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Abstract

This report summarizes fiscal year (FY) 2017 progress towards developing and implementing
within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs)
for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the
design and qualification of nuclear weapons components. The proposed projection-based model
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order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least-
Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for
these simulations, thereby enabling advanced analyses such as uncertainty quantification and de-
sign optimization. Following a description of the project objectives and FY17 targets, we overview
briefly the POD/LSPG approach to model reduction implemented within SPARC. We then study the
viability of these ROMs for long-time predictive simulations in the context of a two-dimensional
viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model
reduction methodology that led to ROMs with improved predictive capabilities. Also described
in this report are some FY17 efforts pursued in parallel to the primary objective of determining
whether the ROMs in SPARC are viable for the targeted application. These include the implemen-
tation and verification of some higher-order finite volume discretization methods within SPARC
(towards using the code to study the viability of ROMs on three-dimensional cavity problems) and
a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of
projection-based reduced order models. We conclude the report by summarizing the key takeaways
from our FY17 findings, and providing some perspectives for future work.
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Chapter 1

Introduction

The aim of the project described in this report is to develop and implement reduced order mod-
els (ROMs) of the aircraft weapons bay (also known as “captive carriage”) environment (Figure
1.1), a compressible fluid flow application of immediate interest to Sandia National Laboratories
for the design and qualification of nuclear weapons (NW) systems. Existing in-house Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS) Computational Fluid Dynamics (CFD)
codes, e.g., the Sigma CFD [1] and SPARC [3] flow solvers, are able to simulate the captive carriage
environment to a sufficient accuracy, but require very fine meshes and long run-times. The fact that
a single relevant captive-carry simulation can take on the order of weeks makes advanced analy-
ses requiring numerous simulations, e.g., uncertainty quantification (UQ) and component design
optimization, intractable. Projection-based reduced order models, models constructed from one or
more high-fidelity simulations that retain the essential physics and dynamics of their correspond-
ing full order models (FOMs) but have a much smaller computational cost, are a promising tool for
alleviating this difficulty. Projection-based model order reduction (MOR) for nonlinear problems
has three main steps: (1) calculation of a low-dimensional subspace through a data compression
of a set of snapshots collected from a high-fidelity simulation, (2) projection of the governing par-
tial differential equations (PDEs) or full order model (FOM) onto this low-dimensional subspace,
and (3) hyper-reduction, an approach for efficiently computing the projection of nonlinear terms in
the governing PDEs or FOM by effectively evaluating these terms at a small number of carefully-
selected points. The result of this procedure is a small set of time-dependent ordinary differential
equations (ODEs) for the ROM modal amplitudes that approximately describe the flow dynamics
of a FOM for some limited set of flow conditions.

(a) Airplane weapons bay (b) Compressible cavity with object

Figure 1.1. Compressible captive-carry problem
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This report summarizes fiscal year (FY) 2017 progress towards an ongoing research effort to de-
velop and implement within the SPARC in-house flow solver stable, accurate, robust and efficient
projection-based ROMs for compressible captive-carriage problems. These ROMs are based on
the Proper Orthogonal Decomposition (POD)/Least-Squares Petrov-Galerkin (LSPG) approach,
a minimal-residual-based method that creates the ROM from a fully-discrete high-fidelity CFD
discretization. When combined with a hyper-reduction approach known as gappy POD [14], this
method is equivalent to the Gauss-Newton with Approximated Tensors (GNAT) method of Carl-
berg et al. [8]. This methodology and its implementation within SPARC is described in detail in
this project’s FY16 report, [45].

During FY16, the viability of Galerkin and minimal-residual projection-based model reduction
algorithms implemented within the SPARC CFD research code was investigated on some laminar
cavity flow problems at moderate Reynolds number. It was demonstrated that, while the SPARC
ROMs were usually capable of reproducing a training data set, apparent instabilities precluded
long-time predictive simulations using the ROMs. Much of the FY17 effort, summarized in the
present document, has focused on resolving these computational difficulties. A secondary FY17
effort involved the creation of a code verification methodology and workflow, towards enabling
the implementation and verification of higher-order discretization methods (e.g., the Rai scheme
[35]) in SPARC. Although seemingly irrelevant to SPARC MOR development, higher-order FOM
discretizations in SPARC are necessary for three-dimensional (3D) cavity ROM simulations using
this code base at a later point in time.

Toward this effect, the remainder of this report is organized as follows. In Chapter 2, the POD/LSPG
approach to nonlinear model reduction is reviewed succinctly to keep this document self-contained.
In Chapter 3, we study the viability of the POD/LSPG ROMs in SPARC for long-time predictive
simulations in the context of a two-dimensional (2D) viscous laminar cavity problem. After de-
scribing the problem formulation and our evaluation criteria, which center around the ROMs’
ability to capture flow statistics (e.g., pressure power spectral densities, or PSDs) for long-time
simulations, we discuss some FY17 enhancements to our ROM implementation and methodology
that led to ROMs with better predictive capabilities. These improvements include the addition of
a capability to run SPARC ROMs non-dimensionally to improve these models’ numerical perfor-
mance, as well as the discovery of preconditioners that have the effect of modifying the norm in
which the residual is minimized and yield ROMs with improved accuracy for long-time predictive
runs. Chapter 4 details the implementation and verification of some higher-order finite volume dis-
cretization methods within SPARC. Towards defining future directions, Chapter 5 highlights some
key aspects of a parallel research effort undertaken during FY17 involving the development of a
structure-preserving constrained POD/LSPG model reduction formulation. Finally, we summarize
and discuss the key takeaways from our FY17 findings and give some perspectives for future work
in Chapter 6.
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Chapter 2

Overview of Proper Orthogonal
Decomposition (POD)/Least-Squares
Petrov-Galerkin (LSPG) approach to
nonlinear model reduction

To keep this report self-contained, we succinctly overview the POD/Least-Squares Petrov-Galerkin
approach to model reduction in this chapter. This approach was implemented within the SPARC
flow solver during FY15-FY16.

Consider the following system of nonlinear equations

rrr(www) = 000 (2.1)

where www ∈ RN is the state vector and rrr : RN → RN is the nonlinear residual operator. In this case,
(2.1) are the compressible Navier-Stokes equations, discretized in space and time, so that (2.1) is
the (discrete) full order model (FOM) for which we will build a ROM. Assuming (2.1) is solved
using a (globalized) Newton’s method, the sequence of solutions generated are

JJJ(k)δwww(k) =−rrr(k), k = 1, . . . ,K (2.2)

www(k) = www(k−1)+αkδwww(k), (2.3)

where JJJ(k) := ∂ rrr
∂www

(
www(k)

)
∈ RN×N , rrr(k) := rrr

(
www(k)

)
∈ RN , www(0) is an initial guess for the solution,

and αk ∈ R is the step length (often set to one).

