FOM-ROM | ]
FOM-HROM e '
ROM-ROM |
: HROM-HROM :
1[}-‘12 i I I I | ]
500 1000 1500 2000 2500 3000

CPU time (s)

Single-domain ROM and HROM are most
efficient

Couplings involving ROMs and HROMs
enable one to achieve smaller errors

Benefits of hyper-reduction are limited
on 1D problem



30 I Numerical Example: Reproductive Problem Results

%107 displacement, snapshot 1, time = 0
I I 1 | I

10

-5 i
0 01 02 03 04 05 06 07 08 09 1 Figure left: FOM (green) - HROM ( ) coupling
velocity, snapshot 1, time = 0 compared with single-domain FOM solution
10k ' ! ' ' ' i (blue). HROM has 200 modes.
10k - Figure below: ECSW algorithm samples 253/400
20k i elements
-30 I I I I I I I I I =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
<108 Tacceleraltion, snalpshot 1,I time = (ll
i | )

nz = 253

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



31 | Numerical Example: Predictive Problem Results

« Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:

|u — @ (P, Prr) @, ull

]2

gproj (’U’., (I)ﬂ,f) =

10%

2| C e . s .
: * Projection error suggests predictive ROM can achieve
5 accuracy and convergence with basis refinement
g 10 * 0(100) modes are needed to achieve sufficiently
ﬂEi Epmj.[u. Ll?'M]-. reproductive \\ ] accu rate ROM
o Epmj['.r. 'L1>M]-. reproductive L. .
_ E (a &), reproductive _ > Larger ROMs containing O(100) modes considered
; projt " MY . . .
0% 1 _ —E, (@, b, predictive in our coupling experiments: M,= 300, M,= 200

— — — Epmj.['.r. 'lrm]-. predictive

_— _Epmj.[a. Ll?'M]-. predictive

108
10° 10" 102 102
POD basis size (M)



22 I Numerical Example: Predictive Problem Results

CPU

Emse(w1)/

Emse(v1)/

Emse(a1)/

Model . N. /N Ng
oae time (s) 1/ 2 Ense (U2) Emse(D2) Emse(@z) S
FOM 1.288 x10° —/— —/— —/— —/— —
ROM 1.358 x10° —/— 3.451x10~%/— | 6.750 x 1072/— | 3.021 x 1071 /— —
HROM 9.759 x 107 614/ — 3.463 x 10~ °/— | 6.750 x 10~ %/— | 3.021 x 10~ '/— —
FOM-FOM 2.133 x 10° —/— —/— —/—- —/— 23,280
FOM-ROM 2.084 x 10° — = 1.907 x 10~/ 1.461 x 10~°/ 3.973 x 10~ °/ 23,288
1.170 x 10~6 9.882 x 10~° 1.757 x 1073
1.967 x10~ 1 4.986 x 10~ ° 2.768 x 102
FOM-HROM 2.219 x 10° — /253 29.700
/ 1.720 x 1073 4.185 x 102 2.388 x 10! ’
5.592 x 10~%/ 1.575 x 10~2/ 9.197 x 10~ 2/
ROM-ROM 5 3 . ? 26,220
2:502 % 10 / 4.346 x 10~1 1.001 x 102 5.304 x 10~ 2 ’
4.802 x 10~° 8.500 x 10~ 2 3.744 x 10~ 1
HROM-HROM 2.200x 103 405/253 30,067
x /25 1.960 x 103 4.630 x10~2 2.580 x10~ 1 »0

107 £

10—4 L

Average EMSE(u}

10-10 L

500

10 ¢

108 ¢

)
|

x

o]
x

FOM

ROM
HROM
FOM-FOM
FOM-ROM

FOM-HROM |3

ROM-ROM
HROM-HROM

1000

1500

2000

CPU time (s)

> FOM-ROM coupling is remarkably accurate, achieving displacement error O(1 x 1078)

» FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs
» HROM-HROM on par with single-domain HROM in terms of accuracy

Wall-clock times of coupled models can be improved

2500

Results indicate that predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM

» FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as more Schwarz
iterations required to achieve convergence

» Hyper-reduction samples ~60% of total mesh points for this 1D traveling wave problem
% Greater gains from hyper-reduction anticipated for 2D/3D problems

3000



Numerical Example: Predictive Problem Results

» Highlights coupling method’s ability to improve ROM predictive accuracy

Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration
Predictive FOM-HROM solution is smooth and oscillation-free

1074 | | | | Displ atl:ement | | | | 1074 | Displ atlzement
- —_— ] D— ===~ —— e - Y ————
\"\\ / 1T \\ / /
\ ““““““ ] 0r ! | | | - O — | ! | I
0.|1 0. I 0 0.1 0.2 0.3 0.4 0.5, 0.6 0.7 0.8 0.9 1
Velouty 20 ‘ | | | Velclmty | 5 ‘ | |
/ Ji
/o \
_—— WWMW%MW o————————— e Jb/ — --—-——-——-\\ / _— <{
lI'U/ I
0.I1 0,9 % 0T1 o.lz 0!3 ol4 0!5 ols o.‘? o‘ls o.lg 1
<108 Acceleratlon 108 ‘ | | - AcceI?ratlon | | | |
|| 2+ ‘|”| Iﬂ‘ B
Al \"‘I"-\.:- f D \,'I | ; o Q=== = = = = e e e e e e e e e e e — f ]|| I _,-"ll lvlr\ ________ / l'u'/_’_;l P
L oL ]l'f .
0 O.I‘] [}‘IZ O.IS [},I4 [};(5 O,IS [},I? [},‘8 O,IQ 1 0 0?1 0.|2 DIB II 0.I4 9;5 OIG O‘T DFB D.IQ 1
Predictive single-domain ROM (M,= 300) Predictive FOM-HROM (M, = 200)
solution at final time solution at final time
— Single-domain FOM solution — Solution in Q4 — Solution in Q,



