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Abstract

We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling
quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum
qubits. The simulator has three differentiating features: (i) its core contains nonlinear Pois-
son, effective mass Schrodinger, and Configuration Interaction solvers that have massively
parallel capability for high simulation throughput, and can be run individually or combined
self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior conver-
gence even at near-zero-Kelvin temperatures, which is critical for modeling quantum com-
puting devices; (iii) it couples with an optimization engine Dakota that enables optimization
of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell-
Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and
Robin boundary conditions, and includes the effect of dopant incomplete ionization. The
solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range,
and has been extensively used to quickly obtain the semiclassical electrostatic potential in
DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and mono-
tonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by
using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of
dot-to-gate capacitances, and comparison with experiment and between solvers. It is ob-
served that computed capacitances are in the right ballpark when compared to experiment,
and quantum confinement increases capacitance when the number of electrons is fixed in a
quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify
which device layouts are more likely leading to few-electron quantum dots. Very efficient
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QCAD simulations on a large number of fabricated and proposed Si DQDs have made it
possible to provide fast feedback for design comparison and optimization.
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Chapter 1

Introduction

The next generation of semiconductor devices will have to confront quantum mechanical
effects. These include both phenomena to be avoided, like gate leakage, as well as new
behavior that can be harnessed, like entanglement. Few-electron nanodevices have been
developed to use entanglement in quantum computing and sensing beyond the traditional
quantum limits, but the resulting entangled device states are extremely sensitive to atomic
scale effects such as surface roughness that are not traditionally considered in nanoelectronics
modeling.

We have developed a robust and efficient simulator that solves for semiclassical and self-
consistent quantum electrostatic potential, single- and multi-electron wave functions and
energies at near-zero temperatures, and that can be used to simulate and optimize many
different quantum dot structures very efficiently and provide fast feedback on which device
layouts are more likely to lead to few-electron behavior. Although there have been numerous
simulation papers [?, ?, ?, ?, ?, ?] on quantum dots in literature, they focus on addressing
different issues than what we were trying to resolve. Existing commercial [?] and academic
[?] device simulators either target room-temperature and many-electron devices, whereas
our applications require temperatures close to zero Kelvin and one/few-electron devices,
or target simple and few geometries, whereas our DQD devices have very complex three-
dimensional (3D) shapes and can have many different layouts due to the inherent large
design space of DQDs. And they often have license and platform restrictions which seriously
limit simulation efficiency. The Sandia Quantum Computer Aided Design (QCAD) project is
developing an integrated open-source toolkit that serves as the simulator of imperative need,
by addressing the challenges associated with modeling realistic DQDs, including complex
geometries, many device layouts, low temperature operation, and 3D quantum confinement
effects, to accelerate the development of few-electron DQD qubit work at Sandia. The QCAD
toolkit leverages a number of Sandia-developed software programs [?], including the Trilinos
suite, the Albany code [?], the Dakota toolbox, and the Cubit geometry and meshing tool.

The QCAD simulator [?, ?] is built upon the Albany code [?] and contains three core
modules of Poisson (P), Schrodinger (S), and Configuration Interaction (CI) solvers. These
physical solvers can be run individually or combined self-consistently (i.e., self-consistent
S-P and S-P-CI solvers) for simulating arbitrary 1D/2D/3D quantum devices made from
multiple different materials. They have demonstrated fast and robust convergence behavior
even at very low temperatures. Furthermore, very high simulation throughput has been
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achieved by using a combination of pre- and post-processing scripting, automated structure
creation and meshing, distributed parallel computing capability and resources. For exam-
ple, we can typically obtain simulation results for dozens of experimental DQDs overnight,
compared to several days of simulation on one structure using a commercial TCAD tool
in the past. The QCAD solvers enable us to compute capacitances of experimental im-
portance such as quantum dot-to-gate capacitances. Comparison of calculated capacitances
with measurement provides certain insight regarding the shape and location of a dot and
possible locations of defect charges. In addition, by comparing the results obtained using
the semiclassical P solver and the self-consistent quantum S-P solver respectively, we can
investigate how quantum spatial confinement influences the capacitances. We observed that
quantum confinement enhances the dot-to-gate capacitances when the number of electrons
stays fixed in a quantum dot. Another powerful component of QCAD is its coupling with
the optimization driver Dakota, which enables optimization of gate voltages in many DQD
devices to achieve multiple design targets simultaneously, and helps to identify which device
designs are more likely exhibiting few-electron quantum dot behavior.
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Chapter 2

QCAD Software Structure

The QCAD toolkit leverages a number of Sandia-developed software programs [?], in-
cluding the Trilinos suite, the Albany code [?], the Dakota toolbox, and the Cubit geometry
and meshing tool to simulate the electronic structure of quantum dots to determine their
utility as qubits in quantum computing devices. A schematic of the structure of the different
software components is shown in figure 2.1.

Quantum dots are a region of a semiconductor where the local electrostatics allow a
“puddle” of electrons to form, typically near a semiconductor-insulator interface. We often
use a silicon metal-oxide-semiconductor (MOS) system, with an additional level of gates in
the insulator to deplete the sheet into the puddles that form the quantum dot, as shown
in figure 2.2. The depletion gates themselves, shown in cross-section in figure 2.2, have
considerable structure when shown in a top view, as in figure 2.3. The quantum effects we
wish to use to form qubits are most pronounced with few numbers of electrons, and a major
challenge is to design robust enough systems that can form few-electron dots, which often
involves modifying the shapes of the gates and the spacings between different layers.

As figure 2.1 shows, we are primarily interested three different solvers. An important
component of all solvers is a linear Poisson’s equation solver that determines the electrostatic
potential that results from the gate voltages and other device parameters. The Nonlinear
Poisson solver uses a series of call to the linear Poisson solver to treat electrons semiclassically,
that is, as classical particles that obey quantum (Fermi-Dirac) statistics. The Schrodinger-
Poisson solver uses a similar set of calls, but performs a fully quantum mechanical solution to
the electrons by solving a one-particle Schrodinger-Equation. The Configuration Interaction
solver takes single-particle solutions from the Schrodinger-Poisson solver and determines
multi-electron solutions.

Several aspects of the Albany framework make it straightforward to implement a physics
package. A heat-flow problem had already been implemented, and thus the basics of solving
the linear Poisson equation had already been implemented, and this code could serve as a
model for the solvers we would add to QCAD. The ability to code physics equations easily
with automatic differentiation, which was something that we did not anticipate would be
of much use, turned out to make a major difference, as it meant that, for the most part,
we could code only the basic physics equations, without needing to derive, code, or debug
the derivatives, yet still having full access to a wide range of solvers that offered robust
convergence. In much the same way, parallel code was obtained with no additional effort;
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Figure 2.1. Schematic of structure of different QCAD
solvers, Albany, and, various solver and optimization pack-
ages.
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Figure 2.2. We can form sheets (“e-”) of electrons at
a MOS interface using an accumulation gate, using a posi-
tive (“+”) voltage. By introducing additional depletion gates
with negative (“-”) voltage, we can deplete most of this sheet,
leaving puddles that form quantum dots.

18



Figure 2.3. Different shapes of depletion gates. Each
colored in the left, middle, and right figures is a metal or
polysilicon gate that can be set to a different voltage to form
a quantum dot.

we programmed serial versions of our methods, and the Albany libraries and solvers insured
that we obtained highly parallel applications.

Another key element to the choice of the Albany framework was the additional packages
that it presented to us. Albany had a sophisticated finite-element analysis capability, with
a variety of different elements present. We used the Cubit [?] solid modeler and mesher to
build our geometries and meshes, and Albany was able to import these structures using the
ExodusII file format. Many different solvers in the Trilinos package [?] are available. Finally,
the Dakota optimization package [?], via the TriKota interface, is available and provided a
variety of sophisticated optimization options that have been extremely useful in optimizing
sophisticated targets (see below).

An example of the type of optimization we performed is shown in figure 2.4. We wished
to optimize a quantum dot containing two electrons, with tunable tunnel barriers in and out
of the dot region, between the left and right electrons of the dot, and with the channels on
the sides that are used as electrometers also having tunable tunnel barriers. We optimized
the voltages on all gates, with the left/right symmetry in the gate voltages imposed as
an additional constraint. The right side of figure 2.4 shows the resulting electron density
computed using the Nonlinear Poisson solver. The red field in the background it the “sheet”
of electrons, and the blue gates are the depleted images of the depletion gates. The quantum
dot itself is the narrow curved region underneath the gate labeled TP at the right.
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Figure 2.4. Optimization of the Ottawa Flat 270 struc-
ture. The left figure shows the depletion gate configuration
for the Ottawa Flat 270 structure, and the right figure shows
the resulting optimization using the Nonlinear Poisson solver,
with a variety of constraints detailed in the text.
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Chapter 3

QCAD Semiclassical Poisson Solver

The well-known Poisson equation in a bulk semiconductor is given by

−∇ · (εs∇φ) = q(p− n+N+
D −N

−
A ), (3.1)

where φ is the electrostatic potential, εs is the static permittivity, q is the elementary charge,
n and p are the electron and hole concentrations respectively, N+

D and N−A are ionized donor
and acceptor concentrations respectively. Note that the form of the left hand side in Eq. (3.1)
allows εs to have spatial dependence.

Carrier Statistics

n and p are given by carrier statistics for bulk (spatially unconfined) semiconductors.
Both Maxwell-Boltzmann (MB) and Fermi-Dirac (FD) statistics are implemented in QCAD.
For the MB statistics, n and p take the exponential forms,

n = NC exp

(
EF − EC
kBT

)
,

p = NV exp

(
EV − EF
kBT

)
, (3.2)

where kB is the Boltzmann constant, T is the lattice temperature, EC and EV are the
conduction and valence band edge respectively, and EF is the extrinsic Fermi level (more
details on EC , EV , and EF are given in Sec. 3). For the FD statistics, n and p are expressed
in terms of the Fermi-Dirac integrals (see Appendix A for the derivation),

n = NCF1/2

(
EF − EC
kBT

)
,

p = NVF1/2

(
EV − EF
kBT

)
. (3.3)
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NC and NV are effective density of states (DOS) in the conduction and valence band, re-
spectively. Assuming parabolic band structure, we have

NC = 2

(
m∗nkBT

2πh̄2

)3/2

,

NV = 2

(
m∗pkBT

2πh̄2

)3/2

, (3.4)

where h̄ is the reduced Planck constant, m∗n and m∗p are respectively the electron and hole
DOS effective mass including all equivalent band minima. For bulk silicon, there are six
equivalent conduction minima, and the valence band minimum is degenerate including heavy
hole and light hole bands at the Γ valley, hence

m∗n = 62/3(mlm
2
t )

1/3,

m∗p =

(
m

3/2
hh +m

3/2
lh

)2/3

, (3.5)

with ml, mt, mhh, and mlh being the electron longitudinal, electron transverse, heavy hole,
and light hole effective mass, respectively.

The F1/2(x) function in Eq. (3.3) is the Fermi-Dirac integral of 1/2 order and is defined
as [?]

F 1
2
(x) =

2√
π

∫ ∞
0

√
εdε

1 + exp(ε− x)
. (3.6)

Although the closed form of this integral can be formally expressed by the polylogarithm
function[?] or by a complete expansion discussed in Ref. [?], the polylogarithm function
and the complete expansion involve summations of infinite series. Hence in practice, one
has to either use certain approximation to obtain a computable analytic expression, or use
numerical integration techniques[?, ?]. There have been a few approximate analytic forms
proposed in literature [?, ?, ?] that offer relatively simple expressions and sufficient accuracy.
Among them, the approximate expression in Ref. [?] takes a single simple form and provides
a relative error less than 0.4% for x ∈ (−∞,+∞), hence has been widely used in the device
modeling community [?]. The expression in Ref. [?] is given as

F 1
2
(x) ≈

(
e−x +

3
√
π

4
v−3/8

)−1

,

v = x4 + 50 + 33.6x(1− 0.68 exp[−0.17(x+ 1)2].

(3.7)

The asymptotic expansion at x → −∞ leads to F1/2(x) = exp(x), implying that Eq. (3.3)
becomes equivalent to Eq. (3.2), which is the case for non-degenerate semiconductors where
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Figure 3.1. (Color online) Fermi-Dirac integral of 1/2
order in logarithmic scale. Black curves are the asymptotic

expansions, exp(x) for x → −∞, and 4x3/2

3
√
π

for x → +∞.

The red solid curve labeled as Approximate is obtained using
Eq. (3.7), while the blue dashed curve labeled as Numerical
uses the numerical integration method in Ref. [?]. The red
solid and blue dashed curves do not show any visible differ-
ence, and agree well with the asymptotic forms for large |x|,
whereas they differ significantly from the asymptotic forms
in the region of x ∈ (−4, 4).
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EF � (EC− [a few kBT ]) for n, and EF � (EV + [a few kBT ]) for p. The asymptotic form

at x→ +∞ is F1/2(x) = 4x3/2

3
√
π

, which corresponds to the strongly degenerate case near 0 K,

where EF � (EC+ [a few kBT ]) for n (i.e., the Fermi level is located within the conduction
band), and EF � (EV−[a few kBT ]) for p (i.e., the Fermi level is inside the valence band).
Figure 3.1 shows a comparison of the 1/2-order Fermi-Dirac integral calculated by different
methods. It is clear that the approximate expression in Eq. (3.7) produces visually the same
result as the numerical approach [?], and follows the proper asymptotic forms for large |x|.
In the small |x| regime, neither of the asymptotic forms is valid. Since semiconductor DQD
qubits are currently operated in this regime (corresponding to very low temperatures, mK to
a couple of K), it is important to adopt a sufficiently accurate evaluation of the Fermi-Dirac
integral. Due to the good accuracy and simplicity of Eq. (3.7), we implemented this form in
QCAD for the FD statistics. In the actual implementation, we approximate F1/2(x) by ex

for x < −50 to avoid numerical instability caused by the e−x term in Eq. (3.7). Such large
negative values of x can occur at very low temperatures, and this approximation results in
no discernible loss of accuracy, as shown in Fig. 3.1.

The Reference Potential

Before solving the Poisson Eq. (3.1) for the electrostatic potential φ, one needs to relate
φ to the band energies of the materials making up the device. One requirement for the
electrostatic potential is that it must be continuous everywhere in a device. For a homo-
junction device such as a PN silicon diode, EC , EV , and Ei (the intrinsic Fermi level) as
functions of position are parallel to each other and continuous across the device, so it is
natural to choose −qφ = Ei, i.e., to solve for the inverse of intrinsic Fermi level. In an
arbitrary hetero-junction structure, however, EC , EV , and Ei could all be discontinuous.
Figure 3.2 shows a schematic of the band structure of a MOS-type device under zero bias
illustrating the discontinuity of EC and EV . What is always continuous in arbitrary homo-
and hetero-junction devices is the vacuum level indicated as E0 in Fig. 3.2. Therefore, we
choose φ to satisfy [?]

−q(φ− φref ) = E0 = EC + χ, (3.8)

where φref is a constant reference potential and χ is the electron affinity of a material. This
choice implies that we are solving for the inverse of the vacuum level shifted by a constant
value. While in theory different φref values only change the resulting solution, φ, by a
constant offset, in practice they can lead to different numerical convergence behavior during
simulation. A good choice of φref that has shown numerical robustness in devices containing
silicon is to select as the reference potential the intrinsic Fermi level of silicon relative to the
vacuum level, i.e., qφref = E0 − Ei(Si). For a more detailed explanation of band diagrams
schematics such as that in Fig. 3.2, we refer the reader to Ref. [?].
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Figure 3.2. Schematics of the band structure of a MOS-
type device under zero bias.

With the choice of φ in Eq. (3.8), we can rewrite EC and EV as

EC = −q(φ− φref )− χ,
EV = −q(φ− φref )− χ− Eg, (3.9)

with Eg being the band gap of a material. Then the n and p in Eq. (3.1) becomes a function
of φ only, i.e., n(φ) and p(φ), as χ and Eg are material-dependent parameters and known
for most semiconductors.

As QCAD does not solve the carrier transport (e.g., drift-diffusion) equations, all calcu-
lations must assume that thermal equilibrium (zero current flow) has been attained. The
Fermi level, EF , is taken to be a constant throughout any electrically-connected region of a
device. The value of this constant is set by the voltages applied to the device. For example,
if a voltage Vsub is applied to the substrate (right side) of the device in Fig. 3.2, EF will
become −qVsub. The band structure shown in Fig. 3.2 corresponds to a MOS-type structure
with metal gate (left side). If the structure instead had a highly-doped semiconductor gate
(e.g., n+ polysilicon gate) with applied voltage Vg, EF in the gate region would be −qVg
while EF in the substrate region remains at −qVsub.

Incomplete Ionization

When impurities are introduced into the semiconductor crystals, depending on the im-
purity energy level and the lattice temperature, not all dopants are necessarily ionized,
especially at very low lattice temperatures (where DQD qubits are commonly operated).
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The ionized concentration for donors and acceptors is given by [?]

N+
D =

ND

1 + gD exp(EF−ED

kBT
)
,

N−A =
NA

1 + gA exp(EA−EF

kBT
)
, (3.10)

where ED is the donor energy level, gD is the donor ground state degeneracy factor, EA is
the acceptor energy level, and gA is the acceptor ground state degeneracy factor. gD is equal
to 2 because a donor level can accept one electron with either spin or can have no electron
when filled. gA is equal to 4 because in most semiconductors each acceptor level can accept
one hole of either spin and the impurity level is doubly degenerate as a result of the two
degenerate valence bands (heavy hole and light hole bands) at the Γ point.

To write N+
D and N−A as a function of φ, we need to rewrite EF − ED = EF − EC +

EC − ED = EF − EC + Ed with Ed being the donor ionization energy, and EA − EF =
EA − EV + EV − EF = Ea + EV − EF with Ea being the acceptor ionization energy. The
most common donors in bulk Si are phosphorus (P) and arsenic (As), which have ionization
energies of Ed = 46 meV and 54 meV respectively[?]. The most common acceptor dopant
in bulk Si is boron (B), which has Ea = 44 meV[?].

Substituting Eq. (3.9) and EF − ED, EA − EF into Eq. (3.10), we get [?]

N+
D =

ND

1 + gD exp

(
EF +Ed−qφref+χ+qφ

kBT

) ,
N−A =

NA

1 + gA exp

(
−EF +Ea+qφref−χ−Eg−qφ

kBT

) . (3.11)

With these expressions, N+
D and N−A also become a function of φ, i.e., N+

D (φ) and N−A (φ).
Hence, the entire right hand side (RHS) of Eq. (3.1) can be written as a nonlinear function
of φ. Applying integration by parts and divergence theorem, we then rewrite the equation
into the finite element (FE) weak form,

∫
εs∇φ · ∇wdΩ−

∫
Γ

εs∇φ · η̂wdΓ

−
∫
q[p(φ)− n(φ) +N+

D (φ)−N+
A (φ)]wdΩ = 0, (3.12)

where w is the FE nodal basis function and the second term is a line integral over the
simulation domain boundary with η̂ being the unit normal vector of the surface element dΓ.
The weak form is discretized using the Trilinos/Intrepid library, and the resulting discrete
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equation is solved by a nonlinear Newton solver also in Trilinos. Both the discretization
library and the Newton solver were made directly available to QCAD through the Albany
framework (cf. Fig. 2.1).