2.1 Proper Orthogonal Decomposition (POD)

The first step in the LSPG/POD approach to model reduction is the calculation of a basis of reduced
dimension M << N (where N denotes the number of degrees of freedom in the full order model
(2.1)) using the POD. The POD is a mathematical procedure that, given an ensemble of data and an
inner product, denoted generically by (·, ·), constructs a basis for the ensemble that is optimal in the
sense that it describes more energy (on average) of the ensemble in the chosen inner product than
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any other linear basis of the same dimension M. The ensemble {xk : k = 1, . . . ,K} is typically a set
of K instantaneous snapshots of a numerical solution field, collected for K values of a parameter
of interest, or at K different times. Mathematically, POD seeks an M-dimensional (M << K)
subspace spanned by the set {φφφ i} such that the projection of the difference between the ensemble
xk and its projection onto the reduced subspace is minimized on average. It is a well-known result
[4, 21, 26, 36] that the solution to the POD optimization problem reduces to the eigenvalue problem

Rφφφ = λφφφ , (2.4)

where R is a self-adjoint and positive semi-definite operator with its (i, j) entry given by Ri j =
1
K

(
xi,x j) for 1 ≤ i, j ≤ K. It can be shown [21, 29] that the set of M eigenfunctions, or POD

modes, {φφφ i : i = 1, . . . ,M} corresponding to the M largest eigenvalues of R is precisely the desired
basis. This is the so-called “method of snapshots” for computing a POD basis [40].

Once a reduced basis is obtained, we approximate the solution to (2.1) by

w̃ww = w̄ww+ΦΦΦMŵww = w̄ww+
M

∑
i=1

φφφ iŵi (2.5)

with ŵww := [ŵ1 · · · ŵM]T ∈RM denoting the generalized coordinates, and w̄ww ∈RN denoting a refer-
ence solution, often taken to be the initial condition in the case of an unsteady simulation.

We then substitute the approximation (2.5) into (2.1). This yields

rrr(w̄ww+ΦΦΦMŵww) = 000, (2.6)

which is a system of N equations in M unknowns ŵww. As this is an over-determined system, it may
not have a solution.

2.2 Least-Squares Petrov-Galerkin (LSPG) projection

In the LSPG approach to model reduction, solving the ROM for (2.1) amounts to solving the
following least-squares optimization problem

ŵwwPG = arg min
yyy∈RM

‖rrr(w̄ww+ΦΦΦMyyy)‖2
2. (2.7)

Here, the approximate solution is w̃wwPG := w̄ww+ΦΦΦMŵwwPG. The name “LSPG” ROM comes from the
observation that solving (2.7) amounts to solving a nonlinear least-squares problem. The two most
popular approaches for this are the Gauss–Newton approach and the Levenberg–Marquardt (trust-
region) method. Following the work of Carlberg et al. [8], we adopt the Gauss–Newton approach1.

1The LSPG approach is the basis for the Gauss–Newton with Approximated Tensors (GNAT) method of Carlberg
et al. [8].
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This approach implies solving a sequence of linear least-squares problems of the form

δ ŵww(k)
PG = arg min

yyy∈RM
‖JJJ(k)ΦΦΦMyyy+ rrr(k)‖2

2, k = 1, . . . ,KPG (2.8)

ŵww(k)
PG = ŵww(k−1)

PG +αkδ ŵww(k)
PG (2.9)

w̃ww(k)
PG = w̄ww+ΦΦΦMŵww(k−1)

PG , (2.10)

where KPG is the number of Gauss-Newton iterations. It can be shown that the approximation upon
convergence is w̃wwPG = w̃ww(KPG)

PG and ŵwwPG = ŵww(K)
PG .2 Note that the normal-equations form of (2.8) is

ΦΦΦ
T
MJJJ(k)T JJJ(k)ΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
MJJJ(k)T rrr(k), k = 1, . . . ,KPG, (2.11)

which can be interpreted as a Petrov–Galerkin process of the Newton iteration with trial basis (in
matrix form) ΦΦΦM and test basis JJJ(k)ΦΦΦM.

The simplest implementation of the Gauss–Newton method for solving (2.7). For details of this
approach and its implementation in SPARC, the reader is referred to Chapters 2 and 3 of [45],
respectively.

2.3 Hyper-reduction

The LSPG projection approach described in Section 2.2 is efficient for nonlinear problems. This is
because the solution of the ROM system requires algebraic operations that scale with the dimension
of the original full-order model N. This problem can be circumvented through the use of hyper-
reduction. A number of hyper-reduction approaches have been proposed, including the discrete
empirical interpolation method (DEIM) [11], “best points” interpolation [31, 32], collocation [27]
and gappy POD [14]. Implementation of the latter two approaches has been started within SPARC,
but is not complete at the present time, and hence a detailed discussion of this methodology goes
beyond the scope of this report. The basic idea behind these approaches is to compute the residual
at some small number of points q with q << N, encapsulated in a “sampling matrix” ZZZ. This set of
q points is typically referred to as the “sample mesh”. The “sample mesh” is computed by solving
an optimization problem offline; see Section 2.3 of [45] and [8] for details. The LSPG projection
approach combined with gappy POD hyper-reduction is equivalent to the GNAT method [8].

2.4 Implementation in SPARC

The POD/LSPG method described above has been implemented in the SPARC compressible flow
solver. For details of this implementation, the reader is referred to Chapter 3 of [45].

2In the event of an unsteady simulation, the initial guess for the generalized coordinates is taken to be the general-
ized coordinates at the previous time step.
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Chapter 3

Investigation of ROM viability on 2D
viscous laminar cavity

3.1 2D viscous laminar cavity problem description

The LSPG/POD ROMs implemented in SPARC are evaluated on a test case involving a 2D viscous
laminar flow around an open cavity geometry, described in this subsection.

The computational domain for this test case is composed of two rectangular regions: a cavity re-
gion, Ωcavity = [0.0m,0.0917136m]× [0.0m,−0.0458568m], and an outer flow region, Ω f low =
[−4.58568m,4.58568m]× [0.0m,6.87852m]. This 2D domain is made into a 3D domain for
SPARC by making the mesh 1 cell thick and imposing symmetry (inviscid, slip wall) boundary
conditions on the faces parallel to the plane. The nominal mesh used for these simulations con-
tains 104,500 hexahedral cells and is shown in Figure 3.1. A formal mesh convergence study
for this geometry is planned but has not been completed yet1. The large extent of the outer flow
domain is intended to minimize the effects of any pressure waves reflecting off the boundaries.
Reflections off the boundaries were seen to have a significant impact on the accuracy and stability
of ROMs in previous work [24]. Previous runs using other codes, such as Sigma CFD, utilized a
sponge region to eliminate reflected pressure waves. As SPARC does not currently have a sponge
boundary condition implemented, the outer domain was made very large and the cells stretched in
the far field in order to minimize any pressure wave reflections.