34 I Numerical Example: Predictive Problem Results

%1073 Displacement %1073 Displacement
1 [ T T I T T T T T ] 1 [ T T I T T T T T ]
05 / \ . 05 / \ .
0 0 e
-0.5 [ - -0.5 | -
1L ! ! ! ! ! ! ! ! ! ] 1L ! ! ! ! ! ! ! ! ! ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Velocity Velocity
o0 T T T T T 1 1 N o0 T T T T T 1 1 N
0 o —————-——————————
-20 - -20 -
-40 |- - -40 -
| | | | | | | | | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
«10° Acceleration «10° Acceleration
4 - T T T T T T T T —] 4 = T T T T ,‘“ T T T —]
2 - 2 :', -
0 0 R
o 4 oy i
-4 | | | | | | | | | Bl -4 | | | | | | | | Bl
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Predictive single-domain ROM (M, = 300) Predictive FOM-HROM (M, = 200)

— Single-domain FOM solution — Solution in Q4 — Solution in Q,
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3. Summary and Comparison of Methods
4. Future Work
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36 | Lagrange Multiplier-Based Partitioned Coupling Formulation

Model problem: time-dependent advection-diffusion problemon 2 =02, U 2, with2, NN, =@

Ci = Gi
Ci (x, O) = Cio (X),

¢ —V-F(e)=f; in

on
in

Q; x[0,T]
I;x[0,T]
Q;

i €{1,2}

* ¢;: unknown scalar solution field

* f;: body force, g;: boundary data on I}

* F;(¢c;) = x;V ¢; —uc;: total flux function
* k;: hon-negative diffusion coefficient

u: given advection velocity field

Compatibility conditions: on interface I x [0, T]

« Continuity of states: c;(x,t) — c,(x,t) =0

(1)

« Continuity of total flux: F,(x,t) - np = F,(x,t) - nr

= Imposed weakly using Lagrange multiplier (LM) A

Figure above: example non-
overlapping domain decomposition



Lagrange Multiplier-Based Partitioned FOM-FOM Coupling
FEM-FEM coupling for high 9 ”
Peclet transport problem Plug-and-play” framework:

 Ability to couple regions with different non-conformal meshes,
different element types and different levels of refinement to
simplify task of meshing complex geometries

« Ability to use different solvers/time-integrators in different
regions'2

* Coupling is non-iterative (single pass)

37

Method is theoretically rigorous?:
« Coupling does not introduce nonphysical artifacts

» Theoretical convergence properties/guarantees including well-
posedness of coupling force system

 Preserves the exact solution for conformal meshes

Method has been applied to several application spaces:
 Transport (unsteady advection-diffusion)

* Ocean-atmosphere coupling

« Elasticity (e.g., ALEGRA-Sierra/SM coupling)

Connors et al. 2022. 2Sockwell et al. 2023. 3Peterson et al. 2019.



13 I A Lagrange Multiplier-Based Partitioned Scheme

Hybrid semi-discrete coupled formulation: obtained by differentiating interface conditions in time and
discretizing hybrid problem using FEM in space

M0 G\ e oK e e ey
O Mz _G’g (CZ) = (fz _K2 Cz) (2) g °
G, -G, O A 0 « Pick explicit or IMEX time-
integration scheme for 2, and 2,
* M;: mass matrices « Approximate LM space as trace of
« K; = D; + A;: stiffness matrices, where D; and A; are matrices for FE space on (2, or (2"
diffusive and advective terms, respectively - Compute matrices M;, K;, G; and
* G;: constraints matrices enforcing constraints in weak sense vectors f;
* For each timestep t':
Decoupling via Schur complement: equation (2) is equivalent to > Solve Schur complement
. . system (4) for the LM A"
Equations decouple if M; 0)\/¢ fi—Kic,—GiA » Update the state variables c
using explicit or IMEX ( ) ( ) — (3) ) o '
time-integration! 0 M;/\¢, f2—Kzc + Gg)» by advancing (3) in time

where (GiM7'G] + G,M;"G3)A = G M1 (f1 — Kic1) — G, M3 (f, — Kac3) (4) " Ensures that dual Schur

complement of (2) is s.p.d.
Time integration schemes and time-steps in 2, and 2, can be different!
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20 I ROM-ROM Coupling: Full Subdomain Bases & Full LM Spaces

» Collect snapshots using suitable monolithic FOM solve for equation (1) and subtract DBC data on IJUT,
» Partition modified snapshots into subdomain snapshot matrices X, and X, on £, and 2,, respectively
« Calculate “full” subdomain POD bases @, and &, of dimensions M; and M, from SVD of X; and X,

« Approximate the solution as a linear combination of the POD modes in each subdomain:

c1(t) = C1(t) =€ + DP1C1(),  €3(t) = C3(t) = Cy + P,C (L) (3)
» Substitute (5) into (2) and project (3) onto POD modes to obtain system of the form:

~ _ M. — bT Al
0 M2 _G’g éz — <S2> where Mi = ¢i Mi¢i? Gi = Gi¢i! (6)
A

G, -G, 0 0 si =@ f; — K ®;¢; —P; K;¢; —P] M;C;

Online ROM-ROM IVR Solution Algorithm with Full Subdomain Bases & LM Spaces: at each time step t"

> AN An n n

Use ¢ and ¢} to compute updated RHS s} and s} FOM-ROM coupling

> Solve the Schur complement system for A™: formulation is similar
(GiMT'GT + G,M;' G)A™ = G M1 'sT — G,M;"s%

> Advance the following systems forward in time: M,¢? = s? — G;A™ and M,¢% = s% + G,A"




41 1 ROM-ROM Coupling: What Could Go Wrong!?

A provably non-singular dual Schur complement requires:

1. Symmetric positive-definite projected mass matrices M;

2. Projected constraint matrix (G, EZ)T must have full column rank



2 1 ROM-ROM Coupling: What Could Go Wrong!?

A provably non-singular dual Schur complement requires:

1. Symmetric positive-definite projected mass matrices M;

® Not guaranteed a priori with full subdomain bases &, and @,

2. Projected constraint matrix (G, EZ)T must have full column rank

® Not guaranteed for “full” LM space, taken as trace of underlying FEM discretization space



53 1 ROM-ROM Coupling: What Could Go Wrong!?

A provably non-singular dual Schur complement requires:

1. Symmetric positive-definite projected mass matrices M;
® Not guaranteed a priori with full subdomain bases &, and @,
© Remedied by creating separate “split” reduced bases &, and @; ,, for interface and interior DOFs
» Columns of each basis matrix will have full column rank

2. Projected constraint matrix (G, EZ)T must have full column rank

® Not guaranteed for “full” LM space, taken as trace of underlying FEM discretization space

© Remedied by reducing LM space to ensure satisfaction of discrete inf-sup condition for (6)
> Reduce size of LM space to size Nz < Ng 11 + Ngor, Where Ng ;i = # POD modes in @; 1
> For now, approximate 4 ~ @4 where @ = ®@; for i = 1,2, so that Ny = Ngr
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ROM-ROM Coupling: Split Bases & Reduced LM Spaces

Consider two separate expansions for interface and interior DOFs for i = 1,2:

Cio(t) = Cio(t) = Cio + PioCio(t),  €ir(t) = Cir(t) = C;r + @i rC;r(t)
Substituting above expansions into (2) and projecting equations onto reduced bases gives system of the form:

Reduced LM space also o ¢ : :

P MirM,;, 0 0 gr Cur S1r Split basis + reduced LM space
helps prevent over- Y | B S 5 ' P pa
constraining for full Mior My 3 i 0 “1,0 51,0 guarantees ROM-ROM coupling

<ubdomain basis 0 o _2"Maro_gT il ¢,r |=| S2r has non-singular dual Schur
: . 0 o MzorMy, o ¢ 52,0 complement*
implementation. G, 0 -G, 0 0 \ 1'0/ 0 '

A

Online ROM-ROM IVR Solution Algorithm with Split Bases & Reduced LM Spaces: at each time step t"
> Use ¢}, and ¢; to compute updated RHS s and s} for i = 1,2.
+ Define M, j = @ ;M; j®;x, G; = P G;P;r, P, :=M;r — M;roM;3M;r, for {j,k} € {0,I'} and solve:
(G P1'G] + G,P;'G)A™ = G, P (s — MyroMijst,) — G,P3 (s5r — MyroM35s% )
» Advance the following systems forward in time:

Mi,[‘ 1171l.’r0 E?r s+ (_1)i'5i7’jn * If conditions in [Peterson et
=3 n al., 2019] are satisfied for
54,0 underlying FOM-FOM coupling.

~ ~

M;rg M;r

.
A\

Cio
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Numerical Results: 2D High Peclet Advection-Diffusion Problem

Initial conditions att =0 o Mesh

1+ 0.8¢
0.8 4 .
o 0.6 2
0.4 4 __/ 2
9y //%I/) ‘“\ \ 04+t

: ///"go.‘:}& |

* ;%wﬁ& 0.2
1 : ":"o‘o‘c‘\‘\‘ 1
0.5 0
0O 02 04 06 08 1

X

Cone, cylinder and smooth hump initial condition (top left figure)
Rotating advection field (0.5 — y,x — 0.5) for one full rotation

Figure top left: initial condition.
Figure top right: mesh and DD.

Snapshots from monolithic FEM on Q with 4225 DOFs (h = 6—14)
Two subdomains, as shown in top right figure with 2145 DOFs/subdomain
High Peclet regime: k; = 10™°, for k = 1,2

Homogeneous Dirichlet BCs

IMEX version of Crank-Nicholson (treating LM explicitly), with snapshot time step At = 6.734 x 1073



Numerical Results: 2D High Peclet Advection-Diffusion Problem

Reproductive POD/Galerkin ROM-
ROM coupling case test case

50 modes capture 99.999% of the
snapshot energy (figure right)

For split basis ROM-ROM coupling,
~20 interior modes are needed and
only 5 interface modes are needed
to capture 99% of their respective
snapshot energies

Full LM (fLM) space has dimension
of 63 (# nodesonT) .