Boundary Conditions

An essential ingredient to the formulation of a differential equation are boundary condi-
tions (BCs). QCAD supports three types of BCs: Dirichlet, Neumann, and Robin BCs. We
will next discuss the implementation of these types in turn.

Dirichlet BCs are divided into two cases: (1) setting a voltage on the surface of a metallic
region that borders insulator, and (2) setting a voltage on the surface of an Ohmic contact
region which borders semiconductor. Case (1) is used for gate electrodes in field effect
transistor (FET)-like devices, and the Dirichlet BC value φins on the bordering insulator(s)
is given by the simple expression

φins = Vg −
Φm − qφref

q
, (3.13)

with Vg being the applied gate voltage and Φm being the metal work function.

In the second case (used for Ohmic contacts in semiconductors), the potential on the
bordering semiconductor surfaces is computed assuming thermal equilibrium and charge
neutrality at the contacts. The calculation depends on carrier statistics and dopant ioniza-
tion. For MB statistics, the charge neutrality n+N−A = p+N+

D condition leads to

NC exp

(
EF + qφ− qφref + χ

kBT

)
+N−A

= NV exp

(
−EF − qφ+ qφref − χ− Eg

kBT

)
+N+

D . (3.14)

With complete ionization of dopants (i.e., N−A = NA and N+
D = ND ), the potentials at

n-type and p-type Ohmic contacts are respectively given by

φnohm =
qφref − χ

q
+
kBT

q
ln

(
ND

NC

)
+Va,

φpohm =
qφref − χ− Eg

q
− kBT

q
ln

(
NA

NV

)
+Va, (3.15)

where Va is an externally applied voltage. When including incomplete ionization effect of
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dopants, we have for n-type and p-type semiconductors respectively,

NC exp

(
EF − EC
kBT

)
=

ND

1 + 2 exp

(
EF−ED

kBT

) ,
NV exp

(
EV − EF
kBT

)
=

NA

1 + 4 exp

(
EA−EF

kBT

) . (3.16)

Let us denote yn = exp(EF−ED

kBT
) and yp = exp(EA−EF

kBT
). Then, by the definitions of Ea and

Ed, we obtain the identities, exp(EF−EC

kBT
) = yn exp(−Ed

kBT
) and exp(EV −EF

kBT
) = yp exp(−Ea

kBT
).

Substituting the identities into Eq. (3.16), we obtain

yn = −1

4
+

1

4

[
1 +

8ND

NC

exp

(
Ed
kBT

)]1/2

,

yp = −1

8
+

1

8

[
1 +

16NA

NV

exp

(
Ea
kBT

)]1/2

. (3.17)

From the definitions of yn and yp, the use of −qVa = EF , and Eq. (3.9), we can obtain the
potentials that include dopant incomplete ionization effect at the n-type and p-type Ohmic
contacts respectively as,

φnohm =
−Ed + qφref − χ

q
+
kBT

q
ln(yn) + Va,

φpohm =
−Ea + qφref − χ− Eg

q
− kBT

q
ln(yp) + Va.

(3.18)

At very low temperatures, the exponential terms in Eq. (3.17) could blow up numerically.
To avoid numerical instability in QCAD, we approximate the ln(yn) and ln(yp) terms for
very low temperatures as,

ln(yn) =
1

2
ln

(
ND

2NC

)
+

Ed
2kBT

,

ln(yp) =
1

2
ln

(
NA

4NV

)
+

Ea
2kBT

. (3.19)
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For FD statistics and assuming complete ionization of dopants, we have

NCF 1
2

(
EF − EC
kBT

)
= ND for n-type ,

NVF 1
2

(
EV − EF
kBT

)
= NA for p-type . (3.20)

To solve for the potentials at Ohmic contacts, in principle, we need to numerically solve
Eq. (3.20) as the Fermi-Dirac integral does not have an analytic result. In QCAD, we use an
approximate expression for the inverse of the 1/2 order Fermi-Dirac integral, that is, given
u = F1/2(η), η is computed as [?],

η =
− ln(u)

u2 − 1
+

ν

1 + (0.24 + 1.08ν)−2
,

ν =

(
3
√
πu

4

)2/3

. (3.21)

This approximation has an error of less than 0.6% for the entire η range. Using this expres-
sion, we obtain the BC potentials as,

φnohm =
qφref − χ

q
+
kBT

q
η + Va,

φpohm =
qφref − χ− Eg

q
− kBT

q
η + Va, (3.22)

with η given in Eq. (3.21) where u = ND/NC for n-type and u = NA/NV for p-type. For
the case of FD statistics and incomplete ionization, there exists no approximate analytic
expressions for the BC potentials, and one has to solve a non-trivial nonlinear equation if
want to be very accurate. In QCAD, we approximate this case using MD statistics with
incomplete ionization and utilize the BC potentials given in Eq. (3.18).

Neumann BCs in finite element methods are used to specify how “flux” is conserved
across boundaries. By default, all boundaries that are not given any other type of boundary
conditions, assume implicit Neumann BCs which preserve the flux. In the case of the Poisson
equation, the flux is εs∇φ · η̂, where η̂ is the unit normal of the boundary surface. Thus,
by default (i.e. when no other boundary condition is specified), εs∇φ · η̂ = 0 on outer
boundaries of the finite element mesh and εs1∇φ1 · η̂1 = εs2∇φ2 · η̂2 on internal boundaries.
These two conditions are automatically satisfied in the finite element framework by setting
the

∫
εs∇φ · η̂wdΓ term to 0 in Eq. (3.12)

QCAD has the ability to specify non-flux-conserving Neumann BCs on specific boundaries
such that the difference between the fluxes on either side of the boundary are equal to some
specified constant value. Written mathematically, (εs2∇φ2 − εs1∇φ1) · η̂ = qσs , where η̂ is
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the unit normal vector of the interface pointing from material 2 to 1 and σs is the specified
constant. Physically, σs is a surface charge density located at the boundary. Note that when
σs = 0 (i.e. no surface charge), the boundary condition reduces to the default flux-conserving
condition. Within the finite element discretization in QCAD, this type of Neumann BC is
implemented in the integral form∫

Γcbc

(εs2∇φ2 − εs1∇φ1) · η̂wdΓcbc =

∫
Γcbc

qσswdΓcbc. (3.23)

A major shortcoming of the Neumann BCs is their inability to characterize surface charge
on (or extremely close to) an interface whose voltage is set by a Dirichlet BC. This is due to
the simple fact that specifying both Dirichlet and Neumann BCs on the same surface over-
determines the problem. Yet, this is essentially what is needed to model a layer of charge
that is stuck to one of the conducting gates (often polysilicon) used to control a device.
One way around this technical difficulty is to place a layer of very thin finite-element cells
around the charged gate and set a Neumann BC on the new surface lying a small distance
away from the gate itself. This approach, however, suffers due to the thin finite elements
adversely affecting convergence and their being hard to create in the first place. Instead,
we use what are called Robin boundary conditions[?] to address the issue of charged gates.
Robin BCs are similar to Neumann BCs but allow the flux at a surface to depend on the
value of the solution (in this case the potential) there. Specifically, the Robin BC for an
internal surface element can be written (εs2∇φ2 − εs1∇φ1) · η̂ = C + α(φ2 − φ1), where C
and α are fixed constants. At an external surface, we have εs∇φ · η̂ = C + αφ. We would
like to roll into a single boundary condition, a Dirichlet condition at one surface followed
by a Neumann boundary condition at a parallel surface lying a very small distance away
from the first surface. This can be done at an external surface using C = εsφ0/d− qσs and
α = εs/d, as shown in Fig. 3.3, which places a surface charge of qσs a distance d away from
a point at which φ is pinned to φ0. We somewhat arbitrarily choose d = 10 nm, which is
much smaller than any of the mesh features (for semiclassical Poisson simulations) in our
devices of interest. Robin BCs are enforced in an integral form, similar to that of Neumann
BCs (cf. Eq. 3.23).
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Figure 3.3. The derivation of the Robin BC parameters
used to set a value of the potential and a nearby surface
charge on a single surface. This diagram shows a 1D cut
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and d are given values, and φ is the variable being solved.
The derivative φ′ is along the direction normal to the surface.
Combining the equations yields εsφ

′ = εs
φ0−φ
d − qσs, which

takes the form of a Robin boundary condition.
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Chapter 4

QCAD Schrodinger-Poisson Solver

Schrodinger Solver

The time-independent single-particle effective mass Schrodinger equation takes the form
of

−h̄2

2
∇
(

1

m∗
∇ψ(r)

)
+V (r)ψ(r) = Eψ(r). (4.1)

The FE weak form of the equation is

h̄2

2m∗

(∫
∇ψ · ∇wdΩ−

∫
Γ

∇ψ · η̂wdΓ

)
+

∫
V ψwdΩ−

∫
EψwdΩ = 0 (4.2)

The weak form is discretized by the FE method and the resulting eigenvalue problem [H][ψ] =
[E][ψ] is solved by the Trilinos eigensolver package called Anasazi [?].

The Schrodinger solver supports two types of boundary conditions: Dirichlet and Neu-
mann. For Dirichlet boundaries, ψ = 0. All other boundaries excluding Dirichlet are treated
as Neumann BCs which, require 1

m∗∇ψ · η̂ = 0 on outer boundaries, and 1
m∗∇ψ · η̂ being

continuous (i.e., flux conservation) across material interfaces on internal boundaries. As in
the Poisson solver, Neumann BCs are automatically satisfied in the FE framework by setting∫

Γ
∇ψ · η̂wdΓ = 0 in Eq. (4.2). (The ability to set non-flux-conserving Neumann boundary

conditions is absent in the Schrodinger solver since it would have no application in our work.)

Figure 4.1 shows a comparison between the QCAD Schrodinger solver and analytic results
of the lowest six wave functions and energies for a 1D parabolic potential well. The QCAD
and analytic results are in excellent agreement. The solver was also applied to 2D and 3D
infinite potential wells. The obtained wave functions and energies were compared with the
analytic results and excellent agreement was also observed.

One of the advantages of using the FE discretization over the finite difference discretiza-
tion is that the continuities of ψ and 1

m∗∇ψ across heterojunctions are automatically satisfied
in the former case, whereas they have to be explicitly enforced in the latter case. Specifically,
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Figure 4.1. (Color online) (a) Wave functions and en-
ergies obtained from the QCAD Schrodinger solver for a 1D
parabolic potential well. (b) Analytic wave functions and en-
ergies for the same potential well. All the wave functions are
scaled by the same factor for easy visualization. It is clear
that QCAD wave functions and energies agree very well with
the analytic results.
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Figure 4.2. (Color online) (a) Lowest three wave functions
and energies obtained from the QCAD Schrodinger solver for
the 1D finite potential well with m∗b = m∗w = 0.067m0 where
m0 is the free electron mass. (b) Same as (a) except m∗b = m0

and m∗w = 0.067m0. All wave functions are scaled by the
same factor for easy visualization.
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when going from a homojunction device to a heterojunction device, the QCAD Schrodinger
solver does not require any code change except setting the proper effective masses for the
materials used. As an example, consider a 1D finite potential well that has a width of 20 nm,
a potential height of 100 meV, and can have different effective masses for the well and barrier.
Figure 4.2(a) shows the lowest three wave functions and energies obtained from QCAD for a
homojunction device with the same effective mass for the well and barrier. In this case, the
wave functions and their first derivatives are all continuous across the junctions. The wave
functions and energies agree very well with the corresponding analytic results in Figure 2.15,
Ref. [?]. When the well and barrier have different effective masses, as shown in Fig. 4.2(b)
for a heterojunction device, the wave functions are still continuous across the junctions, but
their first derivatives are discontinuous due to the difference in effective masses.

Self-Consistent Schrodinger-Poisson Solver

In realistic quantum devices such as DQDs, we can divide the entire structure (relatively
large) into semiclassical and quantum regions. These regions are chosen such that in semi-
classical regions, solving the nonlinear Poisson equation alone is often sufficient to obtain a
good estimate of electrostatics, whereas in quantum regions, the Poisson and Schrodinger
equations need to be coupled self-consistently for electrons (we focus on electrons only as
they are used for qubit operation). The coupled two equations take the following form

−∇ · (εs∇φ) = q[p(φ)− n(Ei, ψi) +N+
D (φ)−N−A (φ)],

−h̄2

2
∇
(

1

m∗
∇ψi

)
+V (φ, n)ψi = Eiψi, (4.3)

where the electron density n becomes a function of the ith energy level Ei and the envelope
wave function ψi of the Schrodinger equation, while the potential energy V is a function of φ
and n. The general expression for n(Ei, ψi) is given by

∑
iNi|ψi|2, where the Ni term takes

different expressions depending on confinement dimensionality.

Quantum Electron Density

In Si quantum devices, when we focus on those devices where the Si/other material (e.g.,
Si/SiO2) interfaces are parallel to the [100] plane, the six equivalent conduction band minima
of the bulk silicon are split into two groups due to the breaking of crystallographic symmetry,
widely known as ∆4 (fourfold degeneracy) and ∆2 (double degeneracy) valleys, with ∆2

valleys are lower in energy. At low temperatures, especially the operating temperatures for
DQD qubits which are in the mK to a few Kelvin range, only the ∆2 valleys are occupied
by electrons; therefore, we consider the ∆2 valleys only for Si devices in QCAD. Due to the
ellipsoidal energy surfaces at the ∆2 minima, the electron effective mass in the Schrodinger
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equation is different from that used in computing the electron density, and it depends on the
confinement direction and the number of confined directions.

Two un-confined dimensions. In 1D-confined devices such as a 1D Si MOS capacitor,
electrons are spatially confined in one direction (assumed x direction in QCAD) but free to
move in the y and z directions. The Si/SiO2 interface is in the y−z plane and perpendicular
to the longitudinal axis of the ∆2 valleys. The coupled Schrodinger equation is 1D and given
by

−h̄2

2

d

dx

(
1

m∗l

dψi(x)

dx

)
+V (φ, n)ψi(x) = Eiψi(x). (4.4)

where m∗l is the electron longitudinal effective mass of silicon. From Appendix A, the volume
electron density n is computed as

n(Ei, ψi) =
∑
i

Ni|ψi|2 =
∑
i

n2D,i|ψi|2

=
∑
i

(
2
m∗tkBT

πh̄2 ln

[
1 + exp

(
EF − Ei
kBT

)]
|ψi|2

)
,

(4.5)

where m∗t is the electron transverse effective mass of silicon and 2 accounts for the double
degeneracy of the ∆2 valleys. |ψi(x)|2 is spatially normalized to 1, i.e.,

∫
|ψi(x)|2dx = 1, and

hence has the unit of 1/length. When EF > Ei, the exp[(EF −Ei)/(kBT )] term in Eq. (4.5)
can numerically go to infinity for very small T (mK to a few K), which can cause numerical
instability. To avoid such problems, when the argument (EF −Ei)/(kBT ) is relatively large
(e.g., > 100 ), we replace the ln[1 + exp((EF − Ei)/(kBT ))] term with (EF − Ei)/(kBT ).

One un-confined dimension. We next consider devices, such as quantum wire structures,
where electrons are confined along two dimensions (assumed x and y directions in QCAD) and
are free to move in the z direction (the wire direction). The Si/SiO2 interface is perpendicular
to the y axis and also the longitudinal axis of the ∆2 valleys. The coupled Schrodinger
equation is 2D and given by

−h̄2

2

∂

∂x

(
1

m∗t

∂ψi(x, y)

∂x

)
− h̄

2

2

∂

∂y

(
1

m∗l

∂ψi(x, y)

∂y

)
+V (φ, n)ψi(x, y) = Eiψi(x, y). (4.6)

From Appendix A, the volume electron density n is computed as

n(Ei, ψi) =
∑
i

Ni|ψi|2 =
∑
i

n1D,i|ψi|2

=
∑
i

[
2

(
2m∗tkBT

πh̄2

) 1
2

F− 1
2
(ηF ) |ψi|2

]
, (4.7)
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where F− 1
2
(ηF ) is the Fermi-Dirac integral of -1/2 order. It is computed by using the ap-

proximate analytic expressions in Ref. [?], which have a very small error less than 0.001% in
the entire ηF range. |ψi(x, y)|2 is spatially normalized to 1, i.e.,

∫ ∫
|ψi(x, y)|2dxdy = 1, and

hence has the unit of 1/length2.

Zero un-confined dimensions. In devices such as quantum dot structures, electrons are
spatially confined in all three directions and there are no (zero) dimensions in which they
are free to move. The Si/SiO2 interface is perpendicular to the z direction and also the
longitudinal axis of the ∆2 valleys. The coupled Schrodinger equation is 3D and given by

−h̄2

2

∂

∂x

(
1

m∗t

∂ψi(x, y, z)

∂x

)
− h̄

2

2

∂

∂y

(
1

m∗t

∂ψi(x, y, z)

∂y

)
− h̄

2

2

∂

∂z

(
1

m∗l

∂ψi(x, y, z)

∂z

)
+V (φ, n)ψi(x, y, z) = Eiψi(x, y, z). (4.8)

The volume electron density n is computed as

n(Ei, ψi) =
∑
i

Ni|ψi|2 =
∑
i

[
4

1 + exp(Ei−EF

kBT
)
|ψi|2

]
, (4.9)

where 4 accounts for the double degeneracy of the ∆2 valleys and that of the spin. ψi(x, y, z)
is normalized to 1 in the 3D quantum domain, and has the unit of 1/length3. When Ei > EF ,
the exp[(Ei−EF )/(kBT )] term in Eq. (4.9) can blow up numerically. To avoid such problem,
when (Ei − EF )/(kBT ) is relatively large (e.g., > 100 ), we replace the [1 + exp(Ei−EF

kBT
)]−1

term with exp(EF−Ei

kBT
).

All the above derivations are also applicable to other devices where the semiconductors
have a single conduction band minimum located at the Γ valley such as GaAs-based devices,
except that the valley degeneracy is 1 and a single electron effective mass is used in all the
equations.

Next we discuss the potential energy term V (φ, n) in the coupled Schrodinger equation.
It takes the form of

V (φ, n) = qφref − χ− qφ+ Vxc(n), (4.10)

where Vxc(n) is the exchange-correlation correction due to the Pauli exclusion principle in
real many-electron systems. For the Vxc(n) term, we use the well-known local density param-
eterization suggested by Hedin and Lundqvist [?] that has also been widely used by other
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authors [?, ?, ?]. It is given as

Vxc(n) =
−q2

4π2εs
[3π2n(r)]

1
3

[
1 + 0.7734x ln

(
1 +

1

x

)]
,

x =
1

21

(
4πn(r)b3

3

)− 1
3

,

b =
4πεsh̄

2

m∗xcq
2
. (4.11)

Since this parameterization requires a scalar effective mass m∗xc as input, we use an average
mass for Si as suggested in Ref. [?],

1

m∗xc
=

1

3

(
1

m∗l
+

2

m∗t

)
. (4.12)

Self-Consistency

The Schrodinger (S) and Poisson (P) equations in Eq. (4.3) have strong nonlinear cou-
pling. They need to be solved self-consistently by certain iterative numerical schemes. Var-
ious iteration schemes [?, ?, ?, ?, ?, ?, ?, ?] have been proposed and used over the past few
decades. Among them, three are notable: the under-relaxation method, the damped Newton
method, and the predictor-corrector approach.