The flow conditions for this test case are chosen to produce approximately Mach 0.6 and a Reynolds
number of approximately 3000. The exact parameters specified in the SPARC input file are given
in Table 3.1. The nominal full-order model runs used BDF2 time stepping with a fixed time step
corresponding to a CFL number of under 50.0. The time step was chosen in order to limit the
number of snapshots that are produced during the ROM training interval.

Viscous, no-slip boundary conditions are imposed on the left, right, and bottom surfaces of the
cavity domain, Ωcavity. Far-field boundary conditions are imposed on the left, right, and top sur-
faces of the outer flow domain, Ω f low. A combination of inviscid slip wall and viscous no-slip wall
boundary conditions are imposed on the lower boundary of Ω f low. The regions immediately before
and after the cavity have no-slip walls, but the regions closer to the inflow and outflow surfaces

1See Chapter 4 for some SPARC mesh convergence studies in the context of a simplified box geometry.
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Figure 3.1. The computational mesh used for 2D viscous laminar
cavity simulations in SPARC.

Parameter Dimensional Value Non-Dimensional Value
Free-stream Velocity, u1 208.7816m/s 0.601247049354
Temperature, T 300K 1.0
Density, ρ 2.9026155498083859×10−4 kg/m3 1.4
Pressure, p 25.0Pa 1.0
Viscosity, µ 8.46×10−7 kg/(ms) 1.17508590713×10−5

Specific Gas Constant, R 287.097384766765m2/(s2 K) 0.714285714286
γ 1.4 1.4
Prandtl Number 0.72 0.72
Time Step 2.0×10−6 s 6.9449521698×10−4

Table 3.1. Parameters used for the 2D viscous laminar cavity test
case in SPARC.
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have inviscid slip walls. This strategy allows constant far-field inflow conditions to be specified
without having to impose a boundary layer profile. The boundary layer begins to grow at the up-
stream transition from inviscid wall to no-slip wall. The extent of the no-slip wall was chosen to
allow the boundary layer to attain the desired thickness at the beginning of the cavity.

Reduced-order models are created and run in SPARC in several stages. First, the full-order model in
SPARC is run for 100,000 time steps with a 10× smaller time step than that given in Table 3.1. This
initial run is performed to advance the simulation past any initial transients and reach a somewhat
periodic state. The full-order model is then restarted from a point past the initial transient behavior
using the time step given in Table 3.1 and snapshots of the flow field are recorded at every time
step. The reason for the change in time step is to reduce the number of snapshots that are recorded.
Proper Orthogonal Decomposition (POD) is then performed on these snapshots to create a modal
basis. This modal basis is then used when reduced-order models are run in SPARC.

3.2 Evaluation criteria

Reduced-order models typically trade reduced accuracy for reduced computational cost. It is there-
fore important to be able to assess the accuracy of the ROMs and determine if the reduced accuracy
is acceptable. This can be done by running both the full-order model and reduced-order models
for the same flow and comparing the results.

There are several ways to compare the results from the full-order model and reduced-order mod-
els. No method of comparison is perfect; each method has its strengths and weaknesses. A good
comparison between the full-order model and the reduced-order model will likely require a com-
bination of methods.

One way to compare two simulations is to use a flow visualization package to visualize the flow
field as the solution evolves in time. This enables us to see if the overall general flow features
are accurately captured by the reduced-order model. Flow field animations also allow us to see if
there are discrepancies in frequency or phase between the FOM and the ROM. Discrepancies in the
amplitude are a little more difficult to discern. Flow field visualizations can provide a qualitative
(“eyeball norm”) comparison between simulations but do not provide a quantitative measure of the
error.

The error between two simulations can be computed by taking the norm of the difference between
the two data sets at every point in the domain. The relative error between two flow solutions can
be computed as

E =
‖q2−q1‖2
‖q1‖2

, (3.1)

where q is some quantity of interest. The subscript 1 is for the full-order model or true solution,
and the subscript 2 is for the reduced-order model solution or whatever solution we are comparing
to the true solution. Using a constant time step for all simulations guarantees that this difference
can be performed at every time step. The quantity of interest, q in (3.1), could be a scalar quantity
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such as the pressure, or it could be a vector quantity such as the conservative solution variables.
We often compute the total error between the conservative variables as

Etotal =

(
∑

cells
(ρ1−ρ2)

2 +((ρu)1− (ρu)2)
2 +((ρv)1− (ρv)2)

2 +((ρw)1− (ρw)2)
2 +((ρe)1− (ρe)2)

2
) 1

2

(
∑

cells
(ρ1)

2 +(ρu)2
1 +(ρv)2

1 +(ρw)2
1 +(ρe)2

1

) 1
2

.

(3.2)
Here, ρ denotes the fluid density; u, ,v and w are the xR–, y– and z– components of the fluid
velocity respectively; e is the fluid energy. The sum in (3.2) is over the cells in the mesh. As
written, this expression is sensitive to the relative magnitudes of the conservative variables and
will be dominated by the variable with the largest magnitude. This sensitivity is reduced when the
variables are non-dimensional and of the same magnitude.

It is often not feasible to record snapshots of the entire flow field at every time step. Therefore
flow visualizations or flow field errors have lower temporal resolution than the simulations. An
alternative is to output data every time step but at only a few specified locations. The use of probes
or traces of this type increases the temporal resolution of the data, but there is much less spatial
information. It is therefore important to place these probes in locations where the variations in
the quantities of interest are desired. For the cavity flow, we focus on a point midway up the
downstream wall of the cavity. Other locations of interest may be on the floor of the cavity or in
the shear layer at the top of the cavity.

In SPARC, probes output the conservative variables at each time step. For the cavity flow, the
primary quantity of interest are the pressure fluctuations, so the conservative variables are post-
processed to produce a pressure time history. Plotting the pressure time histories from both the
FOM and the ROM enables a comparison of the amplitude, phase, and frequency of oscillations.

It is not anticipated that the ROM will be able to exactly reproduce the pressure time history from
the FOM. Small differences in the flow state can produce substantially different time histories as
the simulations are run for long time periods. However, the statistics of these time histories, such
as the root-mean-square (rms) value or the power spectral density (PSD), should be similar.

The power spectral density is computed by taking the magnitude of the Fourier transform of the
time signal. This provides information on the power of the oscillations at each frequency in the
time history. The area under the PSD curve is the rms value of the oscillations, and provides
information on the average amplitude of the oscillations.

None of the comparison methods discussed above are perfect. A combination of the methods
should be used to provide a sufficient comparison between the ROM and the FOM. Using probes
we can obtain pressure time histories at one or more points. PSDs can then be computed at these
points. Plots comparing the pressure time histories and PSDs from different simulations provide
a good means of comparing the two simulations. However, these comparisons are localized to the
probe locations. Flow visualizations of the entire flow field provide a more global comparison.