Reduced LM (rLM) space has
dimension:

1
NR,lT = min {Z NR,iO' 63}

‘Snapshot energy vs. basis size

/ ==Full subdomain basis RR

Split basis RR, interior
~=Split basis RR, interface |

/

/

=
©
an

O
©

Snapshot energy £
o
o o)
o O

o
-\I
&

10" 102 10°
Basis size

o
- N
o
o

Figure above: snapshot energies as a function of the basis size for full
subdomain basis and split basis approach. RR = ROM-ROM coupling.



Numerical Results: 2D High Peclet Advection-Diffusion Problem

. Relative error ¢ for High Peclet Condition number of Schur complement matrix
o 10°, ‘ / 1020 ‘
o @)
©10™ g ~Full subdomain basis RR, fLM |
= ==Full subdomain basis RR, fLM 8 1010 Full subdomain basis RR, rLM
o) Full subdomain basis RR, rLM ~-Split basis RR, fLM
o o =Split basis RR, rLM --Split basis RR, rLM B

10" - FF coupling - -FF coupling

; [ e e I G S i i
107
10’ 10 10 10°
Total subdomain basis size Total subdomain basis size
Figure above left: relative errors at final time 2 w.r.t. single-domain FOM solution.

Figure above right: Schur complement condition numbers for ROM-ROM (RR) and FOM-FOM (FF) couplings.
Instabilities and inaccuracies observed for full subdomain ROM-ROM coupling with full LM (fLM) space |

Errors for split basis ROM-ROM coupling with full and reduced LM (rLM) spaces identical to machine precision |
Full subdomain ROM-ROM coupling with rLM space achieves best accuracy.
Using rLM space improves condition number

Conditioning of the Schur complement for split basis ROM-ROM formulation is essentially the same as for the
FOM-FOM coupling (proven to be well-conditioned in [Peterson et al. 2019])



Numerical Results: 2D High Peclet Advection-Diffusion Problem

10 Pareto Plot
i ==Full subdomain basis RR, fLM
. Full subdomain basis RR, rLM e Each Coup[ing 1S Capable of
o0 :2;’::; Egz:z ;g’ Itm attaining an error on the order
© i . o FF coupling 7 of the relative error for the
2 i FOM-FOM coupling
o
o101+ g : :
2 * Reduced LM variants achieve
% optimal errors in less time
o
107 ; * Full subdomain basis ROM-
3 . ] ROM with reduced LM space is
* the coupling of choice for this
'3 |- | | | Il | Il |
roblem (but not provabl
9% 1 2 3 4 5 6 7 Etable,) ( provabty

Online runtime (s)

Figure above: Pareto plot for various couplings evaluated.



Numerical Results: 2D High-Peclet Advection-Diffusion Problem

ROM-ROM, full subdomain basis with fLM ROM-ROM, full subdomain basis with rLM
B A
fim A
Ui 4%/"'“\\\\\\\
‘ M “\ gy FOM-FOM
» | Ao e
it iy X _
4 me 08+ ;((\\‘\‘\\\\ a0
- i 0.6 /;:\\\\\“v"'l"
= | i
“ _'/I/II['OM
e

e
/ %f‘t‘ !‘\\\\

Figures left: solutions I
produced by various 50
mode ROM-ROM couplings
compared at final time 27
compared to FOM-FOM

coupling (above) I




Numerical Results: 2D High-Peclet Advection-Diffusion Problem

ROM-ROM, full subdomain basis with fLM ROM-ROM, full subdomain basis with rLM
12 1.2 |
RSNy M A "::»‘“‘ sy /“\
- e /i ' i R
: I /NN : il
_ iy - O FOM-FOM [
!'“ \\" ’ ";‘\“‘ 1.2
: / II" \:\\ \
-0. il ; JAN

ROM-ROM, split basis with fLM ROM-ROM, split basis with rLM

124

Movies left: solutions
produced by various 50
mode ROM-ROM couplings
compared to FOM-FOM
coupling (above)




Numerical Results: 2D High-Peclet Advection-Diffusion Problem

ROM- ROM full subdomam ba51s with fLM

0.5+ —ROM solution for sz N =50/
——ROM solution for Q N =50

01, 02 0.4 06 08 1
Values of y for x=0.5
ROM ROM, spllt basis w1th fLM
0.5

-._ROM solution for Q N =50
--ROM solution for SZ N =50

-0.1
0

0.2 0.4 0.6 0.8 1
Values of y for x=0.5

ROM-ROM, full subdomam basis with rLM

0.5

---ROM solution for Q1, NR =50

0.4+ —-ROM solution for Qz’ NR =50 -
03r
0.2}
0.17
0
-0.1 : :
0 0.2 0.4 0.6 0.8 1
Values of y for x=0.5
ROM-ROM, split basis with rLM
0.5/ T w T T
—-ROM solution for (21, NR =50
0.4+ —-ROM solution for Q, NR =50| -

0 0.2 0.4 0.6 0.8 1
Values of y for x=0.5

FOM-FOM

——FEM solution for Q2 1
—FEM solution for Qz .