The under-relaxation scheme [?, ?] (also called convergence-factor or simple average
method) solves the S and P equations in succession, and under-relaxes the electron density n
or the electrostatic potential φ for the kth S-P outer iteration, using either a pre-set constant
or an adaptively determined relaxation parameter w(k) (see the references for details). The
advantage of this method is its simplicity. Its weakness is that the relaxation parameter w(k)

is not known in advance and needs to be dynamically but heuristically readjusted during the
course of iterations; if w(k) is too large, the iteration loop cannot reach convergence, whereas,
if w(k) is too small, it takes too many iteration steps to achieve convergence.

The damped Newton method [?, ?] also solves the S and P equations in succession,
but uses a damped Newton method [?] for the outer S-P iteration. Specifically, this ap-
proach starts from an initial guess φ(0), solves the Schrodinger eigenvalue problem, computes
quantum electron density n(k) according to section 4, and then solves a linear P equation,
obtained by linearizing the Poisson equation in Eq. (4.3) according to the Newton method

[?] with an approximate Jacobian matrix; the potential φ
(k)
out from the linearized P equation

is used to obtain φ
(k+1)
in = φ

(k)
in +w(k)(φ

(k)
out−φ

(k)
in ), which is then input to the S equation, and

the procedure continues until self-consistency is reached. Here, the w(k) damping parameter
is not heuristic, but can be determined by the selection algorithm of the damped Newton
method (cf. Ref. [?]). k represents the kth Newton iteration and also the kth outer S-P iter-
ation. The Jacobian matrix must be approximated because the quantum electron density n
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does not have explicit dependence on the potential φ. The approximate Jacobian matrix is
obtained by simply assuming a semi-classical electron density expression in the P equation.
The approach has shown reasonably robustness [?], however, because of the approximate
nature of the Jacobian, it often takes many Newton iterations (e.g., 50) to achieve sufficient
self-consistent accuracy (e.g., φ is converged within 0.01 meV).

It is well-known that the under-relaxation [?], damped Newton [?], and other similar
iteration schemes [?, ?] do not necessarily lead to convergence, or take too many iterations
to achieve it. These schemes have been used mostly in 1D S-P problems and in only a
limited number of 2D applications, and one may rightly expect that they would have much
more difficulty in achieving convergence in 3D S-P problems (e.g. in quantum dots). The
key reason for the instability of these methods is that they do not physically address the
strong nonlinear coupling between the S and P equations. In 1997 Trellakis et. al [?]
proposed the predictor-corrector (p-c) iteration scheme based on a perturbation argument.
Due to its solid physical groundings, the p-c method has shown fast and robust convergence
behavior [?, ?, ?], and has been widely used in 2D and 3D simulations of various quantum
semiconductor devices [?, ?, ?]. Given its excellent track record, we implemented this p-c
method in QCAD for the self-consistent S-P loop.

The key feature of the p-c method is that it partially decouples the S and P equations
by moving most nonlinearities into the nonlinear Poisson equation

−∇ · (εs∇φ) = q[p(φ)− ñ(φ) +N+
D (φ)−N−A (φ)], (4.13)

where ñ(φ) is an approximate expression for the quantum electron density n(Ei, ψi), which
has an explicit dependence on the potential φ (note the exact quantum density n(Ei, ψi)
does not have explicit dependence on φ). The nonlinear Poisson equation can be solved by
a Newton method (the predictor step). The predicted result for ñ and φ from this equation
is then corrected in an outer iteration step by the solution of Schrodinger equation (the
corrector step).

The approximate quantum density ñ is obtained by using the first-order perturbation
theory and the derivative property of Fermi-Dirac integrals [?]. The resulting ñ expression
is the same as the exact quantum density n given in Section 4, except that the argument in
the Fermi-Dirac integral is modified to include an explicit dependence on φ. For 1D-confined
Si devices, ñ is given by

ñ(φ) =
∑
i

(
2
m∗tkBT

πh̄2 |ψ
(k)
i |2

× ln

[
1 + exp

(
EF − E(k)

i + q(φ− φ(k))

kBT

)])
,

(4.14)

where the superscripts (k) denote quantities obtained in the previous kth outer S-P iteration
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step (hence they are known quantities). For 2D-confined Si devices,

ñ(φ) =
∑
i

[
2

(
2m∗tkBT

πh̄2

) 1
2

|ψ(k)
i |2

×F− 1
2

(
EF − E(k)

i + q(φ− φ(k))

kBT

)]
. (4.15)

For 3D-confined Si devices,

ñ(φ) =
∑
i

[
4|ψ(k)

i |2

1 + exp

(
E

(k)
i −EF−q(φ−φ(k))

kBT

)]. (4.16)

Note that there is a minus sign in the q(φ − φ(k)) term in Eq. (4.16). In principle, once
the self-consistent S-P loop is converged, this term should be numerically zero, which might
suggest that the sign shall not matter. However, our experience with QCAD is that the
minus sign is very important for the 3D-confined case to achieve self-consistent convergence;
if we used a plus sign here, the outer S-P loop ran into numerical oscillations.

The self-consistent p-c procedure in QCAD is done in the following steps.

(1) Solve the semiclassical nonlinear Poisson equation, Eq. (3.1), using the Newton solver
in Trilinos [?], to obtain an initial potential φ(0) and compute the initial total potential
energy V (0) without the exchange-correlation correction Vxc.

(2) Solve the coupled Schrodinger equation for the kth (k ≥ 1) S-P iteration step,

−h̄2

2
∇
(

1

m∗
∇ψ(k)

)
+V (k−1)ψ(k) = E(k)ψ(k),

to obtain E(k) and ψ(k) (performed using an eigensolver available in Trilinos).

(3) Solve the coupled nonlinear Poisson equation with the approximate quantum electron
density ñ(k)(φ(k);φ(k−1), E(k), ψ(k)),

−∇ · (εs∇φ(k)) = q[p(φ(k))− ñ(k) +N+
D (φ(k))−N−A (φ(k))],

using the Trilinos Newton solver to obtain the updated potential φ(k), and compute ñ(k) and
V (k) including Vxc(ñ

(k)). Note we want to use the latest electron density to compute Vxc for
good convergence.

(4) Check if ||φ(k) − φ(k−1)|| < δ for k ≥ 2 everywhere in the device, with δ being a
pre-defined tolerance often chosen as 1× 10−5V; if not, repeat steps (2) to (4).

It is clear from the above procedure that there is no under-relaxation step between two
S-P iterations and the outer iteration reduces to a simple alternation between solving S
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and P equations. In addition, the Newton Jacobian matrix for the nonlinear P equation,
Eq. (4.13), can be found analytically, avoiding the necessity of using an approximate Jacobian
matrix in the damped Newton iteration scheme [?]. In terms of code implementation, the
p-c method was very straightforward to implement in QCAD within the Albany framework.
Here we emphasize that, because of the automatic differential capability in Trilinos, the
Newton Jacobian matrix is computed directly by the code, and we do not need to derive the
Jacobian matrix. More details on the implementation and the Albany code structure are
found in Ref. [?].

Validation Example

To validate the self-consistent S-P solver, we performed simulations on two structures
and compared with other simulation results. The first one is a 1D MOS Si capacitor with
4-nm oxide and 5× 1017 cm−3 p-substrate doping. Figure 4.3 compares the ∆2-valley lowest
four wave functions and energies in the capacitor obtained from QCAD and SCHRED [?] at
T = 50 K, the lowest temperature allowed by SCHRED. (SCHRED is a 1D self-consistent
Poisson-Schrodinger solver for MOS capacitors available on www.nanohub.org.) There are
two simulation differences between QCAD and SCHRED: (i) QCAD applies the S-P solver
to both Si and SiO2 regions, leading to slight wave function penetration in the oxide (x < 0)
as seen in Fig. 4.3a, while SCHRED assumes ψ = 0 at the Si/SiO2 interface; (ii) QCAD
considers the two ∆2 valleys only, whereas SCHRED includes both the two ∆2 and the four
∆4 valleys. A typical effective mass of 0.5m0 is often assumed [?, ?] for SiO2, where m0 is the
free electron mass. To minimize the wave function difference near the Si/SiO2 interface due
to the different boundary conditions imposed by the two tools, we used 0.005m0 as the SiO2

effective mass for the QCAD simulations. The choice of setting m∗ox = 0.005m0 is because, at
the Si/SiO2 interface, QCAD applies the flux conservation condition of 1

m∗
ox
· dψ
dx
|ox = 1

m∗
si
· dψ
dx
|si,

and in order to make ψ at the interface as close to 0 as possible (to be more consistent with
SCHRED), we need small dψ

dx
|ox, meaning small m∗ox. At T = 50 K, we expect that ignoring

the higher energy ∆4 valleys produces negligible effect on the ∆2-valley results, as only the
∆2-valley lowest subband is occupied by electrons at this low temperature. As expected,
the wave functions and energies in Fig. 4.3 show excellent agreement between QCAD and
SCHRED. The results also indicate that in this device, the exchange-correlation potential
Vxc significantly increases the subband energy separation due to the many-body interaction
(e.g., the separation between the lowest two subbands is increased from 26.71+72.54 = 99
to 45.72+74.5 = 120 meV when including Vxc), and it also somewhat compresses the wave
functions as seen by the differences between the dash and solid curves in the figure, which
agree with the observations in Ref. [?].

The second example is a gate-induced Si quantum wire structure from Ref. [?]. Figure
4.4 shows the schematic diagram of the simulated 2D structure. For simulation purpose, the
device is divided into quantum and semiclassical regions. The quantum regions include the
15-nm thick Si quantum and the 4-nm thick SiO2 quantum regions denoted in the figure,
where the self-consistent S-P solver is applied. The 15-nm and 4-nm were chosen such that
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Figure 4.3. (Color online) ∆2-valley lowest four subband
wave functions and energies in a 1D MOS Si capacitor at T
= 50 K and Vg = 3 V obtained from QCAD (a) and from
SCHRED (b). The Si/SiO2 interface is located at x = 0. The
solid and dashed curves are obtained without and with the
exchange-correlation effect, respectively. The subband ener-
gies in [meV], referenced from the Fermi level and including
the Vxc effect, are denoted by E1i, where the “1” indicates
the ∆2-valley and i indexes the subband (SCHRED’s label-
ing convention). For comparison, the corresponding energies
without Vxc are -72.54, 26.71, 90.73, 144.69 for QCAD, and
-71.76, 26.12, 89.22, 142.27 for SCHRED.
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Figure 4.4. (Color online) Schematic diagram of the
simulated 2D structure with all dimensions given in nm. The
blue 2D contour in the Si quantum region shows the ∆2-valley
lowest subband wave function obtained from QCAD without
the Vxc effect at T = 10 K, Vg1 = 0.8 V, and Vg2 = 3.5 V
with all voltages referred to flat band. The dash line denotes
the y = −2 nm location.

the wave functions are essentially 0 at the boundaries of the quantum and non-quantum
regions. The remaining Si and SiO2 regions are treated as semiclassical, that is, only the
Poisson equation with semiclassical carrier density is solved at each S-P iteration. The gate
Vg2 induces electrons in the Si quantum region, while the Vg1 gates are used to deplete
electrons, hence an effective quantum wire is formed with the wire direction perpendicular
to the 2D plane. The blue 2D contour in the Si quantum region shows the ∆2-valley lowest
subband wave function obtained from QCAD without the effect of Vxc at T = 10 K, Vg1 =
0.8 V, and Vg2 = 3.5 V with all voltages referred to flat band. The peak of the wave function
is located around the y = −2 nm dash line (the y = 0 location is at the Si-quantum/SiO2-
quantum interface). The lowest five subband wave functions along the y = −2 nm line
are given in Fig. 4.5, which agree very well with Fig. 4(a) in Ref. [?]. Given T = 10 K
and Vg1 = 0.8 V, we also performed QCAD S-P simulations for a range of Vg2 voltages,
integrated the electron density in the Si quantum region for each Vg2, and then plotted the
subband energies as a function of integrated electron density to compare with the results in
Ref. [?]. Figure 4.6 compares the ∆2-valley lowest three subband energies as a function of
integrated electron density in the Si quantum region between QCAD and the reference. The
agreement between them is very good considering the fact that the reference used a different
S-P iteration scheme and did not mention if a fixed interface charge was used or not (no
fixed charge was used in QCAD simulations).

For these 1D and 2D examples, their S-P convergence behavior from QCAD are plotted
in Fig. 4.7, where the vertical axis is the maximum potential error between two outer iter-
ations in the entire device including the semiclassical region (note that the corresponding
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Figure 4.5. (Color online) ∆2-valley lowest five sub-
band wave functions along the y = −2 nm dash line in
Fig. 4.4. These wave functions agree very well with Fig. 4(a)
in Ref. [?].
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Figure 4.6. (Color online) ∆2-valley lowest three subband
energies as a function of integrated electron density in the Si
quantum region. Black curves plot the data extracted from
Fig. 3 in Ref. [?], while the red squares are the data obtained
from QCAD. The energies are with respect to the Fermi level
which is set to 0.
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Figure 4.7. (Color online) Convergence behavior of the
self-consistent QCAD S-P solver for the 1D MOS Si capacitor
and the 2D gate-induced Si quantum wire devices.

convergence are not available from either the referenced tool or paper). We see that the
predictor-corrector approach for the S-P iteration leads to fast and monotonic convergence
in the two closed quantum systems; and the inclusion of the Vxc effect requires more iteration
steps because of the stronger coupling that Vxc introduces between the P and S equations.
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Chapter 5

QCAD User Guide

Introduction

What is QCAD?

The Quantum Computer Aided Design toolkit is a finite-element based tool designed
to simulate semiconductor quantum devices. Such devices typically have nanometer length
scales and operate at milli-Kelvin temperatures. QCAD can be used to solve problems in
one, two, or three dimensions, and has several modes of operation:

• Semiclassical mode. The non-linear Poisson equation obtained by making the
Thomas-Fermi approximation, which relates conduction band energy relative to the
Fermi level to electron density, is solved, resulting in a “semiclassical” electron density
and electric potential throughout the simulated domain.

• Schrodinger mode. The time-independent Schrodinger equation is solved, yielding
the single particle eigen-energies and eigen-states of a given potential. The potential
can be supplied externally, or can be given as a mathematical expression (limited
parsing capability).

• Poisson-Schrodinger mode. The simulation domain is divided into “quantum” and
“non-quantum” regions. A self-consistent solution is found for the electron density and
potential by alternately solving Poisson and Schrodinger equations and iterating until
convergence . The Poisson equation results from the Thomas-Fermi approximation in
the non-quantum region and a quantum density, proportional to the sum of squared
single particle wave functions over occupied states, in the quantum region, and the
Schrodinger equation is solved only within the quantum region. Finding self-consistent
solutions may be accelerated by using a coupled Poisson-Schrodinger solver, which
solves the Poisson and Schrodinger equations simultaneously using an iterative non-
linear method.

• Schrodinger-CI mode. After solving the Schrodinger equation as in “Schrodinger
mode”, Slater-determinants of the resulting single-particle states are used to form a
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many-particle basis, and the many-electron Schrodinger equation is solved using a
configuration interaction (CI) method.

• Poisson-Schrodinger-CI mode. Coupling the above two modes together, this mode
iteratively converges single-particle electron wave functions and then applies a config-
uration interaction algorithm to compute many-electron wave functions.

The QCAD tool is a single executable, and reads input from one or several XML file(s).
The format of these files depends upon the mode of operation and on the problem specifics,
and is the focus of this user guide.

A finite-element mesh specifying the discretization of the problem domain must be given
in all cases. Though it an be supplied in several formats, by far the most flexible and
consequently most utilized format is an Exodus (*.exo) mesh. This mesh format is native
to the meshing tool Cubit, and it is our desire that other common mesh file formats will be
supported in the future.

How do I get QCAD?

Right now, unless you work at Sandia, you probably can’t. We’re working on it.

How do I run QCAD?

The executable that runs QCAD is called Albany. You run QCAD by supplying a
single command argument to Albany – the name of the main XML input file. For example:
/path/to/Albany input.xml

Input files

To run a QCAD simulation, at least one and usually several input files are required.
There are three distinct types of QCAD input files:

1. “Main XML” input file: This type of input file defines which type of problem
should be solved and how it should be setup. The main XML file contains most if not
all of the run-specific information, such as the particular boundary conditions used,
what quantities to compute, and what solver parameters to use. It also references the
next two types of input files.

2. “Materials XML” input file: Also known as a “material database file”, this input
file specifies the material properties to be used in regions of the simulation domain.
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3. “Exodus mesh” input file: An Exodus-format binary file which describes how the
simulation domain is discretized into finite elements. When using multiple processors,
the a single Exodus mesh file can be split into several smaller files (the number equal
to the number of processors) to specify how the mesh is divided among the processors.
(Alternatively, QCAD can divide a single-file mesh among many processors internally.)

We will next describe each of these types of input files in more detail.

Main XML input file specification

The Skeleton

All QCAD XML input files consist of <ParameterList name="LIST NAME"> . . .
</Parameterlist> blocks which contain sub-ParameterList block and

<Parameter name="PARAM NAME" type="PARAM TYPE" value="PARAM VALUE" />

tags. No other XML tags are used. The main XML input file takes a similar format for
all of QCAD’s modes of operation. Its general structure is given in listing 5.1. Note that
this listing does not show all available parameter lists, but is meant to convey the essential
skeleton of structure in a QCAD input file.

Listing 5.1. General structure of a QCAD input file.

<ParameterList>

<ParameterList name="Problem">

<!-- Root Parameters -->

<ParameterList name="Poisson Problem">

<!-- Poisson Parameters -->

</ParameterList>

<ParameterList name="Schrodinger Problem">

<!-- Schrodinger Parameters -->

</ParameterList>

</ParameterList>

<ParameterList name="Discretization">

<!-- Discretization Parameters -->

</ParameterList>

<ParameterList name="Piro">

<!-- Solver parameters -->

</ParameterList>

</ParameterList>
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As can be seen from the listing, the high-level structure of consists of a single root list with
three major sub-lists:

Sub-list name Description

Problem specifies which QCAD problem is solved, and most of the
problem- (as distinguished from the solver -) parameters.

Discretization specifies how the domain of the problem is divided into
finite elements, i.e. “discretized”.

Piro specifies details regarding how the problem described
in the Problem sub-list is solved. In short, the solver-
parameters. Most of these parameters are usually taken
from a “Piro defaults” file specified in the Problem sub-
list, in which case only solver parameters which deviate
from those defaults need to be specified here.

In most cases default values can be used for all of the Piro parameters, and the Piro list
can be omitted all together, leaving just two main sub-lists. The following sections describe
the contents of each of the main sub-lists in detail.