Plotting time histories or PSD curves and visualizing the entire flow field provides a qualitative
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comparison between two simulations. A quantitative measure of the error can be computed us-
ing (3.1) on either the full flow field, the pressure time histories, or the PSDs. However, there can
be situations where the solutions are qualitatively similar but have a large computed error. Small
shifts in frequency or phase can produce large errors between flow fields or time histories. Small
shifts in the frequencies of the peaks on the PSD can also produce large error values.

Quantitative measures of the error are useful to be able to assess how much of an effect changes to
the ROMs, such as the number of modes, have on the accuracy of the simulations. However, these
quantitative measures should be combined with qualitative comparisons to provide a complete
assessment of the difference between two simulations.

3.3 Performance of standard LSPG ROM in SPARC

During FY16, ROM capabilities were added to SPARC and tested on both the 2D viscous laminar
cavity discussed above and an inviscid pressure pulse test case. For the 2D cavity runs, several
issues were identified, including the inability of the ROM to accurately reproduce the behavior
of the FOM in the training interval, even when all the modes were retained. The exact cause of
this behavior is unknown. Upon updating SPARC to a newer version, the ROM was able to better
reproduce the FOM. It was also determined that the default convergence criteria in SPARC should
be tightened in order to give the best chance of producing better results. Results for the 2D cavity
generated during FY17 reflect both of these changes. Figure 3.2 shows the pressure time history
at a point midway up the downstream cavity wall. This figure compares the full-order model with
reduced-order models using 100 or 200 modes. As can be seen, the reduced order models can
accurately reproduce the full order model behavior during the training interval. This figure can be
contrasted to Figure 5.6 or 5.10 in our FY16 report.

The inviscid pressure pulse test case was used to help investigate the ROM behavior on a smaller
problem. For the inviscid pressure pulse case, it was found that running the FOM and ROM non-
dimensionally dramatically improved the ROM performance. However, non-dimensionalization
seemed to have had little effect on the 2D cavity. Figure 3.3 shows results for the non-dimensional
full-order model and reduced-order model runs. The reduced-order models are able to reproduce
the full-order model results during the training window. Based on these results, there does not
appear to be a benefit to running the cavity simulations non-dimensionally. Despite this, it was
decided that cavity runs should primarily be performed non-dimensionally in order to provide the
best chance of success.

The above results provide confidence that the reduced-order model implementation is functioning
correctly. However, the goal of this work is to use reduced-order models in situations other than
simply reproducing the training data. In particular, we are interested in running the ROM further
in time, beyond the end of the training window. Figures 3.4 and 3.5 show a comparison of the
full-order model and reduced-order model results as the simulations are run beyond the end of the
training window. These plots show similar results for both the dimensional and non-dimensional
runs. The reduced-order models accurately reproduce the full-order model during the training win-
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Figure 3.2. The pressure time history for a point midway up the
downstream wall of the cavity. Shown are results for the full-order
model and reduced-order model dimensional runs. The time extent
shown is that used for training the reduced-order models.

3.6 3.8 4.0 4.2 4.4 4.6 4.8
Time

0.90

0.95

1.00

1.05

1.10

1.15

P
re

ss
u
re

Pressure Probe, Cavity Ma0.6 Re3300, Non-Dimensional

Full-Order Model
Reduced-Order Model, 100 modes
Reduced-Order Model, 200 modes
Reduced-Order Model, 500 modes
Reduced-Order Model, 2000 modes

Figure 3.3. The pressure time history for a point midway up the
downstream wall of the cavity. Shown are results for the full-order
model and reduced-order model non-dimensional runs. The time
extent shown is that used for training the reduced-order models.
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Figure 3.4. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model and reduced-order model non-dimensional runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis used by the reduced-order models.

dow, but there are significant errors once the simulations advance further in time. Figure 3.6 shows
the error between the reduced-order models and the full-order model for the non-dimensional runs
computed using (3.2). This plot reinforces the observation that the reduced-order model is accurate
during the training window, but exhibits significant error after the end of the training window. This
plot also seems to show that using an increased number of modes increases the accuracy during
the training interval, but beyond the end of the training interval the number of modes used does not
appear to have a significant effect on the accuracy. However, this observation may be due to the
nature of the error calculation and may change if an alternative measure of accuracy is used.
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Figure 3.5. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model and reduced-order model non-dimensional runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis used by the reduced-order models.
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Figure 3.6. The relative error between the reduced-order models
and the full-order model over the entire computational domain for
the non-dimensional runs. The vertical dashed lines indicate the
extent of the training data used to create the POD basis used by the
reduced-order models.
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3.4 Accuracy assessment studies towards ROMs with improved
predictive capabilities

We undertook several studies to try to assess and improve the performance of the SPARC ROMs for
long-time predictive simulations, which are summarized in this section.

3.4.1 Project FOM snapshots onto POD basis

One question which arises is whether the POD basis constructed using the training data is capable
of accurately representing the flow after the end of the training interval. This was assessed by
projecting the snapshots from the FOM run onto the POD basis to create a set of projection coef-
ficients, then using the basis and these projection coefficients to construct an approximation of the
flow field. If www(k) is the snapshot of the conservative variables at time instance k from the FOM,
then the approximation to the flow field, w̃ww(k), is given by

w̃ww(k) = w̄ww+ΦΦΦM

(
ΦΦΦ

T
M

(
www(k)− w̄ww

))
, (3.3)

where ΦΦΦM is the POD basis and w̄ww is some base flow state. This approximated flow state is the best
that can be constructed using a given number of modes from the POD basis.

Figure 3.7 shows the pressure time history that results from this approximated flow field when
200 modes are used. Also shown are results for the true full-order model and the reduced-order
model using 200 modes. The approximated solution reproduces the full-order model results fairly
accurately, even beyond the end of the training interval. Figure 3.8 shows the errors of both the
ROM and FOM projected onto the basis as the number of modes is varied. In this figure the solid
lines are for the FOM projected onto the basis, and the dashed lines are for the reduced-order
models. This plot shows that even though the pressure time history for the FOM projected onto the
basis looked fairly accurate throughout the run, there is still a large increase in error after the end
of the training interval.
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Figure 3.7. The pressure time history for a point midway up the
downstream wall of the cavity. Shown are results for the full-order
model, reduced-order model using 200 modes, and the full-order
model snapshots projected onto 200 modes of the POD basis. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.8. The relative errors of the reduced-order models runs
compared to projecting full-order model snapshots onto the POD
basis. The solid lines are for the FOM snapshots projected onto the
POD basis, and the dashed lines are for the reduced-order models.
The vertical dashed lines indicate the extent of the training data
used to create the POD basis.
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Figure 3.9. The pressure time history for a point midway up the
downstream wall of the cavity. The starting point is shifted forward
in time by 1 snapshot from the nominal case. Shown are results for
the full-order model, reduced-order model using 200 modes, and
the full-order model snapshots projected onto 200 modes of the
POD basis. The vertical dashed lines indicate the extent of the
training data used to create the POD basis.

