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Abstract

A numerical study aimed to evaluate different preconditioners within the TrilinosIfpack
andML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson prob-
lem implemented within the Albany code base and posed on the Ottawa Flat 270 design ge-
ometry is performed. This study led to some new development of Albany that allows the user
to select anML preconditioner withZoltan repartitioning based on nodal coordinates, which
is summarized. Convergence of the numerical solutions computed within the QCAD compu-
tational suite with successive mesh refinement is examined in two metrics, the mean value of
the solution (anL1 norm) and the field integral of the solution (L2 norm).
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1 Introduction

The Quantum Computer Aided Design (QCAD) project, funded bythe LDRD program (project
#151297), aims to develop computational tools that enable the design and analysis of few-electron,
low-temperature quantum devices at specific regimes, and facilitate the discovery of quantum dot
structures [2]. The project uses as leverage the high-performance parallel computing resources
available at Sandia, as well as a number of existing Sandia software tools, including the Trilinos
solver library, the Dakota optimization toolbox, the Cubitmesher, and the SIERRA toolkit. QCAD
is implemented in the Albany code base, under the Agile Components strategy of Trilinos. Within
this framework, a suite of computational tools that focusesaround the efficient numerical solution
of the non-linear Poisson equation and coupled Poisson-Schrödinger equations has been developed.

In recent months, the QCAD computational suite has been adopted by analysts to help with the
design of actual quantum devices to be constructed in a lab. Since these analysts require timely
and accurate predictions to aid their designs, there is muchmotivation to improve the code’s per-
formance without sacrificing any robustness. There is also motivation to validate the solutions
computed within the code. Toward this effect, the present document summarizes the results of a
numerical study aimed to address the following questions:

1. Which choice of preconditioner within the TrilinosIfpack (ILU) [5] and ML (algebraic
multi-grid) [3] packages minimizes the total solve time of the linear systems (Ax = b) that
arise from the discretization of the governing equations? (Section 2)

2. Do the solutions computed within the QCAD computational suite converge with successive
mesh (h−) refinement? (Section 3)

In answering these questions, opportunities to identify ways to improve the Albany code base
through new development were sought. The first part of the numerical study led to the develop-
ment of a new capability within Albany that allows the user toselect anML preconditioner with
Zoltan repartitioning based on nodal coordinates. This choice of preconditioner can greatly ac-
celerate convergence for large problems run on a large number of processors, and could benefit
numerous applications implemented within Albany. The second part of the numerical study was
of particular interest due to the nature of the Cubit-generated tetrahedral meshes used to discretize
the quantum devices that are of interest. The irregular shape of these devices (Figure 1) makes
them difficult to mesh. This reality makes the generation of “bad” meshes a genuine possibility.
A numerical convergence study with respect to mesh refinement would validate in some sense the
meshing algorithm employed as well as put confidence in the solutions obtained from the QCAD
computational suite.

In this document, attention is restricted to the “Ottawa Flat 270” device design (Figure 1), a
modification of the original Ottawa device design [4]. The device is discretized using four-node
tetrahedral finite elements, generated using the Cubit meshing tool. The governing partial differ-
ential equation (PDE) is a non-linear Poisson equation, which describes the large population of
atoms/molecules of which a device is composed.
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Figure 1. Sample quantum device model

The remainder of this document is organized as follows. Section 2 describes theIfpack andML
preconditioners considered in the preconditioner performance study, as well as the new develop-
ment within Albany that was motivated by this study. Total linear solve and total preconditioner
creation times1 for each preconditioner considered are reported for problems of three sizes: a
“small” problem of≈ 1 million tetrahedral elements, a “medium” problem of≈ 8.5 million tetra-
hedral elements, and a “large” problem of≈ 69 million tetrahedral elements. The two finer meshes
were generated through a successive mesh refinement of the original ≈ 1 million four-node tetra-
hedral “coarse” mesh, that is, by splitting all elements in the original “coarse” mesh evenly in all
directions. This successive mesh refinement can be achievedin Cubit using the command:

refine volume all numsplit N

(a) Original “coarse”
mesh

(b) numsplit 1 (c) numsplit 2

Figure 2. Mesh refinement

whereN is the level of successive mesh refinement (e.g., ifN = 1 each element will be refined
once in each direction, ifN = 2 each element will be refined twice in each direction, etc; Figure
2). All runs were performed on the 160-TFlop Red Sky cluster at Sandia. The “small”, “medium”