The Problem list

The Problem list, as its name implies, specifies which QCAD problem is being solved.
All QCAD problems can be viewed as a set of one or more pieces, with each piece being one
of the following types:

• Poisson - solves the Poisson equation, possibly taking as input quantum wave-functions
and eigen-energies from a previous Schrodinger solution.

• Schrodinger - solves the Schrodinger equation (an eigenproblem), possibly taking as
input a potential generated by a previous Poisson solution.

• Configuration Interaction (CI) - solves a many-particle Schrodinger equation using
a basis of many-particle states constructed from a set of single-particle states and
energies.

• Integrated Poisson-Schrodinger - solves the Poisson and Schrodinger equations
simultaneously by interpreting the Schrodinger equation for each desired eigenvector
as a separate differential equation.

Since each type of piece typically takes a different set of parameters, the Problem list contains
two major sub-lists named Poisson Problem and Schrodinger Problem which hold the
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parameters relevant to any Poisson and/or Schrodinger pieces being solved. Parameters
common to both Poisson- and Schrodinger-type pieces are contained under the Problem
list directly, along with those relevant to Configuration Interaction pieces. (CI pieces take
relatively few parameters, and so they do not merit their own sub-list). Integrated Poisson-
Schrodinger pieces are given parameters from both the Poisson Problem and Schrodinger
Problem sub-lists, and therefore do not require their own sub-list. Table 5.1 lists the most
important Problem-list parameters. Next, the Poisson Problem and Schrodinger Problem

sub-lists are explained in detail.

The Poisson Problem and Schrodinger Problem lists

The Poisson Problem and Schrodinger Problem lists (sub-lists of the Problem list) contain
those parameters specific to the Poisson and Schrodinger pieces of a given QCAD problem,
respectively. Sometimes one of these two lists is not needed and can be omitted (for example,
for Poisson-type problems there are no Schrodinger pieces and the Schrodinger Problem
sub-list can be omitted). The main purpose of the parameters under these lists is to define
boundary conditions, formal parameters, responses, and an problem-specific options. Formal
parameters and responses will be covered later in section 5, so the focus of this section will be
on specifying boundary conditions and problem-specific options. Both the Poisson Problem
and Schrodinger Problem lists specify boundary conditions in the same way, except for the
name of the degree-of-freedom (DOF) contained in some of the parameter names. The
following text describes how to set each of the three possible types of boundary conditions
in QCAD. The placeholder dof should be substituted with Phi in the Poisson case and with
psi in the Schrodinger case.

Dirichlet Boundary Conditions are defined using the Dirichlet BCs sub-list of the
Poisson or Schrodinger problem lists. The Dirichlet BCs list contains any num-
ber of double-type parameters with names of the form “DBC on NS myNodesetName
for DOF dof ”. The placeholder myNodesetName is the name of a nodeset defined in
the exodus mesh. This type of parameter sets a Dirichlet boundary condition on the
nodeset with value equal to the value of this parameter is the voltage (assumed to be
given in volts). In a Schrodinger Problem, the values of Dirichlet boundary conditions
should almost always be equal to zero.

Neumann Boundary Conditions are defined using the Neumann BCs sub-list of the Pois-
son or Schrodinger problem lists. The Neumann BCs list contains any number of
Array(double)-type parameters with names of the form “NBC on SS mySidesetName
for DOF dof set scaled jump”. The placeholder mySidesetName is the name of a
sideset defined in the exodus mesh. The value of this type of parameter is a 1-element
double-precision array that specifies a the magnitude of a jump in the derivative of
the problem solution at the sideset along the direction normal to the sideset. In the
Poisson problem, the double-precision value specifies a surface charge concentration
in units of 1011cm−2. For example, to place a fixed surface charge of 4 × 1011cm−2
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Table 5.1. Parameters of the main Problem list

Name Type Description

Solution Method string a necessary parameter that should always be
set to “QCAD Multi-Problem”. This marks
the input file as a QCAD problem, distin-
guishing it from other types of problems the
Albany executable is capable of solving (pro-
vided it was build with other packages en-
abled).

Name string the type and dimension of the problem being
solved, also referred to as the mode in which
QCAD is operating. Options are (where x =
1, 2, 3 depending on the dimension):

• Poisson xD

• Schrodinger xD

• Schrodinger CI xD

• Poisson Schrodinger xD

• Poisson Schrodinger CI xD

Length Unit In Meters double the length unit used in the mesh. For in-
stance, 1e− 6 for microns.

Energy Unit In Electron Volts double the energy unit to output quantities like the
potential, conduction band, eigenvalues, etc.
in. Note that boundary condition voltages are
always given in volts regardless of what this
parameter is set to. For instance 1e − 3 for
milli-electron-volts.

Temperature double the system temperature in Kelvin. Not
needed for Schrodinger or Schrodinger CI
problems.

MaterialDB Filename string the filename of a materials database file (see
section 5 on material files).

Piro Defaults Filename string the filename of an XML file contain-
ing default parameters for the Piro sub-
list. The QCAD installation comes with
a default piro params.xml file, which lists
parameters appropriate to most QCAD prob-
lems, and thus in most cases it is appropriate
to reference that file here.
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on a sideset, the correct parameter value is {4.0}. Even though Neumann boundary
conditions are available in Schrodinger problems, there are rarely used.

Robin Boundary Conditions are defined using the same Neumann BCs sub-list as used
for the Neumann boundary conditions. To define Robin boundary conditions, use pa-
rameter names of the form “NBC on SS mySidesetName for DOF dof set robin”.
The placeholder mySidesetName is the name of an external (i.e. on the edge of the
mesh) sideset defined in the exodus mesh. The value of this type of parameter is a
3-element double-precision array. In the Poisson problem it specifies (in this order):
the value of the solution a distance d from the sideset along it’s outward pointing nor-
mal vector, the dielectric constant ε divided by the distance d, and finally the surface
charge, in units of 1011cm−2 on the sideset. For example, to set the value of the solution
to equal 1 volt a distance 10nm away from a surface charge of 2× 1011cm−2 in silicon
dioxide (dielectric constant 3.9), the correct boundary condition for a mesh given in
microns is {1.0, 390, 2.0}. The 390 comes from writing d as 0.01 microns and di-
viding ε/d = 3.9/0.01 = 390. Even though Robin boundary conditions are available in
Schrodinger problems there is no known reason to use them.

Poisson-specific options are contained in the Poisson Source sub-list of the Poisson

Problem list. In this list the user may set several parameters, though in most cases the
default values are desired and the Poisson Source sub-list is omitted. Below is a list of the
most useful parameters:

Name Type Description

Factor double an overall factor by which to multiply the RHS of the
Poisson equation (i.e. the Poisson source term).

Device string a string specifying the device to be simulated. The de-
fault value of “elementblocks” means the device is set by
the supplied mesh and the materials database file. How-
ever, there are a few other options used for testing that
can be entered here.

user-defined double charge parameter names can be defined in the materi-
als database XML file and a value can be set to those
names here. (See section 5, which describes the materi-
als database.)

Additionally, the Poisson Source list allows sub-lists named “Mesh Region x”, where x is
an integer index starting at zero. These sub-lists contain parameters defining a region of
the mesh as well as a value which scales the RHS of the Poisson equation but only within
the specified region. A RHS scaling scaling is set using the double-type Factor Value

parameter, and the mesh region is specified using the parameters in Table 5.2 (not all of
which need to be specified). We note that these parameters are used throughout QCAD to
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define regions of the mesh, and in particular are used by several responses which can act
only on a portion of the mesh (see section 5).

Schrodinger-specific options are contained in the Potential sub-list of the Schrodinger

Problem list. Here the user specifies what potential is used in the Schrodinger equation.
This list is almost always supplied by the user in the Schrodinger or Schrodinger CI

modes, whereas in calculation modes where Schrodinger and Poisson pieces are coupled (e.g.
Poisson Schrodinger mode) the default behavior of using the Poisson piece’s conduction
band as the Schrodinger potential is desired. The available parameters in the Potential list
are:

Name Type Description

Type string specifies the type of potential, or where to get it from.
Allowed values are Parabolic, Infinite Wall, Finite
Wall, String Formula, and From State. The parabolic
potential is centered at 0.5 (in all dimensions) and has a
confinement energy of E0. The finite wall is a barrier of
height E0 that in one dimension occupies x-coordinates
between zero and Barrier Width and Barrier Width

+ Well Width and 2∗Barrier Width + Well Width. In
two and three dimensions the well lies between Barrier

Width and Barrier Width + Well Width in each dimen-
sion. The infinite wall type just sets the potential to zero,
which leaves only the infinite walls at the edges of the
mesh.

E0 double a generic energy scale parameter whose meaning varies
based on the value of the Type parameter. For a
Parabolic potential, this is the confinement energy, and
for Finite Wall this is the wall height.

Formula string if Type equals “String Formula” this parameter spec-
ifies an analytic expression that is evaluated to
compute the potential. Basic mathematical oper-
ations are available. For example, valid formula
strings include: 10*((x-0.5)^2 + (y-0.5)^2) and
-1/(x^2 + y^2 + z^2)^0.5.

Barrier Width double the width of the barrier (applicable in the Finite Wall

type only)

Well Width double the width of the well (applicable in the Finite Wall type
only)

Scaling Factor double a multiplicative scaling applied to the potential.
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Table 5.2. XML parameters available for specifying a mesh
region.

Name Type Description

Element Block Name string restrict the mesh region to within an ele-
ment block.

Element Block Names string restrict the mesh region to within sev-
eral element blocks. Names of blocks are
comma-delimited.

Quantum Element Blocks Only bool whether the region should be restricted
to “quantum” element blocks (those with
“quantum” equal to true in the materials
database).

x min

x max

double restrict the x-coordinate of the mesh region

y min

y max

double restrict the y-coordinate of the mesh region

z min

z max

double restrict the z-coordinate of the mesh region

Level Set Field Name string if restricting the region based on the value
of a field, the name of the “level-set field”.

Level Set Field Minimum double a minimum value for the level-set field,
such that any cell with an average value
less than this value is not included in the
mesh region.

Level Set Field Maximum double a maximum value for the level-set field,
such that any cell with an average value
greater than this value is not included in
the mesh region.
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Parameters and Responses

Up to this point we have mentioned the formal inputs and outputs of a QCAD run termed
“parameters” and “responses”. We will refer to the former as “formal parameters”, since the
term “parameter” can also refer to XML entries which use the <Parameter> tag. Formal
parameters, which can be thought of as the run-time inputs of a QCAD application, are
completely different and distinct from the <Parameter> parameters of XML files.

The user specifies the formal parameters and responses through XML Parameters tags
within ParameterList blocks named Parameters and Response Functions, respectively. It
is likely to be intuitive why the user would want to specify responses, since this is essentially
telling QCAD how to post-process the solution once the problem has been solved. For
example, specifying that you would like QCAD to output the integral of the electron density
over a region of the mesh is to specify a QCAD response. Why the user should need to
specify Parameters, on the other hand, is more subtle.

Parameters Typically one thinks of the voltages (i.e. boundary conditions) set on var-
ious parts of the mesh as input “parameters” to a QCAD simulation. While boundary
conditions as specified in the appropriate lists (described above) are indeed inputs to the
QCAD run, and while they can be made into formal parameters, they are not by default
formal parameters. So what’s the point of these formal parameters anyway? The answer is
twofold: 1) QCAD automatically differentiates of the all the responses with respect to all of
the formal parameters, and 2) formal parameters are exposed to DAKOTA when running a
QCAD simulation inside of DAKOTA. (As both of these items are related to more advanced
topics, new users need not bother themselves with formal parameters.) Thus, if a given
boundary condition, say the voltage on Gate1, is listed as a formal parameter, the QCAD
will compute the derivative of the responses with respect to this voltage. If one of those
responses is the electron charge in a region, then the derivative of this response with respect
to the voltage on Gate1 is a capacitance. Furthermore, if the voltage on Gate1 is a formal
parameter, it can be optimized or swept using DAKOTA. If neither of these behaviors is
desired, then there is no need to include a quantity (in this case a boundary condition) as
a formal parameter. In addition to boundary conditions, other quantities can be made into
formal parameters. These include charge parameters (defined in the materials XML file),
mesh region factors (defined in the Poisson Source list), and scaling factors (Poisson source
term or Schrodinger potential term scaling). The names of formal charge parameters are
defined in the material database file. The names of mesh region factors are Mesh Region

Factor x, where x is the index matching the mesh region sub-list of the Poisson Source

list. Additional factors are Poisson Source Factor (multiplies RHS of Poisson equation),
Schrodinger Potential Scaling Factor (multiplies the potential term of the Schrodinger
equation), and Schrodinger Potential E0 (sets the E0 Schrodinger potential parameter).

Every possible formal parameter has a name. The Parameters sub-lists contain one
integer parameter named Number, which specifies the number of parameters, and that many
Parameter x string parameters which specify the names of all the formal parameters. Thus,
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Table 5.3. Field names available in Poisson (P) and
Schrodinger (S) pieces

Field Name P/S Description

Solution P solution to Poisson’s equation (reference pt
determined by material parameters)

Conduction Band P conduction band energy

Valence Band P valence band energy

Poisson Source P right-hand-side of Poisson equation

Electric Potential P the same as solution, but with reference
subtracted out

Electron Density P density of electrons in cm−3

Hole Density P density of holes in cm−3

Ionized Dopant P density of ionized dopants in cm−3

V S potential energy used in Schrodinger equa-
tion

in order to bestow formal parameter-hood upon a quantity one only needs to add its name
as the value of one of the Parameter x parameters within the Parameters sub-list of either
the Poisson Problem or Schrodinger Problem lists (whichever is appropriate).

Responses Responses are defined within the Response Functions sub-lists of the Poisson
Problem and Schrodinger Problem lists. Each Response Functions sub-list contains one
integer parameter named Number, which specifies the number of responses, and that many
Response x string parameters, and optionally ResponseParams x sub-lists, which specify
the type-names and further options of each of the responses, respectively. Many of the
responses deal with one or more “fields”, which are named quantities that take values at
each node (or quadrature) point of the mesh. The available field names for the Poisson and
Schrodinger solvers are given in Table 5.3 for reference. Below is a list of each available type
of response and its options. Each item heading specifies a possible value of a Response x pa-
rameter, and “options” refer to the parameter entries of the corresponding ResponseParams

x list).

57



• Center Of Mass computes the center of mass of a field within a region. Computes
4 response values containing the x, y, and z coordinates of the center of mass and a
dummy value of 1.0. Options are:

Name Type Description

Field Name string the “mass” field on which to compute the
center of mass.

Mesh Region Parameters – any of the parameters in Table 5.2, which
describe the region of the mesh over which
to compute the center of mass.

• Field Average computes the average of a field within a region. Computes a single
response value. Options are:

Name Type Description

Field Name string the field with which to compute the aver-
age value.

Mesh Region Parameters – any of the parameters in Table 5.2, which
describe the region of the mesh over which
to compute the average value.

• Field Integral computes the integral of a field within a region. Computes a single
response value. Options are:

Name Type Description

Field Name string the field to integrate, when integrating a
single field.

Field Name Im string if integrating a complex field, the field con-
taining the imaginary part of the field to
integrate, when integrating a single field.

Conjugate Field bool whether or not to conjugate the field before
integrating, when integrating a single field.

Field Name x string where x is an integer index, starting at
zero. Specifies the x-th term in a product
of fields to integrate.

Field Name Im x string where x is an integer index, starting at
zero. Specifies the imaginary part of the
x-th term in a product of (complex) fields
to integrate.
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Name Type Description

Conjugate Field x bool whether or not to conjugate the x-th field
before integrating a product of fields.

Return Imaginary Part bool whether or not to return (as the response
value) the imaginary or real part of the
specified integral.

Integrand Length Unit string specifies the (linear) length unit of the in-
tegrand. Allowed values are m (meters), cm
(centimeters), um (microns), nm (nanome-
ters), and mesh (the same units as the
mesh). The default is centimeters.

Positive Return Only bool if “true” and integral is zero or negative,
instead of returning the value of the inte-
gral return a huge number (like 10100). De-
fault is “false”. This option is used when
optimizing a non-negative quantity.

Mesh Region Parameters – any of the parameters in Table 5.2, which
describe the region of the mesh to integrate
over.
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• Field Value computes the value of a “return field” and the position where a second
“op field” takes its maximum or minimum within a region. Computes 5 response values
containing the value of the return field at the extremum, the value of the op field at
the extremum, and the x, y, and z coordinates of the extremum. Options are:

Name Type Description

Operation string which extremum to find. Allowed values
are Minimize and Maximize.

Operation Field Name string field on which to find extremum, if a scalar
field.

Operation Vector Field Name string field on which to find extremum, if a vec-
tor field. In this case, the magnitude of
the vector field, projected according to the
“Operate on ...” options below is mini-
mized or maximized.

Return Field Name string field whose value at the extremum should
be returned as the response value, if a
scalar field.

Return Vector Field Name string field whose magnitude at the extremum
should be returned as the response value,
if a vector field.

Operate on x-component bool whether to include the x-component con-
tribution to the magnitude of a vector field
being maximized or minimized. Default is
“true”.

Operate on y-component bool whether to include the y-component con-
tribution to the magnitude of a vector field
being maximized or minimized. Default is
“true”.

Operate on z-component bool whether to include the z-component con-
tribution to the magnitude of a vector field
being maximized or minimized. Default is
“true”.

Mesh Region Parameters – any of the parameters in Table 5.2, which
describe the region of the mesh to search
for an extremum.
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• Region Boundary computes the bounding box of a mesh region and saves its limits in
a text file. Computes a single dummy response value (always equal to zero). Options
are:

Name Type Description

Mesh Region Parameters – any of the parameters in Table 5.2, which
describe the region of the mesh whose lim-
its should be computed.

Output Filename string the name of the file into which the limits
of the mesh region should be written.

• Saddle Value computes the value of a “return field” at the saddle point of another
field. This response uses a modified nudged elastic band algorithm to locate the saddle
point, and must be given starting and ending points and/or element blocks and a
gradient field of the field for which the saddle point is being found. Computes 5
response values. Since there are so many options available for this response, we list
them by categories. General options are:

Name Type Description

Field Name string the (scalar) field on which to find a saddle point.

Field

Scaling

Factor

double scaling factor for the field. Default is −1.0, as usually
the Poisson potential is used here.

Field

Gradient

Name

string the (vector) field giving the gradient of the field specified,
possibly after scaling.

Field

Gradient

Scaling

Factor

double a scaling factor applied to the gradient field given to ob-
tain the actual required gradient. Default is −1.0, as
usually the Poisson potential gradient is used here.

Return

Field Name

string the (scalar) field whose value at the saddle point should
be returned as the first response value. If unspecified,
the field used to find the saddle point will also be used
as the return field. If set to the special value “current”,
then a Green’s function based 1D current calculation is
performed along the saddle path after it has been found.
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Name Type Description

Return

Field

Scaling

Factor

double a scaling factor to be applied to the return field value
before returning it. Default is 1.0.

Image Point

Size

double the size of the image points, in mesh units (quadrature
point values contribute to image points via Gaussian
weights around the actual image point. This specified
the size of the Gaussian). Default is 0.01.