3.4.2 Vary start of training window

The exact starting point of the training interval was chosen somewhat arbitrarily. Based upon
examination of Figures 3.4 and 3.5, one might consider how shifting the training interval might
affect the ROM performance. It is possible that if the training interval was shifted slightly forward
in time, then the ROM behavior after the end of the training interval might better match the full-
order model.

In order to investigate this, a study was undertaken to vary the starting point of the training inter-
val. The starting point for the training interval is a snapshot of the flow from our initial transient
simulation. We varied which snapshot was used to restart SPARC by up to ±2 snapshots. For each
case, we ran the full-order model in SPARC to collect snapshots of the flow, and then computed a
separate POD basis for each case.

Figure 3.9 shows the results when the start of the training interval is shifted forward in time by
1 snapshot from the transient simulation. For this case, the ROM does not seem to exhibit the
shift that occurs at the end of the training interval, and so it may more accurately reproduce the
behavior of the FOM. Figure 3.10 shows the results when the start of the training interval is shifted
even more forward in time. Figures 3.11 and 3.12 complete the study by shifting the starting point
backward in time by 1 or 2 snapshots, respectively.

These results appear to demonstrate that the choice of the training interval has a significant impact
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Figure 3.10. The pressure time history for a point midway up the
downstream wall of the cavity. The starting point is shifted forward
in time by 2 snapshot from the nominal case. Shown are results for
the full-order model, reduced-order model using 200 modes, and
the full-order model snapshots projected onto 200 modes of the
POD basis. The vertical dashed lines indicate the extent of the
training data used to create the POD basis.
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Figure 3.11. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 1 snapshot from the nominal case. Shown
are results for the full-order model, reduced-order model using
200 modes, and the full-order model snapshots projected onto 200
modes of the POD basis. The vertical dashed lines indicate the
extent of the training data used to create the POD basis.
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Figure 3.12. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 2 snapshots from the nominal case. Shown
are results for the full-order model, reduced-order model using
200 modes, and the full-order model snapshots projected onto 200
modes of the POD basis. The vertical dashed lines indicate the
extent of the training data used to create the POD basis.

on the accuracy of the reduced-order models. However, the pressure time histories are only for a
single point. It is possible that we are doing better at this point in some cases, but the accuracy at
other locations may be worse. Figure 3.13 shows the errors over the entire computational domain
for all of these cases. As can be seen, the errors are comparable for all the training intervals both
before and after the end of the training interval.
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Figure 3.13. The relative errors of the reduced-order model runs
compared to projecting the full-order model snapshots onto the
POD basis. The solid lines are for the FOM snapshots projected
onto the POD basis, and the dashed lines are for the reduced-order
models. The different colors represent different training intervals.
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3.4.3 Vary length of training window

The length of the training window is expected to have an effect on the accuracy of the reduced-
order models. The training window must be long enough so that the snapshots produced capture
the important features of the flow. The resulting POD basis should then be able to accurately
reproduce the true flow field. However, making the training window too large increases the offline
cost of the ROM and may reduce the cost effectiveness of using a ROM. The primary goal of this
work is to train a ROM on a short time simulation and then use it to predict further in time. If
a simulation of a certain time length is required to generate the appropriate power spectra, then
having a short training window maximizes the benefit of using a ROM. It is therefore important to
have a training window long enough to capture the important flow features, but not too long as to
make the ROM not cost effective.

For the results presented so far, the training interval consists of 2000 time steps using either the
dimensional or non-dimensional time steps given in Table 3.1. In previous work during FY16,
we primarily used a smaller training interval of 800 time steps. This smaller training interval
was deemed insufficient, leading to the 2000 time step interval. However, expanding the training
interval further may allow for more accurate reduced-order models.

The following results use a training interval consisting of 4000 time steps. Snapshots of the flow
field are collected every time step and used to create a POD basis consisting of 4000 modes.
Figure 3.14 shows the pressure time history for reduced-order models using 100 and 200 modes
from this new basis. The 100 mode ROM experienced a non-physical result and terminated before
a time of 7. The 300 mode ROM ran for the full time that was requested, an additional 4000
time steps beyond the end of the training interval. An untruncated ROM using 4000 modes is not
available because of the large computational cost associated with this many modes. Improvements
such as hyper-reduction or QR factorization may help reduce the cost and allow for this type of run
in the future.

The 300 mode ROM using this larger training interval does not show as dramatic a shift as the
ROMs using the 2000 time step interval, as shown in Figure 3.5. However, it was previously
seen that shifting the training interval forward or backward in time had a significant impact on the
pressure time histories. Figures 3.15, 3.16, 3.17, and 3.18 show the results of shifting the training
interval. These plots verify the observation that the pressure time history at a point is affected by
the choice of the training interval. However, it is expected that the error of the entire flow field will
exhibit similar trends to Figure 3.13 and be insensitive to the training interval start time.
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Figure 3.14. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model and reduced-order model non-dimensional runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis used by the reduced-order models.
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Figure 3.15. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
forward in time by 1 snapshot from the nominal case. Shown are
results for the full-order model and reduced-order model runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.16. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
forward in time by 2 snapshot from the nominal case. Shown are
results for the full-order model and reduced-order model runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.17. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 1 snapshot from the nominal case. Shown are
results for the full-order model and reduced-order model runs. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.18. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 2 snapshots from the nominal case. Shown
are results for the full-order model and reduced-order model runs.
The vertical dashed lines indicate the extent of the training data
used to create the POD basis.
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3.4.4 Project FOM solution increment onto POD basis

In Section 3.4.1, we discussed projecting the snapshots of the flow field created by the FOM onto
the POD basis in order to compute projection coefficients. These projection coefficients were
then used to construct an approximation to the flow state at each time instance using (3.3). This
provides information on the accuracy to which the flow state could be represented using the POD
basis. However, it does not take into account the fact that the true FOM flow states may never be
reached by the ROM, and this accuracy may never be realized in practice.

In order to determine the upper limit on the ROM accuracy, we need to take the solution increment
that is computed by the FOM at each time step, project it onto the POD basis, and then construct
an approximated solution increment. If ∆www(k) is the solution increment computed by the FOM at
time step k, then

∆w̃ww(k) = ΦΦΦM
(
ΦΦΦ

T
MΦΦΦM

)−1
ΦΦΦ

T
M∆www(k) (3.4)

is the approximated solution increment. This approximated solution increment is then used to
update the flow state, producing a flow state that is realizable by an ideal preconditioned LSPG
ROM.