1Included in the total linear solve time.
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and “large” problems were run in parallel on 16 processors (2nodes), 128 processors (16 nodes)
and 1024 processors (128 nodes) respectively. These processor and node counts were selected
so that for each problem size, each processor had the same number of elements, and all eight
processors of each node were occupied. Scalability with respect to problem size and processor
count is examined.

Section 3 presents the results of a numerical convergence study of the QCAD solution with respect
to successive mesh refinement, performed in the manner described above. The convergence of
two quantities of interest, the mean value of the solution and the field integral (the integral of the
solution over the domain), was considered specifically. Theobserved rates of convergence of these
quantities are compared to the expected theoretical convergence rates. Conclusions are offered in
Section 4.
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2 Preconditioner Performance Study

This section summarizes the results of a study aimed at evaluating the relative performance of
different preconditioners available through the TrilinosIfpack andML packages for a QCAD non-
linear Poisson problem posed on the Ottawa Flat 270 device geometry. Twelve basic precondi-
tioner types are considered: nineIfpack preconditioners and threeML preconditioners (Table 1).
The Ifpack preconditioners are effectively ILU preconditioners, anddiffer in the overlap and
level-of-fill options. TheML preconditioners are algebraid multi-grid preconditioners based
on three default preconditioner types available in theML package:SA (classical Smoothed Aggrega-
tion), DD (classical smoothed aggregation based on two-level DomainDecomposition), andDD-ML
(three-level algebraic Domain Decomposition). For a detailed discussion of theseIfpack andML
options, the reader is referred to theIfpack andML user guides, [5] and [3] respectively.

Table 1. Summary of preconditioners evaluated

Preconditioner # Type Parameters

1

ifpack

overlap = 0, level-of-fill = 0
2 overlap = 1, level-of-fill = 0
3 overlap = 2, level-of-fill = 0
4 overlap = 0, level-of-fill = 1
5 overlap = 1, level-of-fill = 1
6 overlap = 2, level-of-fill = 1
7 overlap = 0, level-of-fill = 2
8 overlap = 1, level-of-fill = 2
9 overlap = 2, level-of-fill = 2
10

ML
default type = SA

11 default type = DD
12 default type = DD-ML

By perusing theML users’ guide [3], the reader may observe that theML preconditioner package has
a number of options and parameters that may be specified by theuser, and/or over-written from
the default settings. In an effort to optimize the performance of theML preconditioners, it is worth-
while to explore several of these options. To this effect, three variants of theML preconditioners
introduced in Table 1, referred to as A, B and C, are considered. The parameter lists for these
preconditioner options are summarized in Table 2 for the specific case of anSA default precondi-
tioner. The C variant preconditioner employs the matrix repartitioning option available through the
Trilinos Zoltan package. Essentially, repartitioning uses information about the mesh coordinates
to perform dynamic load-balancing of coarse-level matrices in the multigrid preconditioner. With
repartitioning, message passing latency on the coarse level can be improved, and the well-known
problem of the coarsening rate dropping as the number of unknowns per processor becomes small
can be avoided. Providing the user with the option to select an ML preconditioner withZoltan
repartitioning required some non-trivial new developmentwithin Albany. Functions that identified
and communicated the(x,y,z) coordinates of a problem’s underlying mesh were added to existing
Albany classes.