Number

of Image

Points

int the number of image points to use in the nudged-elastic
band (NEB) algorithm for finding the saddle point. Usu-
ally between 3 and 11. Default is 10.

Number

of Final

Points

int Number of “final points”, which are the points at which
the saddle point path is evaluated at the end of the NEB
algorithm. By default, the same as the number of image
points.

Max Time

Step

double maximum time step used in the NEB algorithm. Default
is 1.0.

Min Time

Step

double minimum time step used in the NEB algorithm. Default
is 0.002.

Maximum

Iterations

int maximum iterations (i.e. number of time steps) of the
NEB algorithm. Default is 100.

Backtrace

After

Iteration

int after this iteration, enable backtracing to enforce mono-
tonic convergence. Default is no backtracing (disabled).

Convergence

Tolerance

double convergence tolerance of the NEB algorithm. Default is
10−5.

Min Spring

Constant

double minimum spring (elastic band) constant of the NEB al-
gorithm. Default is 1.0.

Max Spring

Constant

double maximum spring (elastic band) constant of the NEB al-
gorithm. Default is 1.0.

Output

Filename

string name of file into which final saddle point results are writ-
ten.

Debug

Filename

string name of file into which debugging information is written.
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Name Type Description

Append

Output

bool whether or not to append or overwrite to the Output
Filename. Default is “false”.

Climbing

NEB

bool whether or not to employ the “climbing” version of the
NEB algorithm. Default is “true”.

Anti-Kink

Factor

double a factor, which if set to a positive value, penalizes kinks
in the elastic band. Default is 0 (no kink supression).

Aggregate

Worksets

bool if true, all workset data is aggregated at the onset of the
algorithm. This requires more memory, but reduces the
need for MPI communication and thereby speeds up the
algorithm. Default is “false”.

Adaptive

Image Point

Size

bool whether the image point size is allowed to vary. Default
is “false”.

Adaptive

Min Point

Weight

double if adaptive image point size is enabled, the minimum to-
tal weight (roughly the number of strongly contributing
quadrature point value) allowed before enlarging the im-
age point size. Default is 5.

Adaptive

Max Point

Weight

double if adaptive image point size is enabled, the maximum
total weight (roughly the number of strongly contribut-
ing quadrature point value) allowed before shrinking the
image point size. Default is 10.

Lock to

z-coord

double if given, all the image points in the NEB method are
restricted to having the specified z-coordinate.

z min double the minimum z-coordinate allowed in image points.

z max double the maximum z-coordinate allowed in image points.

Begin Point Array(double) the beginning location of the NEB algorithm’s elastic
band.

Begin

Element

Block

string the beginning element block of the NEB algorithm’s elas-
tic band. The actual beginning point is found dynami-
cally by minimizing the value of the saddle point field
within the element block.

Begin

Polygon

sub-list the beginning element block of the NEB algorithm’s elas-
tic band. The actual beginning point is found dynami-
cally by minimizing the value of the saddle point field
within the polygon.
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Name Type Description

End Point Array(double) the ending location of the NEB algorithm’s elastic band.

End Element

Block

string the ending element block of the NEB algorithm’s elastic
band. The actual ending point is found dynamically by
minimizing the value of the saddle point field within the
element block.

End Polygon sub-list the ending element block of the NEB algorithm’s elastic
band. The actual ending point is found dynamically by
minimizing the value of the saddle point field within the
polygon.

Percent

to Shorten

Begin

double percentage to shorten the elastic band from its specified
beginning location. Default is 0.0.

Percent to

Shorten End

double percentage to shorten the elastic band from its specified
ending location. Default is 0.0.

Saddle

Point Guess

Array(double) an initial guess at the saddle point’s location. The initial
elastic band will be routed from the beginning point to
the ending point through this point, if provided.

Debug Mode int debug verbosity level. Default is 0.
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Options regarding the use of a level-set method, which is runs after the elastic band
method and helps to even more precisely locate the saddle point are:

Name Type Description

Levelset

Radius

double radius levelset post-analysis. If greater than zero, af-
ter the NEB algorithm finds a saddle point, a level-set
saddle-point-finding algorithm is performed in the mesh
region that lies within the specified radius of the NEB’s
saddle point. This algorithm works by effectively filling
the region with water until two pools join into one. De-
fault is 0.0, which disables the level-set algorithm.

Levelset

Field

Cutoff

Factor

double this factor multiplied by the maximum field difference
within the region gives a cutoff factor for level-set al-
gorithm. When points are being considered for addition
into existing “pools”, only points within this energy from
the current “water level” (i.e. energy) are considered.
The default is 1.0, which means all points are consid-
ered. Setting this parameter to a value less than one will
speed up the algorithm but may cause it to miss a point
that should be added to a pool if that point lies on a
strong local gradient.

Levelset

Distance

Cutoff

Factor

double this factor, multiplied by the average linear dimension of
cells within the level-set region, gives a distance cutoff
which sets the maximum distance for which two points
are considered “neighbors”, so that they will be consid-
ered part of the same “pool” if their field values are both
below the “water level”. Default is 1.0.

Levelset

Minimum

Pool Depth

Factor

double this factor, multiplied by half the difference between the
NEB’s saddle value and the minimum field value within
the level-set region, set the minimum depth a pool must
have before it is considered a “deep pool”. The level-set
method succeeds in finding a saddle point when two deep
pools join into one. Default is 1.0.

65



Lastly, options dealing with the Green’s Function method used to compute current
through a saddle path (after it has been found) are:

Name Type Description

GF-CBR

Method Grid

Spacing

double spacing, in mesh units, between the points to be used by
the Greens Function - Contact Block Reduction method
(for computing the current through the saddle path). De-
fault is 0.0005, (0.5 nanometers if the mesh is in microns).

GF-CBR

Method Vds

Sweep

bool whether a source-drain voltage sweep should be per-
formed. Default is “false”.

GF-CBR

Method Vds

Initial

Value

double initial value of source-drain voltage sweep. Default is 0.0.

GF-CBR

Method Vds

Final Value

double final value of source-drain voltage sweep. Default is 0.0.

GF-CBR

Method Vds

Steps

int number of steps in source-drain voltage sweep. Default
is 0.

GF-CBR

Method

Eigensolver

string the eigensolver used by the Greens Function - Contact
Block Reduction method. Allowed values are tql2 or
Anasazi. Default is tql2, which should almost always
be used.

GF-CBR

Method

Energy

Cutoff

Offset

double an additive factor that raises the default maximum en-
ergy eigenvalue considered by the GF-CBR method. By
default, the GF-CBR solves for eigenstates with eigen-
values up to max(µS, µD) + 20kBT, where µS and µD are
the chemical potentials of the source and drain, respec-
tively, and T is the temperature. By adding an offset
to this value, more eigenstates will be solved for, giving
a possibly more accurate calculation of the current but
requiring more compute time. Units are electron volts.
Default value is 0.5.
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• Save Field saves a field into a state which is optionally included in the output Exodus
mesh file. Computes a single dummy response value (always equal to zero). Options
are:

Name Type Description

Field Name string field to save, if a scalar field.

Vector Field Name string field to save, if a vector field.

Vector Operation string what operation to perform on a vec-
tor field before saving. Allowed
values are magnitude, xyMagnitude,
xzMagnitude, yzMagnitude, magnitude2,
xyMagnitude2, xzMagnitude2,
yzMagnitude2, xCoord, yCoord, and
zCoord. Default is magnitude.

State Name string name of state to save field into (shows up
as this name in an Exodus file). Defaults
to the same name as the field.

Output to Exodus bool whether or not field should be written to
Exodus file. Default is “true”.

Output Cell Average bool whether or not to output a single averaged
value per cell, or output the value of each
quadrature point independently (resulting
in multiple values per cell, and not as easy
to visualize). Default it “true”.

Memory Placeholder Only bool if “true”, this response doesn’t actually do
anything except reserve the memory for
the specified state. This option is only
used internally within QCAD. Default is
“false”.

• Solution Average computes the average of the solution over the entire mesh. Com-
putes a single response value. This response has no options and thus has no accompa-
nying ResponseParams sub-list.

Parameter and Response Manipulation In addition to the Parameters and Response

Functions sub-lists of the Poisson Problem and Schrodinger Problem lists, the user may
also specify Parameters and Response Functions sub-lists of the root Problem list. These
“master” parameter and response lists can be used select and manipulate how the parameters
of the Poisson Problem and Schrodinger Problem lists get exposed as parameters of the
overall QCAD simulation, and how the responses of the Poisson Problem and Schrodinger
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Mode Names of Pieces Comments

Poisson Poisson* –

Schrodinger Schrodinger* –

Poisson Schrodinger InitPoisson, Poisson*,
Schrodinger,
PoissonSchrodinger*

–

Schrodinger CI Schrodinger, CoulombPoisson,
CoulombPoissonIm

–

Poisson Schrodinger CI InitPoisson, Poisson,
Schrodinger, CIPoisson*,
PoissonSchrodinger,
CoulombPoisson,
CoulombPoissonIm,
NoChargePoisson, DeltaPoisson

–

Table 5.4. The names of the internal “pieces” of a QCAD
simulation when run in each of the possible modes. Brack-
eted terms are only sometimes present, based on the input
parameters. Asterisks mark the “default” pieces, which are
used when no master parameter and/or response lists are
given. Grayed items have parameters and responses that are
no likely to be useful to the user.

Problem lists are passed through to become responses of the overall QCAD simulation. When
a master parameter list is not supplied, the parameters of the default piece of the problem
are exposed. When a master response list is not supplied, the responses of the default piece
of the problem are passed through.

The structure of a master parameters list is that same as those of the Poisson Problem
and Schrodinger Problem lists, except that the allowed names of the formal parameters take
a special form. The value of a Parameter x XML parameter in the master Parameters list
can in general be any number of copies of a function call, written as ‘fn(a,b,. . .)>’ followed
by an array-like reference to one or more of the formal parameters within a named piece of
the QCAD problem, written as ProblemPart [index ]. When the QCAD problem is given a
(formal) parameter value, it manipulates that value using each of the function calls, then
sets the indexed (formal) parameter(s) of the specified piece of the QCAD problem with the
manipulated value.

The only currently available function name (fn) is scale, which takes a single argument
and multiplies the parameter value by this argument. The available ProblemPart names
depend on the type of QCAD problem being solved, but typically include one or both
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of Poisson and Schrodinger. In square brackets, index can be a single index, min:max
specifying all the indices from min to max -1, or even a comma-separated list of single- or
range-type entries. Note that indices are 0-based, so that the first parameter of the Poisson
part is referenced as Poisson[0]. Here are a few examples of allowed master (formal)
parameter names:

• Poisson[0] - set the first (formal) parameter of the Poisson part of the problem.

• Schrodinger[0:3] - set the first three (indices 0, 1, and 2) parameters of the Schrodinger
part.

• scale(10)>Poisson[0,2] - multiply the parameter by 10, then set the first and third
(indices 0 and 2) parameters of the Poisson part.

The structure of a master response list is that same as those of the Poisson Problem and
Schrodinger Problem lists, except that the allowed names of the responses take a special
form and there are no ResponseParams x sub-lists. The value of a Response x parameter
in the master response list is in general of the form fn(x1,. . .,xn), where each xi can be either
a double-precision value (e.g. 2.1) or a reference to a response of some part of the problem,
written ProblemPart [index ]. The available names and syntax for ProblemPart and index
are the same as for the formal parameter names described above, with the additional option
of specifying Eigenvalue as the ProblemPart in problems involving Schrodinger parts. It
should be noted that that index indexes response values, not entire responses. For example,
if the first Response of the Poisson part is a Field Value response (specified in the Poisson

Problem’s Response Functions sub-list), then Poisson[0] through Poisson[4] refer to
the five response values computed by the single Field Value response. The response values
generated by a master response correspond to the function evaluated at the response values
or fixed values given as function parameters. Some functions may compute multiple values, in
which case that master response computes multiple values (similar to a Field Value response).
In many cases, there is no need for any manipulation of the responses, and syntax is simplified
to just ProblemPart [index ]. Allowed function names fn are:
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Function Signature Description

dist(x1,x2) computes the distance between points in 1D. Returns a
single double-precision value.

dist(x1,y1,x2,y2) computes the distance between points in 2D. Returns a
single double-precision value.

dist(x1,y1,z1,x2,y2,z2) computes the distance between points in 3D. Returns a
single double-precision value.

scale(s1,s2) multiplies its two arguments together and returns the
result (a single double-precision value).

divide(s1,s2) divides s1/s2 and returns the result (a single double-
precision value).

nop(...) takes any number of arguments and echos them as re-
turn values. Thus, this function returns as many double-
precision values as it has arguments. Note that the sim-
plified syntax above just uses nop as the function name
implicitly.

DgDp(ProblemPart,pIndex,gIndex ) returns the derivative of the ProblemPart part’s gIndex -
th response value with respect to its pIndex -th parameter
as a single double-precision value. This response func-
tion is special in that its first argument is the un-indexed
name of a part of the problem. Note that gIndex is an
index of response values, so that responses that produce
multiple values (e.g. the Field Value response) need to
be considered accordingly.

The Discretization list

This list specifies how the QCAD problem’s domain is discretized into finite elements,
usually by referencing an Exodus-formal mesh file. Alternatively, a standard mesh (called
an STK mesh in QCAD) in 1D, 2D, or 3D can be generated without a mesh file by setting
the appropriate parameters within this list. The important parameters and their types for
the Discretization list are:
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Name Type Description

Method string what type of input mesh is being used. For
Exodus meshes, use Ioss. For “standard”
meshes in 1D, 2D, or 3D, use STK1D, STK2D,
or STK3D, respectively.

Exodus Input File Name string only applicable to the Ioss method. The
path and filename to the input Exodus-
format mesh file.

Exodus Output File Name string The path and filename to the output
Exodus-format mesh file. Note that this
parameter is available for all values of the
Method parameter.

Use Serial Mesh bool only applicable to the Ioss method. When
true, an exodus mesh will be read in from
the single .exo file named as the input file,
even when running on multiple processors.
When false and running on N > 1 proces-
sors, QCAD will try to read in files that
have the same names as the specified in-
put exodus file but end in “.N .x”, where x
runs from 0 to N − 1.

1D Elements int The number of elements along the first di-
mension of an STK mesh.

1D Scale double The scaling of elements along the first di-
mension of an STK mesh.

2D Elements int The number of elements along the second
dimension of an STK mesh.

2D Scale double The scaling of elements along the second
dimension of an STK mesh.

3D Elements int The number of elements along the third
dimension of an STK mesh.

3D Scale double The scaling of elements along the third di-
mension of an STK mesh.

The Piro list

The Piro sub-list contains under it all solver-related parameters organized into a compli-
cated tree based on the Trilinos (the library QCAD is based on) package names of the com-
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ponents being used. Currently this User Guide does not provide details about setting these
parameters, and the reader is referred to the Trilinos documentation (see trilinos.sandia.gov).
If the Piro Defaults Filename parameter under the Problem list is set, then QCAD takes
the Piro parameter list found in the given filename as an initial (default) set of Piro pa-
rameters, and any parameters listed in the input file’s Piro list override those in the default
list. If no values need to be overridden, the Piro list can be omitted altogether. This allows
the user to specify a typical or common set of solver parameters in a separate XML file
which can be re-used in many input XML files. Moreover, the QCAD installation comes
with a default piro params.xml file containing parameters appropriate to most QCAD
problems. This file as allows users to start with a good typical set of parameters and only
tweak them when necessary. Finally, comments in the default piro params file provide
brief documentation of what the different solver parameters do.

Material file specification

The material database file, or “materials XML” file, is an XML-formatted file that spec-
ifies material properties and associates the with mesh entities such as element blocks, node-
sets, and sidesets. The basic structure of a materials database file consists of four major
sections (each contained in a parent ParameterList XML block):

Materials defines material names and properties. Each material is specified by a named
sub-list of the parent Materials section list. Every material sub-list must have a param-
eter named Category with value Semiconductor, Insulator, or Metal. Based upon
this categorization, the material sub-list is expected to have other certain parameters
defined.
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In Semiconductor material lists, one must define:

Name Type Description

Permittivity double the relative permittivity of the material.

Conduction Band

Minimum

string the shapes of the conduction band minima.
Allowed value are Delta2 Valley (appli-
cable to Silicon), and Gamma Valley (ap-
plicable to GaAs).

Number of

conduction band

min

int number of conduction band minima. Equal
to 2 for MOS 2DEGs (not 6, since vertical
confinement splits valleys) and 1 for GaAs.

Number of valence

band max

int number of valence band maxima.

Longitudinal

Electron

Effective Mass

double in units of the electron rest mass.

Transverse

Electron

Effective Mass

double in units of the electron rest mass.

Light Hole

Effective Mass

double in units of the electron rest mass.

Heavy Hole

Effective Mass

double in units of the electron rest mass.

Electron DOS

Effective Mass

double in units of the electron rest mass. Includes
valley degree of freedom.

Hole DOS

Effective Mass

double in units of the electron rest mass. Includes
valley degree of freedom.

Electron Affinity double in units of electron volts.

Zero Temperature

Band Gap

double in units of electron volts.

Band Gap Alpha

Coefficient

double in units of eV/K.

Band Gap Beta

Coefficient

double in units of Kelvin.

Reference

Temperature

double in Kelvin. The reference temperature for
computing Nc and Nv.
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In Insulator material lists, one must define:

Name Type Description

Permittivity double the relative permittivity of the material.

Number of

conduction band

min

int number of conduction band minima. Usu-
ally set equal to 1. Used when the insula-
tor is included in the quantum region of a
mesh.

Longitudinal

Electron

Effective Mass

double in units of the electron rest mass. Used
when the insulator is included in the quan-
tum region of a mesh. Usually assumed
equal to 0.5 in insulators.

Transverse

Electron

Effective Mass

double in units of the electron rest mass. Used
when the insulator is included in the quan-
tum region of a mesh. Usually assumed
equal to 0.5 in insulators.

Band Gap double in units of electron volts.

Electron Affinity double in units of electron volts.

In Metal material lists, one must define:

Name Type Description

Permittivity double the relative permittivity of the material.

Work Function double in units of electron volts.
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ElementBlocks defines the properties of the different possible element blocks that appear
in mesh files. Information about each element block is given in a sub-list of the element
block’s name beneath the parent ElementBlocks list. Typical values for an element
block list are the following:

Name Type Description

material string the name of the material the element block
is made of. Must be the name of a material
list under the Materials parent list.

Dopant Type string the type of dopant, if any. Allowed values
are Donor and Acceptor. Only applicable
in semiconductors.

Doping Profile string the doping profile. Currently, only
Constant is allowed.

Doping Value double the concentration of dopants in cm−3 (al-
ways a positive number).

Doping Parameter Name string a user-defined name that may be listed as
a formal parameter of a Poisson problem
piece. If this parameter is set, then Doping
Value should not be, and vice versa.

Charge Value double the density of fixed charge (can be posi-
tive or negative) within the element block.
Only applicable in insulators.

Charge Parameter Name string a user-defined name that may be listed as
a formal parameter of a Poisson problem
piece. If this parameter is set, then Charge
Value should not be, and vice versa.