Ideal preconditioned LSPG ROMs

The projected solution increment given by (3.4) is equivalent to what would be produced by a
preconditioned LSPG ROM using an exact preconditioner. A preconditioned LSPG ROM can be
formed by inserting a preconditioner, MMM, into (2.8) to create

δ ŵww(k)
PG = arg min

yyy∈RM

∥∥∥MMM
(

JJJ(k)ΦΦΦMyyy+ rrr(k)
)∥∥∥2

2
, k = 1, . . . ,KPG . (3.5)

The insertion of a preconditioner has the effect of altering the norm we are minimizing in. The
corresponding normal-equations form of (3.5) is

ΦΦΦ
T
MJJJ(k)T MMMT MMMJJJ(k)ΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
MJJJ(k)T MMMT MMMrrr(k), k = 1, . . . ,KPG . (3.6)

Using an ideal preconditioner

MMM =
(

JJJ(k)
)−1

(3.7)

reduces the normal-equations to

ΦΦΦ
T
MΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
M

(
JJJ(k)
)−1

rrr(k), k = 1, . . . ,KPG . (3.8)

Substituting in the true FOM solution increment,

∆www(k) =
(

JJJ(k)
)−1

rrr(k) , (3.9)

produces
ΦΦΦ

T
MΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
M∆www(k), k = 1, . . . ,KPG . (3.10)

The right hand side is the projection of the true FOM solution increment. Solving for δ ŵww(k)
PG and

constructing the approximate solution increment produces (3.4).
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Alternative preconditioner definitions

In SPARC, the conservative variable solution increment, ∆www(k) is not computed directly. An inter-
mediate increment is first computed, which is then converted to the conservative variable solution
increment by dividing by the cell volume. In other words, SPARC solves

AAA(www)∆ppp =−bbb(www) , (3.11)

where AAA(www) is an approximate flux Jacobian matrix without the inclusion of the cell volumes and
bbb(www) is the flux vector residual. The intermediate solution increment, ∆ppp, is then converted to the
conservative variable solution increment by dividing by the cell volume. In other words,

∆www =VVV−1
∆ppp , (3.12)

where VVV is a diagonal matrix with the cell volumes on the diagonal.

The normal-equation form for a standard LSPG ROM in SPARC is therefore

[VVV ΦΦΦM]T [AAA(w̃ww)]T [AAA(w̃ww)][VVV ΦΦΦM]∆ŵww =−[VVV ΦΦΦM]T [AAA(w̃ww)]T bbb(w̃ww) . (3.13)

The volume matrix is grouped with the POD basis because both are constant and their product can
be precomputed. Introducing a preconditioner gives

[VVV ΦΦΦM]T [AAA(w̃ww)]T MMMT MMM[AAA(w̃ww)][VVV ΦΦΦM]∆ŵww =−[VVV ΦΦΦM]T [AAA(w̃ww)]T MMMT MMMbbb(w̃ww) . (3.14)

The ideal preconditioner given in (3.7) therefore corresponds to

MMM = [AAA(w̃ww)VVV ]−1 . (3.15)

This use of this preconditioner will lead to an optimal `2 projection of the solution increment ∆www
onto the basis ΦΦΦM. Inserting this preconditioner into (3.14) will produce (3.4), or equivalently

∆w̃ww = argmin
x
‖ΦΦΦMx−∆www‖2 . (3.16)

Alternative forms for the preconditioner can also be defined, such as

MMM = [AAA(w̃ww)]−1 (3.17)

or
MMM = [AAA(w̃ww)VVV

1
2 ]−1 . (3.18)

The first alternative leads to an approximated solution increment of the form

∆p̃pp(k) = [VVV ΦΦΦM]
(
[VVV ΦΦΦM]T [VVV ΦΦΦM]

)−1
[VVV ΦΦΦM]T ∆ppp(k) . (3.19)

The second alternative leads to an approximated solution increment of the form

∆p̃pp(k) = [VVV ΦΦΦM]
(
ΦΦΦ

T
MVVV ΦΦΦM

)−1
ΦΦΦ

T
M∆ppp(k) . (3.20)
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Note that these two alternatives operate on the intermediate solution increment to produce an ap-
proximated intermediate solution increment. The approximated intermediate solution increment
would then be scaled by the cell volumes to produce the approximated conservative-variable solu-
tion increment ∆w̃ww.

The first alternative then becomes

∆w̃ww(k) = ΦΦΦM
(
ΦΦΦ

T
MVVV 2

ΦΦΦM
)−1

ΦΦΦ
T
MVVV 2

∆www(k) , (3.21)

and the second alternative becomes

∆w̃ww(k) = ΦΦΦM
(
ΦΦΦ

T
MVVV ΦΦΦM

)−1
ΦΦΦ

T
MVVV ∆www(k) . (3.22)

The second alternative is equivalent to

∆w̃ww = argmin
x
‖ΦΦΦMx−∆www‖L2(Ω) , (3.23)

where
‖x‖L2(Ω) = xTVVV x . (3.24)

The first alternative uses the norm
‖x‖L2(Ω) = xTVVV 2x . (3.25)

Projected solution increment results

Figure 3.19 shows a comparison of the three projected solution increment implementations dis-
cussed above. For comparison, the full-order model and standard LSPG reduced-order model are
also shown. These runs used an untruncated POD basis of 2000 modes in order to provide the best
results possible for each approach.

There are some interesting observations that can be made from this plot. The standard projected so-
lution increment given in (3.4) seems to exhibit the correct frequency behavior, but the amplitudes
of the oscillations are generally larger than the true full-order model signal. The first alterna-
tive implementation, given by (3.19), seems to exhibit similar behavior to the non-preconditioned
LSPG ROM. The second alternative implementation, given by (3.20), seems to have nearly correct
amplitudes for the oscillations, but the frequency or phase is a little off, especially towards the end
of the run.

As was observed previously, the precise start of the training interval affects the pressure time
histories for the reduced-order models. Figures 3.20, 3.21, 3.22, and 3.23 show the effect of shifting
the training interval on the projected solution increment runs. While shifting the training interval
does have an impact on the results, the relative behavior observed previously for the three projected
solution increment implementations remains the same.

The results presented so far have been for a fairly limited simulation time of twice the snapshot
collection time. This has been useful to focus attention on what happens at the end of the training
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Figure 3.19. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model, reduced-order model, and projected solution incre-
ment runs using an untruncated POD basis of 2000 modes. The
vertical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.20. The pressure time history for a point midway up the
downstream wall of the cavity. The starting point is shifted forward
in time by 1 snapshot from the nominal case. Shown are results for
the full-order model, reduced-order model, and projected solution
increment runs. The vertical dashed lines indicate the extent of the
training data used to create the POD basis.
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Figure 3.21. The pressure time history for a point midway up the
downstream wall of the cavity. The starting point is shifted forward
in time by 2 snapshot from the nominal case. Shown are results for
the full-order model, reduced-order model, and projected solution
increment runs. The vertical dashed lines indicate the extent of the
training data used to create the POD basis.
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Figure 3.22. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 1 snapshot from the nominal case. Shown
are results for the full-order model, reduced-order model, and pro-
jected solution increment runs. The vertical dashed lines indicate
the extent of the training data used to create the POD basis.
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Figure 3.23. The pressure time history for a point midway up
the downstream wall of the cavity. The starting point is shifted
backward in time by 2 snapshots from the nominal case. Shown
are results for the full-order model, reduced-order model, and pro-
jected solution increment runs. The vertical dashed lines indicate
the extent of the training data used to create the POD basis.

interval. However, we are interested in using ROMs for long time predictions, so the follow-
ing results will consider a simulation time of 40,000 time steps. Figure 3.24 shows the pressure
time histories for the full-order model and the three projected solution increment implementations.
For the standard projected solution increment given in (3.4), shown in the top plot, the pressure
fluctuations have a larger amplitude that those for the full-order model. For the first alternative
implementation, given by (3.19) and shown in the middle plot, the mean of pressure fluctuations
jumps to a higher value at the training interval boundary. The amplitude of the fluctuations then
begins to decay. It should be pointed out that the data for this case is incomplete due to a computer
issue and it was not deemed worth it to rerun the case. For the second alternative implementation,
given by (3.20) and shown in the bottom plot, the amplitudes of the fluctuations appear on par with
the full-order model but there is discrepancy in frequency or phase.