0.2 0.4 0.6 0.8
Values of y for x=0.5

Figures left: solutions at
final time 2 along
interface I for various 50
mode ROM-ROM couplings
compared to FOM-FOM
coupling (above)




Numerical Results: 2D High-Peclet Advection-Diffusion Problem

~ ROM-ROM, full subdomain basis with fLM ROM-ROM, full subdomain basis with rLM
0.5 ; : R
-ROM solution for 2., N, = 90 05 - ROM solution for 2, N., = 90
047 —ROM solution for £2,, N = 90| 04- ~ROM solution for €2, N, =90 - FOM-FOM
057 ‘
0.3 —FEM solution for Q1
——FEM solution for Q| -
0.2
0.1
0
al -0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Values of y for x=0.5 Values of y for x=0.5
ROM-ROM, split basis with fLM ROM-ROM, split basis with rLM il B2 04 06 08
0.5 ; | 057 ————— ' ' ) '
——ROM solution for 01, NR =90 —.—ROM solution for 91, NR =90 Valles o yilome=ds
0.4 - ROM solution for 92, NR =90|| 04 - ROM solution for 92, NR =90||
02 03 Figures left: solutions at
0.2 | 0.2 | final time 2 along
oil | o | interface I" for various 90
mode ROM-ROM couplings
0f 0
compared to FOM-FOM
o1, 0.2 0.4 0.6 0.8 1 01 0.2 0.4 0.6 0.8 1 coupling (above)

Values of y for x=0.5 Values of y for x=0.5
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55 | Summary
Opinion: hybrid FOM-ROM models are the future!

 Two domain decomposition-based methods for coupling projection-based ROMs with
each other and with conventional full order models have been proposed

> An iterative coupling formulation based on the Schwarz alternating method and an
overlapping or non-overlapping DD

> A Lagrange multiplier-based single-pass (non-iterative) partitioned scheme based on
non-overlapping DD

* Numerical results show promise in using the proposed methods to create heterogeneous
coupled models comprised of arbitrary combinations of ROMs and/or FOMs

» Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings
» Coupling introduces no numerical artifacts into the solution

« FOM-ROM and ROM-ROM have potential to improve the predictive viability of projection-
based ROMs, by enabling the spatial localization of ROMs (via DD) and the online
integration of high-fidelity information into these models (via FOM coupling)
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Comparison of Methods

Alternating Schwarz-based Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Overlapping or non-overlapping DD

Iterative formulation (less intrusive but likely
requires more CPU time)

Can couple different mesh resolutions and
element types

Can use different time-integrators with
different time-steps in different subdomains

No interface bases required

Sequential subdomain solves in multiplicative
Schwarz variant

> Parallel subdomain solves possible with
additive Schwarz variant (not shown)

Extensible in straightforward way to PINN/DMD
data-driven model

Lagrange Multiplier-Based Partitioned Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Non-overlapping DD

Monolithic formulation requiring hybrid
formulation (more intrusive but more efficient)

Can couple different mesh resolutions and
element types

Can use different explicit time-integrators with
different time-steps in different subdomains

Provably convergent variant requires interface
bases

Parallel subdomain solves if explicit or IMEX
time-integrator is employed

Extensions to PINN/DMD data-driven models are
not obvious
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On ggin g & Future Work Journal articles on both couplings
are currently in preparation.

Alternating Schwarz-based Coupling

Lagrange Multiplier-Based Partitioned Coupling

Extension/prototyping on multi-D problems (2D Burgers, 2D/3D compressible flow', 2D/3D solid mechanics?)
Implementation/testing of additive Schwarz variant, which admits more parallelism

Analysis of method’s convergence for ROM-FOM and ROM-ROM couplings

Learning of “optimal” transmission conditions to ensure structure preservation

Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)

Exploration of connections between iterative Schwarz and optimization-based coupling [lollo et al., 2022]

1 https://github.com/ Pressio/pressio-demoapps
Predictive regime tests 2 https://github.com/Ixmota/norma

Extension to nonlinear problems

« Alternate constructions for reduced Lagrange multiplier space (e.g., from snapshots of fluxes)

General

Numerical comparison of alternating Schwarz and LM-based partitioned coupling methods

Development of smart domain decomposition approaches based on error indicators, to determine optimal
placement of ROM and FOM in a computational domain (including on-the-fly ROM-FOM switching)

Extension of couplings to POD modes built from snapshots on independently-simulated subdomains
Application to other problems, including multi-physics problems (e.g., FSI, Air-Sea coupling)


https://github.com/Pressio/pressio-demoapps
https://github.com/lxmota/norma
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¢« I Numerical Example: ID Dynamic Wave Propagation Problem

» Basis sizes M; and M, vary from 60 to 300
> Larger ROM used in (4, since solution has steeper gradient here
» For couplings involving FOM and ROM/HROM, FOM is placed in £, since solution has steeper gradient here

* Non-negative least-squares optimization problem for ECSW weights solved using MATLAB’s Isqnonneg function
with early termination criterion (solution step-size tolerance = 10™%)

> Ensures all HROMs have consistent termination criterion w.r.t. MATLAB implementation
» However, relative error tolerance of selected reduced elements will differ

¢ Switching to termination criterion based on relative error is work in progress and expected to improve
HROM results

» Convergence tolerance determines size of sample mesh N, ;
> Boundary points must be in sample mesh for application of Schwarz BC

Figure left: sample sample mesh for

0 5 10 10 200 20 300 30 40 1D wave propagation prob[em
nz =130

J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of
nonlinear reduced order models and full order models”, in Computer Science Research Institute
Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R,
Sandia National Laboratories, 2022, pp. 31-55. (https://arxiv.org/abs/2210.12551)



https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://arxiv.org/abs/2210.12551

o Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

= S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

= P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone
elliptic problems using max principle.