Charge Parameter Scaling double a scaling factor applied to the value of the
Charge Parameter Name formal parameter
to get the actual density of fixed charge
within the element block. Only applicable
when Charge Parameter Name is given.

quantum bool whether the element block is tagged as part
of the “quantum region” of a mesh.

Element block lists may also override any of the material parameters found in a Material
list. When QCAD looks for a property of an element block, such as the permittivity, it
looks first in the element block’s sub-list for a Permittivity parameter and then in the
Material list named by the element block’s “material” parameter. Indeed, there is no
need to specify a an element block’s material if all of the material properties needed
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are given in the element block’s list itself.

NodeSets defines the properties of the different possible nodesets that appear in mesh files.
Information about each nodeset is given in a sub-list of the nodeset’s name beneath
the parent NodeSets list. Typical values for a nodeset list are the following:

Name Type Description

material string the name of the material the nodeset’s
nodes belong to. If the nodes are along an
interface between materials, the material
that is logically setting the boundary con-
dition should be specified. For instance, if
the nodeset is used to set the voltage on an
aluminum electrode, and its nodes border
aluminum and silicon dioxide, aluminum
should be listed as the nodeset’s material.
The value must be the name of a material
list under the Materials parent list.

elementBlock string the name of the element block the node-
set’s nodes belong to. If the nodes are
along an interface between element blocks,
the element block that is logically setting
the boundary condition should be speci-
fied. For instance, if the nodeset is used to
set the voltage on an p+ ohmic contact,
and its nodes border the “pPlusOhmic”
and “substrate” element blocks, “pPlu-
sOhmic” should be listed as the nodeset’s
element block. Typically this parameter
is used instead of specifying the name of
a material directly, and is the only op-
tion when the relevant doping information
is contained in an element block specifica-
tion.

SideSets defines the properties of the different possible sidesets that appear in mesh files.
Information about each sideset is given in a sub-list of the sideset’s name beneath the
parent SideSets list. The same values used for a nodeset lists apply to sideset lists,
and we refer the reader to the NodeSets section above.

In addition to these lists, within the root ParameterList of the materials XML file one
must define the two string parameter Reference Material and Quantum Material as
the names of existing materials. The Reference Material parameter sets the reference poten-
tial to be used in solving Poisson problems. The reference material is typically taken to be
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the material of the bulk of the device, and should be the material that contains the quantum
electrons, if any. The Quantum Material parameter is used in Poisson Schrodinger modes,
and should be the material containing quantum electrons. Thus, ideally the Reference Ma-
terial and Quantum Material will be the same.

Mesh file specification

QCAD uses mesh files in the Exodus format. While any tool capable of generating
Exodus-format meshes should work, QCAD has been tested using meshes created by Sandia
National Labs CUBIT software package. The main requirements for creating a valid QCAD
mesh are that the mesh be completely divided into named element blocks (that is, no part
of the mesh is not contained in a named element block), and that nodesets and/or sidesets
can be defined at locations where boundary conditions exist.

Output Files

In addition to outputting progress and response information to the console, QCAD typi-
cally writes one or more Exodus-format mesh files upon completion which contain computed
field such as potentials and wave-functions. The names of the output mesh file is specified in
the Discretization section of the input XML file (see section 5). In order to view the output
Exodus files, the writers recommend using the Paraview application (www.paraview.org). In
addition to the output mesh file, some QCAD responses (namely, the Region Boundary and
Saddle Value responses) optionally write data to text files specified in their parameter lists.

QCAD’s “multi-shot” mode

Any of the QCAD simulation modes can be run either in “single-shot” mode, in which
the problem described in the input XML file is run once using the values given in the input
file (e.g. the boundary conditions), or in “multi-shot” mode, in which the problem described
in the input XML file is run multiple times for different sets of formal parameters (for a
discussion of formal parameters, see section 5). How many times the QCAD problem is
solved and for which formal parameters is determined by the Sandia-developed DAKOTA
package, and depends on what type of multi-shot simulation is desired. When QCAD is
run in multi-shot mode, one can think of the simulation as being composed of a DAKOTA
wrapper around a “QCAD core” which solves the QCAD problem given a set of formal
parameters. The DAKOTA wrapper has its own input file (distinct from the input XML
file), and calls the QCAD core (usually) multiple times as is follows an algorithm specified in
its input file. A few of the algorithms, or “methods” that the DAKOTA wrapper is capable
of performing are:

77



• Vector parameter study: the QCAD core is run for a series of parameters which
lie along a line segment in (multi-dimensional) parameter space. The initial and final
parameter points are given, as well as the number of intervals.

• Multi-dimensional parameter study: the QCAD core is run for a series of pa-
rameters which form a multi-dimensional grid in parameter space. The minimum and
maximum values for each independent parameter are given, as well as the number of
intervals along each parameter direction.

• Non-linear least squares parameter optimization: a number of target response
values are given, and the QCAD core is run with varying parameters in order to
minimize a sum-of-squares expression where each term is the difference between an
actual response value and its target. In addition to the target values, an initial point
in parameter space and weights for each sum-of-squares term are given.

DAKOTA is capable of many more methods that we do not list here, and we refer the
interested reader to the DAKOTA Users guide (available at dakota.sandia.gov).

How to run QCAD in “multi-shot” mode

Running QCAD in multi-shot mode is identical to running QCAD in single-shot mode
apart from a few exceptions:

1. DAKOTA input file: A DAKOTA input file must be created, which specifies what
method DAKOTA uses (e.g. whether a vector study or parameter optimization is
performed). See section 5 below for example DAKOTA input files.

2. QCAD input XML file: An Analysis block needs to be added to the QCAD input
XML file under the “Piro” sub-list that specifies the DAKOTA input file as well as an
output file. Specifically, this list has the form:

<ParameterList name="Analysis">

<Parameter type="string" name="Analysis Package" value="Dakota"/>

<ParameterList name="Dakota">

<Parameter type="string" name="Input File" value="dakota_input_file.txt"/>

<Parameter type="string" name="Output File" value="dakota_output_file.txt"/>

</ParameterList>

</ParameterList>

and should be placed inside the Piro list (a Piro list may need to be added if it doesn’t
already) of the the QCAD input XML file.

3. Executable is AlbanyAnalysis: Finally, the QCAD simulation must be run using
the AlbanyAnalysis executable, rather than the Albany executable. The executable’s
command line arguments are the same, so for example, the command for running a
multi-shot QCAD simulation could be /path/to/AlbanyAnalysis input.xml.
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DAKOTA input file examples

This section contains example DAKOTA input files for using vector study and parameter
optimization methods. In both cases, the user specified the number of parameters, and for
parameter optimizations the user specifies the number of responses. When required, these
numbers must match the number of formal parameters and responses of the QCAD core,
i.e., the numbers in the “master” lists directly under the Problem list (cf. section 5). For
more details regarding DAKOTA input files, see the DAKOTA Users Guide.

Vector study example The following listing is an example DAKOTA input file for a
vector study QCAD run.

method, # THESE ARE COMMENTS; don’t include in actual input file

vector_parameter_study # Name of the method to use

final_point = 1.0 2.0 # final parameter values

num_steps = 3 # number of intervals

variables,

continuous_design = 2 # number of parameters

cdv_descriptors ’p1’ ’p2’ # labels for these parameters (optional)

initial_point 0.0 1.0 # initial paramter values

interface, # the ’interface’ section is always the same

direct # for QCAD simulations. Don’t worry about

analysis_driver = ’Albany_Dakota’ # what these lines mean.

evaluation_servers = 1

responses,

num_objective_functions = 3 # the number of responses

response_descriptors = ’r1’ ’r2’ ’r3’ # labels for these responses

no_gradients # since this is a vector study, we don’t need

no_hessians # gradients or hessians

Non-linear least squares parameter optimization example The following listing is
an example DAKOTA input file for a parameter optimization QCAD run.

method,

nl2sol # non-linear least squares method

max_iterations = 100 # maximum iterations before giving up

convergence_tolerance = 1.0e-5 # convergence tolerance for sum-of-squares expression

variables,

continuous_design = 2 # number of parameters

cdv_lower_bounds 2.0 0.0 # lower bounds of parameters

cdv_upper_bounds 10.0 5.0 # upper bounds of parameters

initial_point 5.0 2.0 # initial parameter point

cdv_descriptors ’p1’ ’p2’ # labels for parameters
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interface, # the ’interface’ section is always

direct # the same for QCAD simulations

analysis_driver = ’Albany_Dakota’

evaluation_servers = 1

responses,

num_least_squares_terms = 2 # number of responses

response_descriptors = ’r1’ ’r2’ # labels for responses

least_squares_weights = 1.0 1.0 # weights for least squares terms

analytic_gradients # tells DAKOTA that QCAD supplies analytic derivatives

no_hessians # but does not supply hessian matrices

least_squares_data_file = ’dak.data’ freeform # dak.data is a data file containing

# the target response values, one per line.

Simple examples

2D Poisson problem

Below is a simple input file for running a semiclassical Poisson simulation of a device given
by the 2-dimensional mesh file “myMesh.exo” and placing the output in “output.exo”.

Listing 5.2. Example 2D Poisson QCAD input file.

<ParameterList>

<ParameterList name="Problem">

<Parameter name="Solution Method" type="string" value="QCAD Multi-Problem" />

<Parameter name="Name" type="string" value="Poisson 2D" />

<Parameter name="Length Unit In Meters" type="double" value="1e-6"/>

<Parameter name="Temperature" type="double" value="300"/>

<Parameter name="MaterialDB Filename" type="string" value="materials.xml"/>

<Parameter name="Piro Defaults Filename" type="string" value="default_piro_params.xml"/>

<ParameterList name="Parameters" />

<ParameterList name="Response Functions" />

<ParameterList name="Poisson Problem">

<ParameterList name="Dirichlet BCs">

<Parameter name="DBC on NS substrate for DOF Phi" type="double" value="0" />

<Parameter name="DBC on NS gate for DOF Phi" type="double" value="+1" />

</ParameterList>

</ParameterList>

</ParameterList>

<ParameterList name="Discretization">

<Parameter name="Method" type="string" value="Ioss" />

<Parameter name="Exodus Input File Name" type="string" value="myMesh.exo" />

<Parameter name="Exodus Output File Name" type="string" value="output.exo" />

</ParameterList>
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</ParameterList>

This input file specifies that QCAD should solve a two-dimensional (semiclassical) Poisson
problem. The length units of the mesh are microns (1e − 6 meters) and the energy unit is
the default of electron volts. The associated material database XML file is “materials.xml”.
There are no Parameters or Responses specified. Under the Poisson Problem list, boundary
conditions (e.g., applied voltages) are specified, in this case two Dirichlet-type boundary
conditions on the nodesets named “substrate” and “gate”, which are present in the input
mesh file, myMesh.exo. There is no Piro sub-list, which means that the solver parameters
are taken entirely from the set of default values in “default piro params.xml” (provided by
QCAD). In most cases, these default values are fine.

2D Schrodinger problem

Below is a simple input file for running a semiclassical Poisson simulation of a device given
by the 2-dimensional mesh file “myMesh.exo” and placing the output in “output.exo”.

Listing 5.3. Example 2D Schrodinger QCAD input file.

<ParameterList>

<ParameterList name="Problem">

<Parameter name="Solution Method" type="string" value="QCAD Multi-Problem" />

<Parameter name="Name" type="string" value="Schrodinger 2D" />

<Parameter name="Length Unit In Meters" type="double" value="1e-6"/>

<Parameter name="Energy Unit In Electron Volts" type="double" value="1e-3"/>

<Parameter name="MaterialDB Filename" type="string" value="materials.xml"/>

<Parameter name="Piro Defaults Filename" type="string" value="default_piro_params.xml"/>

<Parameter name="Number of Eigenvalues" type="int" value="5"/>

<Parameter name="Only solve schrodinger in quantum blocks" type="bool" value="false"/>

<ParameterList name="Parameters" />

<ParameterList name="Response Functions" />

<ParameterList name="Schrodinger Problem">

<ParameterList name="Potential">

<Parameter name="Type" type="string" value="String Formula" />

<Parameter name="Formula" type="string" value="10*((x-0.5)^2 + (y-1.0)^2)" />

<Parameter name="Scaling Factor" type="double" value="1.0" />

</ParameterList>

<ParameterList name="Dirichlet BCs">

<Parameter name="DBC on NS boundary for DOF psi" type="double" value="0" />

</ParameterList>

</ParameterList>
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</ParameterList>

<ParameterList name="Discretization">

<Parameter name="1D Elements" type="int" value="50"/>

<Parameter name="1D Scale" type="double" value="1.0"/>

<Parameter name="2D Elements" type="int" value="50"/>

<Parameter name="2D Scale" type="double" value="2.0"/>

<Parameter name="Method" type="string" value="STK2D"/>

<Parameter name="Exodus Output File Name" type="string" value="output.exo"/>

</ParameterList>

</ParameterList>

This example solves the time-independent Schrodinger equation on a 2D rectangular
mesh with a centered parabolic potential. The lowest five eigen-energies are found in units
of meV, and the mesh coordinates are in units of microns. Setting “Only solve schrodinger in
quantum blocks” to false means that QCAD pays no attention to the “isQuantum” parameter
of an element block in the materials XML file, and simply solves the Schrodinger equation on
the entire mesh. The 2-dimensional mesh is generated internally (there’s no Exodus input
file). It has 50 intervals between 0 and 1.0 in the x-dimension and 50 intervals between 0.0
and 2.0 in the y-dimension.
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Chapter 6

QCAD Developer Guide

Albany and Trilinos Primer

Trilinos Overview

Trilinos is the (large) library of tools and functionality underlying QCAD. It contains
everything from common data types (e.g. Vectors) to sophisticated solvers. Listed below
are some of the Trilinos components most used by QCAD.

• NOX Non-linear solver.

• Belos, AztecOO Linear solvers.

• Anasazi Eigensolver.

• Teuchos Utility objects, e.g. ParameterLists.

• Intrepid Automatic differentiation.

• LOCA Continuation analysis.

• Phalanx Fields, field manager, and evaluators.

• Piro Packages Trilinos solvers into ModelEvaluator interfaces.

• Stratimikos Gives a united interface to linear solvers.

• Epetra vector objects with MPI support.

Model Evaluators

The EpetraExt::ModelEvaluator Trilinos class is central to Albany and QCAD. Epe-
traExt::ModelEvaluator defines a very generic interface for “evaluating” some type of model.
Essentially, a model evaluator is a black box with a specific interface for passing data in and
getting data back out. The inputs are a number of Epetra vectors called “parameters”, and
the outputs are another set of Epetra vectors called “responses”.
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Albany Overview

Albany is the name of a finite-element code framework which sits on top of Trilinos
and makes it easier to rapidly develop finite-element applications. To the outside world,
an Albany application looks like a ModelEvaluator, which is essentially a black box with
a specific interface for passing data in and getting data back out. The Albany framework
supplies much of the innards required to make a black box that solves some set of equations
on a finite element mesh. By using the Albany framework, much of the structure of QCAD is
inherited from Albany, and it is thus a basic understanding of Albany is essential to QCAD
development.

Albany::SolverFactory

An Albany::SolverFactory object creates a solver object, which presents itself as a Mod-
elEvaluator. To initialize the solver object, the solver factory typically creates an Al-
bany::Application object and wrapper Albany::ModelEvaluator object and passes this model
evaluator to the solver object. When the solver object is asked to evaluate itself (via its
evalModel(...) function), it evaluates (usually repeatedly) the Albany::ModelEvaluator ob-
ject that was passed to it upon initialization.

Albany::Application

The Albany::Application class is central to an Albany application (i.e. a finite-element
based solver which uses the Albany framework). Although it is not a ModelEvaluator, it
contains most of the code required to implement a model evaluator. Albany::ModelEvaluator
(which is a ModelEvaluator) is a thin wrapper around Albany::Application.

Upon initialization, an Albany::Application instance creates via an Albany::ProblemFactory
object an instance of an Albany::AbstractProblem-derived class (which class is chosen based
on the “name” parameter in the Problem sub-list of the input XML file). This “problem
class” is created by the Albany user and essentially defines the set of equations to solve and
the set quantities to compute on the finite-element mesh. Specifically, the problem class
specifies which evaluators are created. After the problem creates its evaluators, the Al-
bany::Application instance hands them to multiple field managers, which perform the “fill”
operations that ultimately compute the residual, jacobian, etc. requested by calls to the
wrapper Albany::ModelEvaluator’s evalModel(...) function.

Note that he Albany::Application class is fully implemented and is not (typically) modi-
fied when creating a project (like QCAD) that utilizes the Albany framework. Instead, the
project adds new problem classes and evaluators which dictate what set of equations is being
solved.
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Problems

We refer to C++ classes derived from the abstract base class Albany::AbstractProblem
as “problem classes”, and such classes define what sort of problem is to be solved on the finite
element mesh setup by the Albany framework. The problem class specifies the number of
equations, the names of the “degrees of freedom”, and is responsible for constructing the eval-
uator objects used to ultimately evaluate the residual of the equations being solved (see the
constructEvaluators function, which is indirectly called by the Albany::AbstractProblem
function buildEvaluators). The problem class essentially orchestrates the creation of a set
of evaluators as one would build a tower out of blocks. Upon construction, some evaluators
take a set of parameters which can specify which quantities it should act upon, allowing the
problem designer to use a evaluator “block” in a flexible way.

Evaluators

The term “evaluator” refers to a C++ class (or instance of such a class) derived from
PHX::Evaluator. We will use the term “field” to refer to a named set of values on the finite-
element mesh, either at all nodal points or at all quadrature points. Fields can be either of
vector or scalar type. Evaluator objects evaluate, that is, compute, one or several fields given
(possibly) other fields as input. This is done by calling the evaluator’s evaluateFields(...)
function. An evaluator specifies which fields it depends upon (i.e. which need to be evaluated
before it’s evaluateFields(...) is called) and which fields it computes. One should think of
an evaluator as a logical part of a computation, and thus think of breaking up a large
calculation (e.g. of the residual of an equation) into logical units each corresponding to a
separate evaluator. This is what is done within a problem class when it constructs the set
of evaluators needed to compute the residuals of equations. A PHX::FieldManager object is
used to evaluate a list of evaluators, and determines an ordering (if one exists) for evaluating
the evaluators such that all dependencies are met. Instances of the Albany::Application
class contain field manager objects which are used to evaluate, for instance, the residual or
Jacobian of the equations at hand.

Responses

The term “response” refers generally to some kind of output within the Albany frame-
work, borrowing from the ModelEvaluator terminology although it’s precise meaning can de-
pend on its context (which can be confusing). An Albany::Application object creates a num-
ber of “response functions”, which are objects derived from Albany::AbstractResponseFunction.
Which response functions are created is specified in the input XML file. Each of the response
functions can be asked to evaluate itself, an operation with performs a separate field man-
ager fill, to produce some number of numerical (double-precision) values termed “response
values”. Each response function belong to a response vector (also specified in the input file),
and the contents of a response vector are given by concatenating all of the response values
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from the responses belonging to that vector. Each of these response vectors correspond
to a “response” in the ModelEvaluator sense (i.e. if a ModelEvaluator says it supports 2
responses, it means 2 response vectors).