Ultimately, we are interested in whether the ROMs produce acceptable power spectra for the pres-
sure, not whether we exactly replicate the pressure time history. Figure 3.25 shows the power
spectral density of the pressure for the full-order model and the three projected solution increment
implementations. For the standard projected solution increment, given in (3.4) and shown in the
top plot, we seem to accurately capture the frequency and amplitude for the first three peaks. How-
ever, in general there is a shift of the PSD upwards. This is to be expected since the area under the
PSD is the rms of the pressure fluctuations, and the pressure time history exhibited larger amplitude
fluctuations. For the first alternative implementation, given by (3.19) and shown in the middle plot,
we seem to capture the second peak fairly well but otherwise it does not seem to be very accurate.
For the second alternative implementation, given by (3.20) and shown in the bottom plot, the first
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Figure 3.24. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model and the three projected solution increment implemen-
tations using an untruncated POD basis of 2000 modes. The ver-
tical dashed lines indicate the extent of the training data used to
create the POD basis.
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few peaks seem to match fairly well although there is some noise in the PSD.

The next set of results are for a training interval of 4000 time steps, as discussed in Section 3.4.3.
The simulations are still run for a total of 40,000 time steps. This means that the training interval
is 10% of the total simulation time, in contrast to 5% for the previous results. The resultant ROMs
should be more accurate, but they have lost some of their cost benefit. Figure 3.26 shows the
pressure time histories for the full-order model and the three projected solution increment imple-
mentations. It should be noted that the projected solution increment simulations are incomplete.
For the middle plot, this is because SPARC encountered an error, possibly a non-physical result (e.g.,
a negative pressure or temperature) and terminated early. For the top and bottom plots, the runs
terminated early due to a computer issue and have not been rerun yet. For the standard projected
solution increment given in (3.4), shown in the top plot, the pressure fluctuations exhibit behavior,
such as a beating pattern, that is qualitatively similar to the full-order model. For this case the
amplitudes of the fluctuations are smaller than the FOM, in contrast to the shorter training interval
results. For the first alternative implementation, given by (3.19) and shown in the middle plot, the
simulation terminates too early to make any reasonable comparisons. However, the fact that the
simulation quit early indicates that it may have exhibited non-physical behavior. For the second
alternative implementation, given by (3.20) and shown in the bottom plot, the fluctuations grow
in amplitude after the end of the training interval and then reach a constant amplitude oscillation.
This behavior is quite different than the observed behavior on the shorter training interval.

Again, we are interested in whether the ROMs produce acceptable power spectra for the pressure,
not whether we exactly replicate the pressure time history. Figure 3.27 shows the power spectral
density of the pressure for the full-order model and the three projected solution increment imple-
mentations. For the standard projected solution increment, given in (3.4) and shown in the top
plot, we seem to accurately capture the frequency and amplitude of the first few peaks, with the
exception of the fourth and sixth peaks. For the first alternative implementation, given by (3.19)
and shown in the middle plot, the results are deceptively good because the simulation did not get
much beyond the training interval. For the second alternative implementation, given by (3.20) and
shown in the bottom plot, the second peak is captured fairly well but based on the time history we
do not expect to match other frequencies.
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Figure 3.25. The power spectral density of the pressure at a point
midway up the downstream wall of the cavity. Shown are results
for the full-order model and the three projected solution increment
implementations using an untruncated POD basis of 2000 modes.
The vertical dotted lines indicate the first and second Rossiter
tones.
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Figure 3.26. The pressure time history for a point midway up
the downstream wall of the cavity. Shown are results for the full-
order model and the three projected solution increment implemen-
tations using an untruncated POD basis of 4000 modes. The ver-
tical dashed lines indicate the extent of the training data used to
create the POD basis.
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Figure 3.27. The power spectral density of the pressure at a point
midway up the downstream wall of the cavity. Shown are results
for the full-order model and the three projected solution increment
implementations using an untruncated POD basis of 4000 modes.
The vertical dotted lines indicate the first and second Rossiter
tones.
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3.4.5 Time-step refinement

The time step is an important parameter affecting the accuracy of LSPG ROMs. In [7], error
bounds were derived that showed a dependence on the time step. It was found that there is an
optimal time step which minimizes the error of the LSPG ROMs, and that error increases if the
time step is too small. This was verified computationally for a cavity flow using the LSPG ROM
implementation in AERO-F. The optimal time step was found to be larger than that used for the
full-order model.

The results presented so far have all been created using the same time step as that used for the
full-order model. In this section, the effect of varying the time step will be assessed. The results
presented here will focus on the impact of varying the time step for runs using the standard pro-
jected solution increment given in (3.4), and the second alternative implementation given by (3.20),
as these produced the best results using the nominal time step. For this assessment, the time step
will be set to 2×, 5×, 10×, 20×, 50×, and 100× the nominal value given in Table 3.1.

The results in this section are incomplete. Some cases are still running at the time of this report.
On the following plots, if the data does not extend to the end of the simulation time then it is
because the case had not finished running when the plot was generated. Figure 3.28 shows the
pressure time history and the PSD that result from running the standard projected solution incre-
ment implementation with 2× the nominal time step. It is difficult to tell from the time history if
this is an improvement over Figure 3.24. The high frequency part of the PSD is lower than that
in Figure 3.25 and may be more accurate overall, however the new run is not finished so the PSD
uses only a limited time history.

Figure 3.29 shows the pressure time history and the PSD that result from running the standard
projected solution increment implementation with 5× the nominal time step. The pressure time
history shows that the simulation becomes periodic with constant amplitude. Figure 3.30 shows the
pressure time history and the PSD that result from running the standard projected solution incre-
ment implementation with 10× the nominal time step. Figure 3.31 shows the pressure time history
and the PSD that result from running the standard projected solution increment implementation
with 20× the nominal time step. The pressure time histories for both the 10× and 20× runs seem
to exhibit behavior that is more similar to the FOM than the projected solution increment using the
nominal time step or 2× nominal. The resulting PSDs show that the low frequency peaks match
the FOM fairly well, while the high frequency content is below that of the FOM.