S.G. Mikhlin
(1908 — 1990)

= A. Mota, I. Tezaur, C. Alleman (2017): proved convergence of the

alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate.

d)[(p]=j A(F,Z)dV—j B-odV
B B
V.-P+B=0

A. Mota, |. Tezaur, C. Alleman
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4 Numerical Examples
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B Analytic Solution for Linear-Elastic Singular Bar
As reerence, herein we provide the solution of the singular bar of Section 4.3 for lincar clastciy. The
equilirium equation i

n

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory
67

* Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

 Well-posedness for the dynamic problem requires that action functional S[¢] =

I, [, L (@, @)dVdt be strictly convex or strictly concave, where L(¢, @) = T(p) + V() is the
Lagrangian.
> This is studied by looking at its second variation §25[¢},]

 We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

6°S[pnl=x"

wAVM_qx

> 62S[@] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



s I Numerical Example: Linear Elastic Wave Propagation Problem

« Linear elastic clamped beam with Gaussian initial condition.

« Simple problem with analytical exact solution but very stringent test for discretization/coupling
methods.

« Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

« ROMs are reproductive and based on the 0.01 dispiacement, snapshot 1, time = 0
POD/Galerkin method. 0.008 | / \\
» 50 POD modes capture ~100% snapshot | |
energy i ‘/
o J \__

-0.002
-0.004 +
-0.006

-0.008 -

Above: 3D rendering of clamped beam with Gaussian initial condition. | | | |
Right: Initial condition (blue) and final solution (red). Wave profile is 00, 0.2 0.4 0.6 0.8 1
negative of initial profile at time T = 1.0e-3.




Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-

% 1 ROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.

0.01 displacement, snasshot 1, time=0

-0.01
0

1 1 1 L
0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time = 0

200

1 1 1 L
0 0.2 0.4 0.6 0.8 1
%107 acceleration, snapshot 1, time = 0

Single Domain FOM

0 [¢) 1

"Implicit 40 mode POD ROM, At=1e-6, Ax=1.25e-3
ZImplicit FOM, At =1e-6, Ax =8.33e-4
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

0.2 0.4 0.6 0.8
velocity, snapshot 1, time = 0
T T T T

200+

1 1 L 1
0 0.2 0.4 0.6 0.8
%107 acceleration, snapshot 1, time =0

3 overlapping subdomain
ROM'-FOM2-ROM3

0 Q, 05
—

Q, 1
—

—
0.25 Q3 0.75

-0.01

0.01 Idisplacemevt, SnaliShOt 1, time = q - displacement, snaishot 1, time =0
! ¥ T T T T

-0.01
0

1 1 1
0 0.2 0.4 0.6
velocity, snapshot 1, time =0

1
0.8 1

1 1 1
0 0.2 0.4 0.6

%107 acceleration, snapshot 1, time =0

1
0.8 1

0 0.2 0.4 0.6

0.8 1

2 non-overlapping subdomain

FOM4-ROMS (4 = 1)

0 03
02
0.3 1

JImplicit FOM, At =2.25e-7,
Ax =1e-6

“Explicit 50 mode POD ROM,
At =2.25e-7, Ax =1e-6



70 | Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.

| disp MSE®| velo MSE | acce MSE_

Overlapping ROM'-FOM2-ROM3  1.05e-4 1.40e-3  2.32e-2
Non-overlapping FOM*-ROM> 2.78e-5 2.20e-4  3.30e-3

"Implicit 40 mode POD ROM, At =1e-6, Ax =1.25e-3
ZImplicit FOM, At =1e-6, Ax =8.33e-4

3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3
4lmplicit FOM, At =2.25e-7, Ax =1e-6

Explicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

N N
6MSE= mean squared error = \l Z Hﬁn(ﬂ) —u" (ﬂ)”;/\l Z Hu”(p]Hi
n=1 n=1



71 | Linear Elastic Wave Propagation Problem: ROM-ROM Couplings

ROM-ROM coupling gives errors < O(1e-6) & speedups over FOM-FOM coupling for basis sizes > 40.

MSE in displacement for 2 CPU times for 2 subdomain ROM-ROM Average # Schwarz iterations for 2
subdomain ROM-ROM coupling coupling normalized by FOM-FOM CPU time subdomain ROM-ROM coupling
GN dN 80 Cé‘\l 80 .
£ =R £ o iR
% [+ [ -l " _8 60 -8 80
®) O s o . {25
S S g
a 4 [ 40 40
O P
8 8 30 o 30
i T 20 * 20
i o E_ . o * ool 15
. ) ' " 0 = % : 20 40 60 80 00
# POD modes in Q, # POD modes in Q, # POD modes in

« Smaller ROMs are not the fastest: less accurate & require more Schwarz iterations to converge.