Response functions can also generate output by writing field data to the Albany::StateManager
object contained in the Albany::Application object. There are some general purpose “stock”
response functions included in the Albany framework, and projects that require more cus-
tomized output are able to implement new responses for this purpose.

QCAD code structure

Overview

This section gives a description of the code added to (or on top of, if you like) the
Albany framework as part of the QCAD project. The two fundamental QCAD simulation
types, “Poisson” and “Schrodinger”, are implemented as problem classes in the standard way
within Albany. The composite simulation types, “Poisson-Schrodinger”, “Schrodinger-CI”,
and “Poisson-Schrodinger-CI” are implemented via QCAD::Solver objects. A QCAD::Solver
object is not a Problem object but a Model Evaluator, and thus the implementation of
the composite simulation types falls somewhat outside the usual method implementing a
new type of problem/simulation in Albany. Similarly, the integrated Poisson-Schrodinger
solver (which optionally runs at the end of a Poisson-Schrodinger type simulation) is im-
plemented with a Model Evaluator class, QCAD::CoupledPoissonSchrodinger, rather than a
Albany::AbstractProblem derived class.

Separate from the Problems and Model Evaluators used to setup the systems of physics
equations to be solved, the QCAD project adds a number of Response classes to the code
base. These responses were designed solely for QCAD, but may have broader application.
The Response classes are for the most part small chunks of straightforward code, with the
exception of the “SaddleValue” response.

In the sections that follow, we describe the two problem classes first, then the response
classes, and finally the model evaluator classes used in composite-type simulations.

Problems

Poisson Problem

The QCAD::PoissonProblem class sets up the solution of Poisson’s equation.

∇2φ = ρcl(φ) + ρquantum(Ψi, Ei) (6.1)
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The evaluation of the equation is broken into evaluators as follows:

• QCAD::PoissonResid evaluates the entire residual: LHS - RHS.

• QCAD::PoissonSource evaluates the source term (RHS) of the Poisson equation, and
also scales itself according to the units of φ on the LHS. Most of the heavy lifting is
done by this evaluator.

• QCAD::Permittivity evaluates the permittivity, ε.

Schrodinger Problem

The QCAD::SchrodingerProblem class sets up the solution of the Schrodinger equation.

HΨ = EΨ (6.2)

Because this is an eigenvalue equation, it can not be solved using the usual way of minimizing
a residual. Anasazi is an eigensolver in Trilinos, but instead of calling Anasazi directly,
QCAD makes use of LOCA to solve the eigenproblem. LOCA is a general package for
parameter continuation, that is, evaluating a model repeatedly as a single parameter changes.
After evaluating the model LOCA performs a stability analysis on time-dependent problems,
that is, it solves the eigenproblem dF (X)/dX~v = λdF (X)/dẊ~v. For example, for the heat
equation, where F (T ) = dT/dt − d2T/dx2, LOCA would solve a finite element version of
d2/dx2~v = λ~v. The sign of each eigenvalue determines whether the given eigenvector mode
is stable or unstable (in time). In the case of the Schrodinger Problem, we don’t need any
parameter continuation, and so LOCA is told to step at most a single time. The residual
that is computed is F (Psi) = dΨ/dt − H ∗ Ψ, and the initial guess of Ψ = 0 solves the
residual minimization immediately, leaving only the eigensolve portion, H ∗ ~v = λM ∗ ~v,
where M is the mass matrix. Thus, through the use of LOCA, the Schrodinger problem can
be cast in the usual compute-a-residual form, though this form is somewhat non-intuitive
(e.g. it includes time derivatives when the Schrodinger equation being solved does not).

The evaluation of the equation is broken into evaluators as follows:

• QCAD::SchrodingerResid evaluates the entire residual

• QCAD::SchrodignerPotential evaluates the potential term of the Schrodinger Hamil-
tonian, unless it is directly imported from an auxiliary vector, in which case other
evaluators import the potential.

Mesh Regions

The QCAD::MeshRegion class encapsulates a set of cells, or “region” , of a finite element
mesh. There are several ways to define the region, including the use of static coordinate
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limits, element blocks, or by thresholding a field. In the end, the MeshRegion object can be
queried as to whether a set of coordinates lies inside its region or not, and consolidates this
logic. Several responses utilize MeshRegion objects to determine which areas of the mesh to
act upon, and the PoissonSource evaluator uses MeshRegion objects to implement scaling
factors that only apply to portions of the mesh (“Mesh Region” parameters of the Poisson
Problem).

Responses

Here we give a synopsis of each of the Response classes added by QCAD, and any relevant
code comments.

Field Integral

The Field Integral response integrates a specified field or product of fields, possibly
complex, over a region of the mesh. The region is specified using a MeshRegion object,
and conjugation can be applied to complex fields. This response computes a single double-
precision quantity. If the integral is complex, a response parameter indicates whether the
real or imaginary part should be returned.

Field Average

The Field Average response is similar to the Field Integral response except it divides the
result by the volume of the region being averaged over. Computes a single double-precision
quantity. Useful, for example, for extracting the average of the conduction band within a
small region of the mesh centered about a point of interest.

Field Value

The Field Value response performs some operation, namely the minimization of maxi-
mization of a field on a MeshRegion. This response computes the value of the field being
minimized/maximized at the extrema, the value of the x, y, and z, coordinates of the ex-
trema, and also the value of a “return field” at the extrema, which need not be the field that
is minimized/maximized. Thus, this response computes five double-precision quantities that
are output in the order:

1. Extrema value of the “return field”

2. Extrema value of the field being operated on

3. x-coordinate of extrema
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4. y-coordinate of extrema

5. z-coordinate of extrema

This response allows one to compute, for instance, the value of the conduction band at the
maximum of the electron density within a region.

Center Of Mass

The Center Of Mass response computes the average coordinate within a MeshRegion
weighted by a specified field (i.e. the center of mass, with a specified field being the “mass”).
This response computes 4 double-precision values; the first three are the x, y, and z coordi-
nates of the center of mass, and the final value is a dummy value always equal to one (1.0).
This last value is needed to keep track of the volume divide by in order to compute the center
of mass coordinates. The Center of Mass response could be used, for example, to find the
approximate position of a quantum dot by taking the center of mass of the electron density.

Save Field

The Save Field response, when evaluated, saves a specified field into an Albany::StateManager
state. The memory for these states is owned by the Discretization object, and take values
on the the cell quadrature points. When saving a vector field, the Save Field response can
compute various operations such as taking the magnitude of the vector and pulling out a
single component. This response computes a single dummy double-precision value which is
always equal to zero.

Region Boundary

The Region Boundary response computes the smallest box containing all the cells of
a specified MeshRegion and outputs the minimum and maximum coordinate values to a
specified text file. This response computes a single dummy double-precision value which is
always equal to zero. ¡- Check this

Saddle Value

The Saddle Value response executes a nudged elastic band algorithm to find the saddle
point in a specified field given beginning and ending points or regions. It then, optionally,
performs a 1D Greens function transport solution using the value of the specified field along
the saddle path. There are many options that define the behavior of this very complicated
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response, and these are detailed in the QCAD User’s Guide. A central challenge in imple-
menting this response is that the saddle point finding algorithm needs access to the entire
region being considered, which cannot be assumed to lie on a single processor. Thus, there
must be MPI communication to update the position of the elastic band.

Coupled Solvers: QCAD::Solver

In addition to the individual Poisson and Schrodinger problems, there is a need to solve
problems in which one iterates between a Poisson solution and Schrodinger solution. The
problem classes (derived from Albany::AbstractProblem) are not intended to contain sub-
problems, or sub-solvers for that matter, and thus creating a problem class to handle simula-
tions which couple Poisson and Schrodinger problems is not appropriate. Instead, something
more akin to a numerical solver (like NOX), which presents itself as a ModelEvaluator is
needed. The QCAD::Solver class is a EpetraExt::ModelEvaluator-derived class which es-
sentially wraps around multiple sub-Albany::Application objects. When a QCAD::Solver
object is constructed is creates via Albany::SolverFactory ModelEvaluators for the solvers of
its sub-Albany::Applications. When a QCAD::Solver is evaluated (by calling evalModel(...))
it calls evalModel on these solver objects, which solve the corresponding sub-problems. The
sequence of creating a solver factory and then evaluating the solver is similar to the flow in
Main Solve.cpp.

Ideally communication between different Albany::Applications is performed through the
ModelEvaluator’s inputs (parameters) and outputs (responses). Parameters and responses
can be “scalar”, meaning a double-precision value that does not correspond to any partic-
ular mesh nodes, or “distributed”, meaning the response is akin to a field which consists
of a double-precision value at each mesh node. At the time of this writing, the Albany
framework has support for scalar parameters and responses, and distributed responses, but
not distributed parameters. As such, within QCAD::Solver inter-Application communica-
tion of distributed quantities is done in a more roundabout way (communication of scalars
is done using the Model Evaluator interface). Distributed quantities are saved in as states
(within Albany::StateManager). Hooks have been added into Albany::StateManager that
allow QCAD::Solver to import States from an external container into the StateManager’s
states prior to running the evalModel(...) corresponding to the associated solver and Al-
bany::Application. Since the states hold field data at mesh quadrature points, this method
of saving and importing states does not work for nodal quantities. Nodal quantities can
be imported using “Auxiliary vectors”, which are also managed by the StateManager but
are distinguished from states in that they hold nodal quantities and are not partitioned by
workset. Eigenvectors and eigenvalues are communicated using the Eigendata structure,
again managed by Albany::StateManager. It should be noted that the eigenvectors stored
in the Eigendata structure are in the overlapped distribution, that is, nodes along processor
boundaries are duplicated on each bordering processor so that for every cell owned by a
processor, all the nodes for that cell are also owned by the processor.

As part of running an algorithm that involves multiple coupled Albany::Application ob-
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jects, the QCAD::Solver class performs a substantial amount of input file processing which
consists of a lot of monkeying with Teuchos::ParameterList objects to take a single user-given
input file and create input parameter lists for each separate Albany::Application.

A final feature of QCAD::Solver is its ability to act as a switchboard for parameters and
responses. The user can specify how the parameters input to QCAD::Solver (as a ModelE-
valuator) get processed into parameters for the contained Albany::Application objects, and
likewise how the responses coming from the the contained Application objects get processed
into responses of the QCAD::Solver object. Thus, there is substantial logic to support this
parameter and response manipulation. The ability to perform this manipulation is valuable
even on its own, and as such the QCAD::Solver can be used to solve standalone Poisson
or Schrodinger simulations. For example, it may be desirable to tie two of the Dirichlet
boundary condition parameters of a Poisson problem into a single parameter so that Dakota
can vary the two simultaneously.

From a broad perspective, QCAD::Solver unifies QCAD, as all types of QCAD sim-
ulations can be run using a QCAD::Solver object to evaluate one or more contained Al-
bany::Application (or AlbanyCI) objects as needed. The QCAD::Solver input file format
can be used to run any QCAD simulation, and in a very flexible way with regard to what
parameters are exposed and responses are returned.

Integrated P-S Solver: QCAD::CoupledPoissonSchrodinger

In addition to the typical iteration between Poisson and Schrodinger steps to solve a
coupled Poisson-Schrodinger system, QCAD is able to solve the Poisson and Schrodinger
equations simultaneously in an “integrated mode”. In this mode, the Poisson equation
(including quantum source terms), N copies of the Schrodinger equation HΨi = EiΨi, and
N normalization equations

∫
|Ψi|2dV = 1 (for i = 1 . . . N) are taken together as a system of

equations and solved using standard residual minimization techniques with finite elements.
This method of solving a coupled Poisson-Schrodinger problem is not meant to replace the
iterative method in which the Schrodinger step uses an actual eigensolver, but to complement
it by taking over after the iterative method is near convergence. It is expected that the
integrated mode, if initialized with a near-converged solution, will arrive at a completely
converged solution more quickly than the iterative algorithm alone would have.

Integrated-mode Poisson-Schrodinger simulations are carried out by the
QCAD::CoupledPoissonSchrodinger class, which like QCAD::Solver is a ModelEvaluator. A
QCAD::CoupledPoissonSchrodinger object holds an Albany::Application object for a Pois-
son and a Schrodinger problem, but unlike QCAD::Solver it creates these Application ob-
jects directly (not via Albany::SolverFactory). When a QCAD::CoupledPoissonSchrodinger
object is evaluated, it computes the requested quantities (e.g. residual, jacobian, etc)
by dividing up the quantities into pieces corresponding to the Poisson, Schrodinger, and
normalization equations and uses the contained Application objects to fill the appropri-
ate pieces. Whereas the QCAD::Solver class more analogous to a Solver (like NOX), the
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QCAD::CoupledPoissonSchrodinger class is more like an Albany::ModelEvaluator that gets
called by a solver to compute certain quantities.

The Epetra Map (specifies how to divide an Epetra Vector among multiple processors)
for the QCAD::CoupledPoissonSchrodinger ModelEvaluator consists of N+1 concatenated
copies of the non-overlapped discretization map, i.e. how the mesh nodes are divided among
the processors, plus an additional N double-precision quantities that are divided as evenly
as possible among the processors. Creating this “combined map” and logically separating
a vector with the combined map into Poisson, Schrodinger, and normalization parts is a
central part of what QCAD::CoupledPoissonSchrodinger does. It then uses its member Al-
bany::Applications to fill the relevant parts of a vector (e.g. for the residual) or matrix (e.g.
for the jacobian), as well as hand-coded analytic derivatives for parts of the jacobian ma-
trix. Supporting classes QCAD::CoupledPSJacobian and QCAD::CoupledPSPreconditioner
encapsulate the code for building the Jacobian matrix and preconditioner, both as Epe-
tra Operators. Computing the Jacobian as an Epetra Operator as opposed to a Crs Matrix,
and computing all quantities piece-wise allows QCAD to take advantage of the repetitive
structure of the problem and save on computation time and space.

A final support class is QCAD::CoupledPSObserver, which takes care of outputting the
combined solution vector as a Poisson potential and N eigenvectors to exodus nicely.

Known limitations / possible extensions

• No magnetic field support. Since Albany does not support complex numbers,
QCAD contains no support for magnetic fields. This should be a straightforward
addition after the migration of Albany from Epetra to Tpetra (templated).
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Chapter 7

QCAD Performance Studies

Introduction

Since QCAD’s inception, the QCAD computational suite has been adopted by analysts
to help with the design of actual quantum devices to be constructed in a lab. The fact
that these analysts require timely and accurate predictions to aid their designs provides
motivation to study and improve the code’s performance, robustness and scalability, as well
as to validate the solutions computed within the code.

The present section summarizes the results of some numerical studies aimed to address
the following questions:

1. Do the solutions computed within the QCAD computational suite converge with suc-
cessive mesh (h-) refinement?

2. Are higher-order finite elements viable for this application? That is, do higher-order
elements deliver a more accurate solution at a lower computational cost than their
lower-order counterparts?

3. Which choice of preconditioner within the Trilinos Ifpack (ILU) [?] and ML (algebraic
multi-grid) [?] packages minimizes the total solve time of the linear systems (Ax = b)
that arise from the discretization of the governing equations?

4. How well does the QCAD code scale with respect to problem size?

The discussion herein is an extension of earlier analysis symmarized in [?], and may assist a
user of the QCAD computational suite in selecting the best settings for a given QCAD run.

Devices Considered

In the present document, attention is restricted to two device designs:

• The Ottawa Flat 270 device.
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• The Mosdot3D device device.

The former design is a modification of the original Ottawa device design [?]. It is a rather
complex geometry with intricate features (Figure 7.1(a)), and can hence be difficult to mesh.
This design is considered due to its simplicity: the relevant geometry is simply a three-
dimensional (3D) box (Figure 7.1(b)). Because of its simplicity, the Mosdot3D device can be
meshed with a variety of elements (tetrahedra, hexahedra), and quality meshes are guarateed.

(a) Ottawa Flat 270
Geometry

(b) Mosdot3D Geometry

Figure 7.1. Device Geometries Considered

For both problems, the governing partial differential equation (PDE) is the non-linear
Poisson equation, which describes the large population of atoms/molecules of which a device
is composed (for a discussion of the Poisson physics, the reader is referred to Chapter 3 of
this report). The Schrodinger and coupled Poisson-Schrodinger physics were not considered
in the performance studies undertaken during the time of the QCAD project.

Meshes Considered (and Meshing Methodology)

The QCAD devices of interest (listed above) are meshed using the CUBIT meshing tool
[?]. In general, four-node tetrahedral finite elements (referred to as TETRA4 elements) are
used (Figure 7.3(a)). Although CUBIT has the capability to create hexahedral meshes (as
the name “CUBIT” suggests), “real” device geometries, such as the Ottawa Flat 270 device,
are in general too complex to mesh using hexahedra. Simpler devices such as the Mosdot3D
device can be meshed using hexahedral elements.

For our convergence studies, finer meshes were generated through a successive mesh refine-
ment of an original “coarse” mesh, consisting of ≈ 1 million four-node tetrahedral elements
for the Ottawa Flat 270 device, and 3200 four-node tetrahedral elements for the Mosdot3D
device. This successive mesh refinement was achieved in CUBIT using the command:
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refine volume all numsplit N

where N is the level of successive mesh refinement (e.g., if N = 1 each element is refined
once in each direction, if N = 2 each element is refined twice in each direction, etc; Figure
7.2). From basic finite element theory, four-node tetrahedral finite elements are expected to
converge at a rate of two in the continuous L2 norm [?].

(a) Original “coarse”
mesh

(b) numsplit 1 (c) numsplit 2

Figure 7.2. Mesh refinement

In addition to performing mesh refinement, the CUBIT meshing tool can also be used
to generate higher-order finite element meshes, e.g. second-order ten-node tetrahedral finite
element meshes (Figure 7.3(b)). These elements can be created using the command

block all element type TETRA10

and have a theoretical convergence rate of three in the continuous L2 norm [?]. They are
referred to herein as TETRA10 elements.

As stated earlier, simpler devices such as the Mosdot3D device can be meshed using
hexahedral elements. Hence, in addition to meshing the Mosdot3D device geometry with
TETRA4 and TETRA10 elements, this device geometry is meshed also using first-order eight-
node hexahedral elements (referred to as HEX8 elements) and and second-order twenty-seven
node hexahedral elements (referred to as HEX27 elements). These hexahedral meshes are
successively refined in a similar manner to their tetrahedral counterparts. The convergence
rates of the HEX8 and HEX27 finite elements are two and three respectively in the continuous
L2 norm [?]. Although hexahedral elements have the same convergence rates as their tetra-
hedral counterparts, they are expected in general to produce a more accurate solution for a
fixed mesh resolution.

The consideration of higher-order elements, namely the TETRA10 and HEX27 elements, is
motivated by the recent paper [?], where a huge benefit was seen in using higher-order finite
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(a) TETRA4 (b) TETRA10

Figure 7.3. Illustration of first-order (TETRA4) and second-
order (TETRA10) tetrahedral finite elements

elements for Schrodinger-Poisson problems similar to those implemented within the QCAD
computational suite.

Architectures Considered

All runs were performed on the 160-TFlop Red Sky cluster at Sandia.