10



1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Preconditioner #

N
O

X
 M

ea
n 

Li
ne

ar
 S

ol
ve

 T
im

e 
(s

) 
ov

er
 P

ro
cs

QCAD Ottowa Flat 270 problem (ML settings A)

 

 

Numsplit = 0, 1079340 elements (total lin solve)
Numsplit = 0, 1079340 elements (total lin − prec creation)
Numsplit = 1, 8634720 elements (total lin solve)
Numsplit = 1, 8634720 elements (total lin − prec creation)
Numsplit = 2, 69077760 elements (total lin solve)
Numsplit = 2, 69077760 elements (total lin − prec creation)

Figure 3. Ifpack vs. ML preconditioners withML settings A

Figures 3–5 depict theBelos total linear solve times and total preconditioner creationtimes for
the nineIfpack preconditioners and the threeML preconditioners summarized in Table 1. TheML
preconditioners in Figure 3 have theML settings A; theML preconditioners in Figure 4 have theML
settings B; theML preconditioners in Figure 5 have theML settings C. With settings that are effec-
tively the defaultML settings (settings A), theML preconditioners are outperformed by theIfpack
preconditioners by a large margin on the finest mesh considered (Table 3). The performance of
theML preconditioners improves when theaggregation: type is changed toUncoupled-MIS
(settings B); however theML preconditioners still do not outperform theIfpack preconditioners on
the finest mesh (Figure 4). Inspection of the verbose output from theML package suggested that the
situation may be improved by introducingZoltan repartitioning based on nodal coordinate, and
the Albany code base was modified to allow this option, as discussed above. The reader may ob-
serve an extraordinary speedup in the total linear solve andpreconditioner creation times for theML
preconditioners with repartitioning (settings C) (Figure5). With settings C, theML preconditioners
achieve a factor speedup of more than two relative to theIfpack preconditioners forall mesh
resolutions considered. More specifically, for a problem discretized by≈ 8.6 million tetrahedral
elements, run on 128 processors on the Red Sky cluster:

• The linear solves were 2.4–5.45 times faster with anML preconditioner plusZoltan reparti-
tioning (settings C) compared to anIfpack preconditioner.

• The linear solves with anML preconditioner plusZoltan repartitioning (settings C) were≈ 2
times faster than with a “black box”ML preconditioner (settings A).
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Numsplit = 0, 1079340 elements (total lin solve)
Numsplit = 0, 1079340 elements (total lin − prec creation)
Numsplit = 1, 8634720 elements (total lin solve)
Numsplit = 1, 8634720 elements (total lin − prec creation)
Numsplit = 2, 69077760 elements (total lin solve)
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Figure 4. Ifpack vs. ML preconditioners withML settings B

For a problem discretized by≈ 64 million tetrahedral elements, run on 1024 processors on the Red
Sky cluster:

• The linear solves were 2.4–2.79 times faster with anML preconditioner plusZoltan reparti-
tioning (settings C) compared to anIfpack preconditioner.

• The linear solves with anML preconditioner plusZoltan repartitioning (settings C) were 9.5
times faster than with a ”black box”ML preconditioner (settings A)

TheML preconditioner option withZoltan repartitioning (settings C) is therefore recommended
for all problem sizes.

Figure 6 shows the preconditioner number (Table 1) versus

total linear solve time
# elements per processor

, (1)

for the three problem sizes considered. If the problem scaled perfectly with the number of pro-
cessors, the value (1) would be the same for all problem sizesand processor counts. Figure 6
indicates that scalability for this problem could be improved. The reason for the suboptimal scala-
bility demonstrated in this figure is at the present time unknown, and may be investigated in future
work.
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Figure 5. Ifpack vs. ML preconditioners withML settings C
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Table 2. Summary of ML settings evaluated (for example of
default values: SA)

ML settings A
<ParameterList name="ML">
<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">
<Parameter name="default values" type="string" value="SA"/>
<Parameter name="smoother: type" type="string" value="Chebyshev"/>
<Parameter name="smoother: pre or post" type="string" value="both"/>
<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>

</ParameterList]>
</ParameterList>

ML settings B
<ParameterList name="ML">
<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">
<Parameter name="default values" type="string" value="SA"/>
<Parameter name="smoother: type" type="string" value="Chebyshev"/>
<Parameter name="smoother: pre or post" type="string" value="both"/>
<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>
<Parameter name="coarse: max size" type="int" value="512"/>
<Parameter name="aggregation: type" type="string" value="Uncoupled-MIS"/>