» All couplings converge in < 4 Schwarz iterations on average Overlapping implicit-implicit coupling
(FOM-FOM coupling requires average of 2.4 Schwarz iterations). with Q, = [0,0.75], Q, = [0.25,1]



72 I Linear Elastic Wave Propagation Problem: FOM-ROM Couplings

FOM-ROM coupling shows convergence with basis refinement. FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

CPU times for 2 subdomain

MSE for 2 subdomain FOM-ROM coupling normalized ~ Average # Schwgrz itera'tions for 2
FOM-ROM coupling by FOM-FOM CPU time subdomain couplings

10* - ' . . : . : -
.E —djsp]a_cemenl W 36+ ( — FOM-ROM | WIP. ‘
e T veloay £ — FOMFOM understanding &

2 acceleration | | o— 2t n . )

S 0 c s34y 1 | improving FOM-
s o = ROM coupling
~ - 7 g performance.
. & 2
0] N c
5 0 TU 1.1 ‘y’
L £ T Overlapping
= 10 2 %n 28] implicit-
oh Q 105 = implicit
g o6 = Z 26| coupling with
Z © 1 _ Q, = [0,0.75],

o | S D S S A N S Q,=[0.25,1]

( - i i i i
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

# POD modes in Q, # POD modes in Q, # POD modes in Q,



Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-

ROM Couplings

Inaccurate model + accurate model + accurate model.

IMPLICIT FOM

Z oo
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=
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Figures above: O, = [0,0.75], Q,=[0.25,1]
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Observation suggests need for
“smart” domain decomposition.

Accuracy can be improved by “gluing”’
several smaller, spatially-local models
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74 ‘ 2D Burgers FOM: New Python Code

ou 1 /O0u® Ouv
T 4+ 5 ( i + dy ) = 0.02 exp(u2x)

@+1(8vu+8v2)20
ot 2\ Ox ay
u(x=0,y,t; p) =
ulx,y,t =0)=v(x,y,t=0)=1
x,y € [0,100], t € [0, T¢]

» Spatial discretization given by a Godunov-
type scheme with N = 250 elements in
each dimension

« Temporal discretization given by the
trapezoidal method with fixed At = 0.05
where T, = 25.0 for a total of 500 time
steps

t =125 t =18.8

75 1
50 1
25 1

25 50 75 25 50 75

Figure above: solution of u
component at various times




75 | 2D Burgers:Verifying Implicit Implementation

x-axis y-midpoint slice

>
b
~—

Iy

slices of the 2D domain = \ \

0 20

60

N
« The plot to the right shows the = -\ |\ \/
solution of the u component at l
various times along mid-axis 2.91 e
40

e FOM and ROM solutions are the

X
same

y-axis x-midpoint slice

30 100

30 100




76 | 2D Burgers: LSPG PROM

* Predictive case where p =[4.7, 0.026]

» Train bases using 9 total runs of the FOM
with all combinations of y, =
[(4.25),(4.875),(5.5)] with y, =
[(0.015),(0.0225),(0.03)]

* Using 113 POD modes

e Relative error of 0.61%

e 321 s wall clock time

— 5.0

w(x,y=50.1

50.1,y)

w(x=

x-axis y-midpoint slice

1 1
—— HDM
1 — PROM __——
\ \ e —
0 20 40 60 80 100
X
y-axis x-midpoint slice
—— HDM
—  PROM
0 20 40 60 80 100




77 I Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

rk(CIk; t) — WTr(a; t)
= z WTLLr, (L +1i,t)
ees

e L, €{0,1}9*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ €{0,1}9*N selects degrees of freedom necessary for flux reconstruction

» Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and ® represents an added node to
enable the full representation of the
computational stencil at the selected
node/element




78

ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snapshots u;,i € 1, ...,n; used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
cse = WTLLr, (Le+ (uref +V VT (us — uref)) , t) € R"
d, =n(ii,t) € R", s=1,..,ny
We can then form the system
€11 - Cin, dy
Cnp1i o CnpN, dn,
Where €¢ = d, & € RVe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
¢ = arg min,cgn||Cx — d||, subjecttox = 0

Solve the above optimization problem using a nhon-negative least squares solver with an early
termination condition to promote sparsity of the vector &



Numerical Example: ID Dynamic Wave Propagation Problem

« Alternating Dirichlet-Neumann Schwarz BCs with no relaxation (8 = 1) on Schwarz boundary T

(. (n+1) _ Min # Max # Total #
Div P} + pB(t;) =0, inQ, Schwarz Schwarz Schwarz
) (p(n+1) ¥ on dQ,\T Iters Iters Iters
1 - ’
1.10 3 9 59,258
\ §n+1) = i1 on T 0 )F Qs
1.00 1 4 24,630
)
Div P 4+ pB(t) =0, inQ, \ 0.99 1 5 35,384
LoD = 5, on 9Q,\T o0 0.95 3 6 45,302
k P p = pty, on T Ansr = 0900V + (1 —0)4,,0n T,forn > 1 0.90 3 8 56,114

> A parameter sweep study revealed 6 = 0 gave best performance (min # Schwarz iterations)

 All couplings were implicit-implicit with At; = At, = AT = 107 and Ax; = Ax, = 1073
» Time-step and spatial resolution chosen to be small enough to resolve the propagating wave

» All reproductive cases run on the same RHEL8 machine and all predictive cases run on the same RHEL7
machine, in MATLAB

* Model accuracy evaluated w.r.t. analogous FOM- \/ZS " — |2
FOM coupling using mean square error (MSE): 1 2

ensg (W) =

NPT



‘ Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Q = [0,0.7]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx=1e-3.