Preconditioners Considered

For the preconditioner performance studies, the relative performance of several different
preconditioners available through the Trilinos Ifpack and ML packages is evaluated. Twelve
basic preconditioner types are considered: nine Ifpack preconditioners and three ML precon-
ditioners (Table 7.1). The Ifpack preconditioners are effectively ILU preconditioners, and
differ in the overlap and level-of-fill options. The ML preconditioners are algebraic
multi-grid preconditioners based on three default preconditioner types available in the ML

package: SA (classical Smoothed Aggregation), DD (classical smoothed aggregation based on
two-level Domain Decomposition), and DD-ML (three-level algebraic Domain Decomposition).
For a detailed discussion of these Ifpack and ML options, the reader is referred to the Ifpack
and ML user guides, [?] and [?] respectively.
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Table 7.1. Summary of preconditioners evaluated

Preconditioner # Type Parameters

1

ifpack

overlap = 0, level-of-fill = 0

2 overlap = 1, level-of-fill = 0

3 overlap = 2, level-of-fill = 0

4 overlap = 0, level-of-fill = 1

5 overlap = 1, level-of-fill = 1

6 overlap = 2, level-of-fill = 1

7 overlap = 0, level-of-fill = 2

8 overlap = 1, level-of-fill = 2

9 overlap = 2, level-of-fill = 2

10

ML

default type = SA

11 default type = DD

12 default type = DD-ML

By perusing the ML users’ guide [?], the reader may observe that the ML preconditioner
package has a number of options and parameters that may be specified through an input
file (i.e., over-written from the default settings). In an effort to optimize the performance
of the ML preconditioners, it is worthwhile to explore several of these options. To this effect,
three variants of the ML preconditioners introduced in Table 7.1, referred to as A, B and
C, are considered. The parameter lists for these preconditioner options are summarized in
Table 7.2 for the specific case of an SA default preconditioner. The C variant preconditioner
employs the matrix repartitioning option available through the Trilinos Zoltan package.
Essentially, repartitioning uses information about the mesh coordinates to perform dynamic
load-balancing of coarse-level matrices in the multigrid preconditioner. With repartitioning,
message passing latency on the coarse level can be improved, and the well-known problem
of the coarsening rate dropping as the number of unknowns per processor becomes small
can be avoided. Providing the user with the option to select an ML preconditioner with
Zoltan repartitioning required some non-trivial new development within Albany. Functions
that identify and communicate the (x, y, z) coordinates of a problem’s underlying mesh have
been added to existing Albany classes.
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Table 7.2. Summary of ML settings evaluated (for example
of default values: SA)

ML settings A

<ParameterList name="ML">

<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">

<Parameter name="default values" type="string" value="SA"/>

<Parameter name="smoother: type" type="string" value="Chebyshev"/>

<Parameter name="smoother: pre or post" type="string" value="both"/>

<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>

</ParameterList]>

</ParameterList>

ML settings B

<ParameterList name="ML">

<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">

<Parameter name="default values" type="string" value="SA"/>

<Parameter name="smoother: type" type="string" value="Chebyshev"/>

<Parameter name="smoother: pre or post" type="string" value="both"/>

<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>

<Parameter name="coarse: max size" type="int" value="512"/>

<Parameter name="aggregation: type" type="string" value="Uncoupled-MIS"/>

</ParameterList>

</ParameterList>

ML settings C

<ParameterList name="ML">

<Parameter name="Base Method Defaults" type="string" value="none"/>

<ParameterList name="ML Settings">

<Parameter name="default values" type="string" value="SA"/>

<Parameter name="smoother: type" type="string" value="Chebyshev"/>

<Parameter name="smoother: pre or post" type="string" value="both"/>

<Parameter name="coarse: type" type="string" value="Amesos-KLU"/>

<Parameter name="coarse: max size" type="int" value="512"/>

<Parameter name="repartition: enable" type="int" value="1"/>

<Parameter name="repartition: partitioner" type="string" value="Zoltan"/>

<Parameter name="repartition: Zoltan dimensions" type="int" value="3"/>

<Parameter name="repartition: max min ratio" type="double" value="1.3"/>

<Parameter name="repartition: min per proc" type="int" value="1000"/>

</ParameterList>

</ParameterList>
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Mesh Convergence Study

We first perform a mesh convergence study on the two device designs considered: the
Ottawa Flat 270 device and the Mosdot3D device. Two metrics are used to study mesh
convergence: the mean value of the solution, and a field integral of the solution (the inte-
gral of the solution over the domain). The former quantity is effectively an L1(Ω) norm,
and the latter is effectively an L2(Ω) norm. From basic finite element theory, the expected
convergence rates in these norms for four-node tetrahedral and eight-node hexahedral finite
elements are one and two respectively; for ten-node tetrahedral and twenty-seven-node hex-
ahedral finite elements, they are two and three respectively [?]. Since an analytical form of
the exact solution to this problem is not available, relative errors are measured with respect
to a converged reference solution, computed numerically on a fine mesh. Given uref , the
computed solution on the reference mesh (in this case, the mean value of the solution or the
field integral), the relative error is computed as:

εref =
|uref − uN |
|uref |

, (7.1)

where uN is the solution computed on a mesh of N elements.

Ottawa Flat 270 Geometry

For the Ottawa Flat 270 convergence study, three four-node tetrahedral and two ten-node
tetrahedral meshes of the geometry are created. These mesh resolutions are summarized in
Table 7.3.

Table 7.3. Ottawa Flat 270 Meshes Considered

Refinement
# Noes # Elements # Procs # Nodes on

in Mesh in Mesh for Run Red Sky for Run

TETRA4

numsplit 0 160,669 935,424 16 2

numsplit 1 1,262,489 7,483,392 128 16

numsplit 2 10,031,281 59,867,136 1024 128

TETRA10
numsplit 0 1,262,489 935,424 128 32

numsplit 1 10,031,281 7,483,392 1024 256

The number of processors for each run was computed such that each processor had ap-
proximately 10,000 nodes. Note that the TETRA4 + numsplit N+1 mesh has the same number
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of nodes as the TETRA10 + numsplit N mesh, for N = 0, 1, .... For all runs, Num Blocks and
Maximum Iterations for the Linear solver (Belos) were both set to 500. Hexahedral meshes
were not considered for this example, as it is not possible to mesh the device of interest with
hexahedral elements.

First, we check the quality of the meshes considered, as mesh quality can affect solution
convergence. Figure 7.4 depicts the quality of the elements in the TETRA4 + numsplit 0

and TETRA4 + numsplit 1 meshes in the CUBIT “scale” metric. If this value is < 0.2,
the element is considered “bad” [?]. It can be seen from this figure that the meshes have a
number of elements of poor quality. The mesh quality does not seem to improve with mesh
refinement or mesh smoothing.

(a) TETRA4 + numsplit 0 (b) TETRA4 + numsplit 1

Figure 7.4. Mesh quality (in “scale” metric) for Ottawa
Flat 270 geometry

Despite the presence of “bad” elements in the meshes considered, we undertake a mesh
convergence study for this problem. Table 7.4 gives the values of two quantities of interest
(responses) used to evaluated mesh convergence: the field integral of the left dot electrons
and the field integral of the right dot electrons. The TETRA10 + numsplit 1 result is missing
from the table, as the nonlinear solver failed to converge for this mesh. Once the quantities
of interest (the field integrals) are computed for each mesh, the relative error in each solution
is computed using the formula (7.1), with the TETRA4 + numsplit 2 solution taken to be the
reference solution uref . The relative error as a function of the mesh size is plotted on a log-log
scale in Figure 7.5 for the TETRA4 finite elements. The convergence rates are reasonably close
to the theoretical convergence rate of two for the finite elements considered. The convergence
rates for the TETRA10 finite elements is not reported, as there are not enough data points for
the TETRA10 meshes to compute these rates.
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Figure 7.5. Convergence plot for TETRA4 finite elements
for Ottawa Flat 270 geometry

Table 7.4. Mesh Convergence of Field Integral Quantities
for Ottawa Flat 270 Geometry

Refinement
Field Integral Field Integral

(Left Dot Electrons) (Right Dot Electrons)

TETRA4

numsplit 0 19.0776943 17.30564924

numsplit 1 19.9838443 17.5311494

numsplit 2 19.75007 17.488771

TETRA10
numsplit 0 20.205781 18.1760936

numsplit 1 − −

Mosdot3D Geometry

We now undertake a mes mesh convergence study similar to the one performed above for
a simpler geometry, the Mosdot3D geometry. The reason for this study is two-fold. Since the
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geometry is a simple box, it can be meshed with tetrahedral as well as hexahedral elements
(unlike the Ottawa Flat 270 geometry, which is too complex to mesh with hexahedral ele-
ments). Moreover, since the geometry is simple, the mesh quality is expected to be perfect.
Hence, any effects of bad mesh quality on convergence are not present in this problem.

The meshes considered for the Mosdot3D convergence study are summarized in Table
7.5.

Table 7.5. Mosdot3D Meshes Considered

Refinement
# Nodes # Elements # Procs # Nodes on

in Mesh in Mesh for Run Red Sky for Run

TETRA4

numsplit 0 3969 19,200 1 1

numsplit 1 28,577 153,600 8 1

numsplit 2 216,513 1,228,800 64 8

numsplit 3 1,684,865 9,830,400 512 64

HEX8

numsplit 0 3969 3200 1 1

numsplit 1 28,577 25,600 8 1

numsplit 2 216,513 204,800 64 8

numsplit 3 1,684,865 1,638,400 512 64

TETRA10

numsplit 0 28,577 19,200 8 1

numsplit 1 216,513 153,600 64 8

numsplit 2 1,684,865 1,228,800 512 64

numsplit 3 13,292,289 9,830,400 4096 512

HEX27

numsplit 0 28,577 25,600 8 1

numsplit 1 216,513 25,600 64 8

numsplit 2 1,684,865 204,800 512 64

numsplit 3 13,292,289 1,638,400 4096 512

The number of processors for each run was computed such that each processor had
approximately 3200 nodes. Note that the TETRA4 + numsplit N meshes have the same
number of nodes as the TETRA10 + numsplit N+1 meshes, the HEX8 + numsplit N meshes,
and the HEX27 + numsplit N+1 meshes, for N = 0, 1, .... For all runs, Num Blocks and
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Maximum Iterations for the Linear solver (Belos) were both set to 200.

For the Mosdot3D problem, convergence in two metrics is studied: the solution average
and the field integral of the electron density in the quantum region. Table 7.6 gives the
values of these quantities for each of the meshes considered. Unlike for the Ottawa Flat 270
problem, all runs (on all meshes) converged. Once the quantities of interest (the solution
average and field integral) are computed for each mesh, the relative error in each solution
is computed using the formula (7.1), with the HEX 8 + numsplit 3 solution taken to be
the reference solution uref . The relative error as a function of the mesh size is plotted on a
log-log scale in Figure 7.6 for all finite elements considered. In this convergence rate plot,
the mesh size is approximated as (number of elements)−1/3.

Table 7.6. Mesh Convergence of Solution Average and
Field Integral Quantities for Mosdot3D Geometry

Refinement
Solution Field Integral

Average (Electron Density in Quantum Region)

TETRA4

numsplit 0 0.28286192 −5411.6888096

numsplit 1 0.24704725 −6019.4785176

numsplit 2 0.226695582 −6226.973865

numsplit 3 0.215715908 −6307.89499814

HEX8

numsplit 0 0.290733103 −5997.995616

numsplit 1 0.250036118 −6225.725794

numsplit 2 0.227867438 −6306.879351

numsplit 3 0.2161816919 −6339.327812

TETRA10

numsplit 0 0.2500988 −6182.004445

numsplit 1 0.2281012094 −6293.594787

numsplit 2 0.2162818224 −6337.624098

numsplit 3 0.210178835316 −6353.88902243

HEX27

numsplit 0 0.2518402396 −6331.245184

numsplit 1 0.228988126 −6355.0088013

numsplit 2 0.2166345454 −6362.7661636

numsplit 3 0.2098942876 −6364.0844277
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(b) Field Integral

Figure 7.6. Convergence plot for various finite elements
for Mosdot3D geometry

The reader’s attention is drawn to the field integral convergence plot (Figure 7.6(b)), as
the field integral is an integrated quantity and therefore close to an L2 norm, the common
norm in which convergence is studied. The reader may observe by studying Figure 7.6(b)
that the HEX elements produce a more accurate solution than their TETRA counterparts of
comprable convergence order. The TETRA4 and TETRA10 elements are converging at a slower
rate than their theoretical rates (two and three in the L2 norm, respectively). The HEX8

element is also not achieving its theoretical convergence rate of two. All three elements, the
TETRA4, TETRA10 and HEX8 are converging at similar rates. The HEX27 element comes closest
to its theoretical convergence rate of three.

Preconditioner Performance Studies

We now perform some preconditioner preformance studies on the Ottawa Flat 270 and
Mosdot3D problems. The results of these studies are aimed to aid the QCAD user in selecting
the best preconditioner to use for a given QCAD run.

Ottawa Flat 270 Geometry

Figures 7.7–7.9 depict the Belos total linear solve times and total preconditioner creation
times for the nine Ifpack preconditioners and the three ML preconditioners summarized in
Table 7.1.
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numsplit 0, total lin solve
numsplit 0, total lin solve − prec creation
numsplit 1, total lin solve
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numsplit 2, total lin solve
numsplit 2, total lin solve − prec creation

Figure 7.7. Ifpack vs. ML preconditioners with ML settings
A

The ML preconditioners in Figure 7.7 have the ML settings A; the ML preconditioners
in Figure 7.8 have the ML settings B; the ML preconditioners in Figure 7.9 have the ML

settings C. With settings that are effectively the default ML settings (settings A), the ML

preconditioners are outperformed by the Ifpack preconditioners by a large margin on the
finest mesh considered (Table 7.7). The performance of the ML preconditioners improves
when the aggregation: type is changed to Uncoupled-MIS (settings B); however the ML

preconditioners still do not outperform the Ifpack preconditioners on the finest mesh (Figure
7.8). Inspection of the verbose output from the ML package suggested that the situation may
be improved by introducing Zoltan repartitioning based on nodal coordinate, and the Albany
code base was modified to allow this option, as discussed above. The reader may observe an
extraordinary speedup in the total linear solve and preconditioner creation times for the ML

preconditioners with repartitioning (settings C) (Figure 7.9).
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numsplit 0, total lin solve
numsplit 0, total lin solve − prec creation
numsplit 1, total lin solve
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Figure 7.8. Ifpack vs. ML preconditioners with ML settings
B

With settings C, the ML preconditioners achieve a factor speedup of more than two relative
to the Ifpack preconditioners for all mesh resolutions considered. More specifically, for a
problem discretized by ≈ 10 million tetrahedral elements, run on 128 processors on the Red
Sky cluster:

• The linear solves were 2.4–5.45 times faster with an ML preconditioner plus Zoltan

repartitioning (settings C) compared to an Ifpack preconditioner.

• The linear solves with an ML preconditioner plus Zoltan repartitioning (settings C)
were ≈ 2 times faster than with a “black box” ML preconditioner (settings A).

For a problem discretized by ≈ 60 million tetrahedral elements, run on 1024 processors on
the Red Sky cluster:

• The linear solves were 2.4–2.79 times faster with an ML preconditioner plus Zoltan

repartitioning (settings C) compared to an Ifpack preconditioner.

• The linear solves with an ML preconditioner plus Zoltan repartitioning (settings C)
were 9.5 times faster than with a ”black box” ML preconditioner (settings A)

The ML preconditioner option with Zoltan repartitioning (settings C) is therefore recom-
mended for all problem sizes.
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Figure 7.9. Ifpack vs. ML preconditioners with ML settings
C

Mosdot3D Geometry

A preconditioner performance study is now performed on the Mosdot3D geometry. The
objective of this study is to evaluate numerically the performance of various preconditioners
when higher-order finite elements (TETRA10 and HEX8 elements) are employed. Only one
mesh resolution is considered, the mesh resolution for which the discretization has 28,577
nodes. For brevity, the Ifpack preconditioners #1-4 and #7 are omitted from this study.
The ML preconditioners #11-12 are also omitted from this study, as the performance of these
preconditioners was similar to the performance of the ML preconditioner #10. Similarly, ML
settings A and B are omitted from the study.

Tables 7.7–7.10 show the total linear solve, the total preconditioner creation and total
Albany times for each of the runs, in addition to the number of unconverged linear solves
and the number of nonlinear iterations required.
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Table 7.7. Mosdot3D preconditioner performance study:
TETRA4 elements

Preconditioner # 5 6 8 9 10

Total Linear Solve Time 8.280 2.120 2.894 16.73 1.999

Total Preconditioner Creation Time 7.53 0.9731 2.247 7.36 1.447

# Unconverged Linear Solves 0 0 0 0 0

Total Albany Time 23.35 21.44 16.89 55.61 11.0

# Nonlinear Iterations 7 7 7 7 7

Table 7.8. Mosdot3D preconditioner performance study:
HEX8 elements

Preconditioner # 5 6 8 9 10

Total Linear Solve Time 1.699 3.320 1.956 3.619 0.7974

Total Preconditioner Creation Time 1.035 2.574 1.38 3.026 0.3861

# Unconverged Linear Solves 0 0 0 0 0

Total Albany Time 75.383 2.868 5.732 7.229 4.366

# Nonlinear Iterations 7 7 7 7 7

Table 7.9. Mosdot3D preconditioner performance study:
TETRA10 elements

Preconditioner # 5 6 8 9 10

Total Linear Solve Time 12.21 50.23 12.88 61.52 2.458

Total Preconditioner Creation Time 8.672 46.99 9.783 57.13 1.414

# Unconverged Linear Solves 0 0 0 0 0

Total Albany Time 18.93 55.16 30.25 66.66 8.354

# Nonlinear Iterations 7 7 7 7 7
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Table 7.10. Mosdot3D preconditioner performance study:
HEX27 elements

Preconditioner # 5 6 8 9 10

Total Linear Solve Time 30.31 35.23 35.79 208.2 22.20

Total Preconditioner Creation Time 21.99 23.89 27.39 194.4 0.715

# Unconverged Linear Solves 1 1 1 1 1

Total Albany Time 33.38 43.9 40.0 211.0 27.57

# Nonlinear Iterations 8 8 8 8 8

The ML preconditioner gives the shortest total Albany time for all elements considered.
It is curious that this is the case for the higher-order TETRA10 and HEX28 elements, since the
ML preconditioners have not been designed to work with these elements out of the box.

Scalability Studies

Finally, we provide some weak scalability results for the Ottawa Flat 270 problem, the
larger of the problems considered here (and hence the more amenable to scalability studies).
Figure 7.10 shows a weak scalability plot for the TETRA4 elements with an ML preconditioner
(Preconditioner #10 with settings C). The three data points included are the 16, 128 and
1024 processor Red Sky runs (see Table 7.3). For perfect weak scalability, all curves in the
figure should be flat (i.e., have slope equal to zero). The figure suggests good weak scalability
in the finite element assembly, but not the linear solve.
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ML preconditioner (16, 128, 1024 processors on Red Sky)
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