</ParameterList>
</ParameterList>

ML settings C
<ParameterList name="ML">
<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">
<Parameter name="default values" type="string" value="SA"/>
<Parameter name="smoother: type" type="string" value="Chebyshev"/>
<Parameter name="smoother: pre or post" type="string" value="both"/>
<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>
<Parameter name="coarse: max size" type="int" value="512"/>
<Parameter name="repartition: enable" type="int" value="1"/>
<Parameter name="repartition: partitioner" type="string" value="Zoltan"/>
<Parameter name="repartition: Zoltan dimensions" type="int" value="3"/>
<Parameter name="repartition: max min ratio" type="double" value="1.3"/>
<Parameter name="repartition: min per proc" type="int" value="1000"/>

</ParameterList>
</ParameterList>
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3 Convergence Study
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Figure 7. Mesh convergence of mean value and field integral

Attention is now turned to the mesh convergence of the solution to the QCAD non-linear Poisson
problem posed on the Ottawa Flat 270 geometry discretized with a four-node tetrahedral mesh.
Two metrics are used to study mesh convergence: the mean value of the solution, and the field
integral of the solution (the integral of the solution over the domain). The former quantity is
effectively anL1(Ω) norm, and the latter is effectively anL2(Ω) norm. From basic finite element
theory, the expected convergence rates in these norms for four-node tetrahedral finite elements are
one and two respectively [1]. Since an analytical form of theexact solution to this problem is
not available, the relative errors were measured with respect to a converged reference solution,
computed numerically on a mesh of≈ 552 elements obtained by executing therefine volume
all numsplit 3 Cubit command on the coarsest (≈ 1 million element) mesh considered. Given
uref, the computed solution on the reference mesh (in this case, the mean value of the solution or
the field integral), the relative error was computed as:

εref =
|uref−uN |

|uref|
, (2)

whereuN is the solution computed on a mesh ofN tetrahedral elements. Subfigures (a) and (b)
in Figure 7 illustrate respectively the convergence of the solution mean value and field integral
with respect to successive mesh refinement. Although the solution appears to be converging in
both metrics, the reader may observe that the convergence rates are below the rates expected from
theory. Most likely, this can be attributed to an insufficiently accurate reference solution. A fur-
ther convergence study, perhaps in a different metric, may be worthwhile to undertake in future
validation studies.
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4 Conclusions

The present document summarizes the results of a numerical preconditioner and convergence study
for a QCAD non-linear Poisson problem posed on the Ottawa Flat 270 design geometry. This do-
main is discretized with four-node tetrahedral elements using the Cubit mesher tool. Finer meshes
are generated by successively refining an initial “coarse” mesh. For the preconditioner study, nine
Ifpack and threeML preconditioners are evaluated. Three sets of options for the ML default type
preconditioners are considered. It is found that by selecting anML preconditioner with reparti-
tioning based on nodal coordinates using theZoltan package, the total linear solve time can be
improved relative to the previously-employedIfpack preconditioner by a factor of more than two
for problems posed on coarse as well as fine meshes. This option is therefore recommended for all
problem sizes, and is now available in Albany thanks to some new development. A scalability plot
generated for this problem illustrates that the total linear solve time does not scale optimally with
the problem size and processor count. The reason for this is unclear at the present time and may
be the subject of future work.

Following the preconditioner performance study, a convergence study with respect to successive
mesh refinement is performed. The convergence is measured intwo metrics, the mean value of
the solution and the field integral. For the convergence study, a “reference” solution computed
numerically on a very fine mesh is taken in place of an exact solution, as the exact solution to this
problem is not available in closed analytic form. The convergence study suggests convergence in
both metrics, albeit at rates slightly below the expected theoretical rates. It is recommended that
future work include further convergence testing for validation purposes, perhaps in metrics other
than the ones considered herein.
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