i <1074 displacement, snapshot 1, time = 0
T T 7"':,_ T
0 0.2 0.4 0.6 0.8
velocity, snapshot 1, time =0
10 N T T T T
03
10+
-20F
-30& 1 1 L 1
0 0.2 0.4 0.6 0.8
& %100 acceleration, snapshot 1, time = 0
4 =
2 =
0
-2
-4

Multiplicative Schwarz

Additive Schwarz

-10 =
20+
30kt L 1 1 1
0 0.2 0.4 0.6 0.8
- x10° acceleration, snapshot 1, time =0
— T T T T
4+
2
0
-2
-4

0 0.2 0.4 0.6 0.8
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2.6

e
MR

# Schwarz iters
P

1.4 r

1.2

Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Overlapping, Henky MM « 0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM

=
oo
T

coupling, dt = 1e-7, dx=1e-3.

« Additive Schwarz requires slightly more Schwarz
iterations but is actually faster.

« Solutions agree effectively to machine precision
in mean square (MS) sense.

| Additive | Multiplicative

0.2

0.4

time

0.6

py— Total # Schwarz iters 24495 24211
— — —Mulplcative ]’ CPU time 2.03e3s 2.16€3
| MS difference in disp 6.34e-13/6.12e-13
0.8 31 MS difference in velo 1.35e-11/1.86e-11
« 10

MS difference in acce 5.92e-10/1.07e-9



3Im|:|l-lm|:|I-EJ|c|:|nl FOM-FOM-FOM, Overlapping, Henky MM

2.8

2.6

# Schwarz iters
= = = b Pt
P =" [ 5] (%] P ="

i

Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

=
oo
T

I
I
I
I
I
I
I
I
I
I
-

=

0.2

0.4

time

0.6

0.8

« (0 =10,0.3]U[0.25,0.75]U[0.7,1], implicit-implicit-explicit
FOM-FOM-FOM coupling, dt = 1e-7, dx = 0.001.

» Solutions agree effectively to machine precision in
mean square (MS) sense.

« Additive Schwarz has slightly more Schwarz iterations
but is slightly faster than multiplicative.

| Additive | Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s
MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13
MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11
MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



x10™* displacement, snapshot 1, time = 0
T T A T
/ A\
AN

10

T

0 0.2 0.4 0.6 0.8

Multiplicative Schwarz

|
velocity, snapshot 1, time = 0

T T T T
10+ .
(O v o — m— ettt
-10F i
20 i

30k 1 1 1 I
0 0.2 0.4 0.6 0.8 1

6 %10° acceleration, snapshot 1, time =0

= T T T T 1
4 - -
2 - .
0 mm———————— — — = (f ———— e ——— — — —
2+ \/ _

4 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Q =1[0,0.3]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx = 1e-3.

‘ Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Schwarz

16 x10 displacement, snapshot 1, time = 0

T T .‘,"\‘\ T T
i RY |

/
() e - — — =" N
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time = 0

T T T T
10+ 5
O e —— — — — — — — — — — ]
10+ i
20+ i

30 L 1 L 1
0 0.2 0.4 0.6 0.8 1

5 x10°8 acceleration, snapshot 1, time =0
= T T T T 3
4+ |
2+ i
1] ———— f — — — — — — — — -
2 |- \/ i

_4 1 1 1 1
0 0.2 0.4 0.6 0.8 1



# Schwarz iters

3]
T

Ln
T

i
T

Lad
T

Non-overlapping Coupling, Nonlinear

Impl-lmpl FOM-FOM, Non-Overlapping, Henky MM

Additive
— — — Multiplicative

0.2 0.4 0.6 0.8

Henky MM, 2 Subdomains

Q = [0,0.3]U[0.3,1], implicit-implicit FOM-FOM
coupling, dt = 1e-7, dx = 1e-3.

Additive Schwarz requires 1.81x Schwarz
iterations (and 1.9x CPU time) to converge.
CPU time could be reduced through added
parallelism of additive Schwarz.

> Note blue square for additive Schwarz...

Additive and multiplicative solutions differ in
mean square (MS) sense by O(1e-5).

Total # Schwarz iters 44895 24744

MS difference in disp
MS difference in velo
MS difference in acce

CPU time 1.87e3s 982.5s
4.26e-5/2.74e-5
1.02e-5/5.91e-6
5.84e-5/1.21e-5



# Schwarz iters

Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

ITﬂpI-ImpI-Expl FOM-FOM-FOM, Non-overlapping, Henky MM

Additive
— — — Multiplicative

0.4 0.6 0.8

Q =1[0,0.3]U[0.3,0.7]U[0.7,1], implicit-implicit-
explicit FOM-FOM-FOM coupling, dt = 1e-7, dx =
0.001.

Additive Schwarz has about 1.94x number Schwarz
iterations and is about 2.06x slower - similar to 2
subdomain variant of this problem. No “blue
square”.
> Results suggest you could win with additive
Schwarz if you parallelize and use enough
domains.

Additive/multiplicative solutions differ by O(1e-
5), like for 2 subdomain variant of this problem.

_ Additive Multiplicative

Total # Schwarz iters
CPU time

MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06
1.4077e-05/1.2104e-05/6.5771e-06
8.7885e-05/3.2707e-05/1.3778e-05

MS difference in velo
MS difference in acce

53413
5.91e3s

27509
2.87e3s