Figure 3.32 shows the pressure time history and the PSD that result from running the standard
projected solution increment implementation with 50× the nominal time step. Figure 3.33 shows
the pressure time history and the PSD that result from running the standard projected solution
increment implementation with 100× the nominal time step. These results do not look very good,
which suggests that too large of a time step was used.

Figures 3.34, 3.35, 3.36, 3.37, 3.38, and 3.39 show the effect of varying the time step when using
the second alternative projected solution increment implementation. These results do not look as
good as those for the standard projected solution increment presented earlier. This is despite the
results for the nominal time step looking better than those of the standard implementation.
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Figure 3.28. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 2000 modes. The projected solution increment case is run using
2× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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Figure 3.29. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 2000 modes. The projected solution increment case is run using
5× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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Figure 3.30. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 2000 modes. The projected solution increment case is run using
10× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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Figure 3.31. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 2000 modes. The projected solution increment case is run using
20× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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Figure 3.32. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 2000 modes. The projected solution increment case is run using
50× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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Figure 3.33. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 100× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.34. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 2× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.35. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 5× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.36. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 10× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.37. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 20× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.38. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 50× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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Figure 3.39. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the second alternative pro-
jected solution increment implementation using an untruncated
POD basis of 2000 modes. The projected solution increment case
is run using 100× the nominal time step. The vertical dashed lines
on the time history plot indicate the extent of the training data used
to create the POD basis. The vertical dotted lines on the PSD plot
indicate the first and second Rossiter tones.
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So far, the results in this section have been for the 2000 time step training interval. Figure 3.40
shows the pressure time history and PSD when the standard projected solution increment using
an untruncated basis created from the 4000 time step training interval is run with 2× the nominal
time step. It is difficult to say whether the pressure time history is better than that in Figure 3.26.
It appears that running with the larger time step slightly lowers the high frequency part of the
PSD compared to Figure 3.27. Data for runs using other time steps is currently unavailable. It is
therefore too early to try to make a conclusion about the effect of the time step on these runs with
a larger basis.

A clear conclusion about the effect of varying the time step cannot be made at this time. It should
be pointed out that varying the time step results in the ROM not matching the FOM during the
training window. So it seems that varying the time step degrades the accuracy during the training
window, but may improve the accuracy after the end of the training interval. Further experiments
are underway to more fully explore the effect of varying the time step.
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Figure 3.40. The pressure time history and resulting power spec-
tral at a point midway up the downstream wall of the cavity. Shown
are results for the full-order model and the standard projected so-
lution increment implementation using an untruncated POD basis
of 4000 modes. The projected solution increment case is run using
2× the nominal time step. The vertical dashed lines on the time
history plot indicate the extent of the training data used to create
the POD basis. The vertical dotted lines on the PSD plot indicate
the first and second Rossiter tones.
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3.5 Summary and recommendations

Described in this chapter are the results of several SPARC LSPG/ROM accuracy assessment studies,
which led to recommendations towards improving the predictive capabilities of these models for
long-time simulations. The key take-aways from this study are summarized here.

• Non-dimensionalization. Running simulations non-dimensionally is believed to be benefi-
cial, as it tends to give rise to systems that are better scaled and hence easier to solve. For
some problems, e.g., an inviscid pressure pulse test case, non-dimensionalization drastically
improved ROM performance. However, for the viscous cavity the benefit is less clear.

• Choice of training interval. We found that the choice of training interval can have a signif-
icant impact on the ROM accuracy. Increasing the length of the training window provides
more snapshots and more modes and should produce a more accurate ROM, but reduces the
cost effectiveness of the ROM. Shifting the training window forward or backward in time
has an effect on the local pressure time histories, but may not impact the overall accuracy of
the entire flow field.

• ROM preconditioners. The ideal preconditioner for the LSPG ROMs is equivalent to project-
ing the full-order model solution increment onto the basis. This provides an upper bound on
how accurate the ROMs can be. The implementation of actual preconditioners that have the
effect of using an ideal preconditioner but not the cost in the ROM implementation requires
further development and debugging.

• Choice of time step. It is unclear if we observe the benefit of increasing the time step reported
in [7]. It appears that increasing the time step can improve the accuracy of the long time
behavior, but this comes at the expense of decreased accuracy in the training interval. Further
experiments are required.
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Chapter 4

Implementation and verification of
high-order methods in SPARC

An FY17 effort secondary to the development and numerical study of LSPG/POD ROMs in SPARC
involved the creation of a code verification methodology and workflow, towards enabling the im-
plementation and verification of higher-order discretization methods (e.g., the Rai scheme [35]) in
SPARC. Although seemingly irrelevant to SPARC MOR development, higher-order FOM discretiza-
tions in SPARC are necessary for 3D cavity ROM simulations using this code base at a later point
in time. In this chapter, we summarize the low as well as higher order finite volume schemes
currently available in SPARC, describe our verification workflow and methodology and present the
results of a mesh convergence study in the context of an inviscid pulse test case.

4.1 Summary of flux schemes in SPARC

There are two standard flux schemes in SPARC: Roe [38] and Steger-Warming [42]. These schemes
can be run either first or second order using MUSCL reconstruction to estimate the state at the
face of the cell. Recently, low-dissipation Subbareddy-Candler [43] schemes have also been im-
plemented. These low-dissipation schemes can be run either second or fourth order. The imple-
mentation of the Rai scheme [35], a fifth-order upwind-biased scheme, is currently underway.

We restrict our attention to examining spatial (vs. temporal) convergence. Although various time-
integration schemes are available within SPARC, for all the spatial convergence studies described
here, the low-order implicit BDF1 scheme was employed.

4.2 Description of verification methodology

In order to verify the spatial accuracy of the flux schemes, we construct a series of uniformly
refined meshes. For each flux scheme, the error between the solution on the coarser meshes and
the finest mesh is then computed. An exact, analytic solution could also be used if available, but
for this work we focused on using the solution on the finest mesh as the true solution.
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SPARC is a cell-centered finite-volume code, so the computed flow solution is stored at the center
of each cell. Starting from a coarse mesh, we create uniformly refined meshes using a refinement
factor of 3. In other words, for a 2D mesh, each cell is divided into 9 cells, in a 3× 3 pattern.
Following this approach, the solution is always available at the spatial location defined by the
center of the cells on the coarse mesh. This allows the error between the solutions on different
meshes to be computed directly without any interpolation or averaging.

The total error is a discrete l2 norm of the difference between two flow solutions at all the locations
defined by the coarsest mesh under consideration. This error is then divided by the discrete l2 norm
of the solution on the finest mesh in order to produce a relative error, as in (3.2).

4.3 Mesh convergence study: inviscid pulse test case

The inviscid pulse test case, described in detail in [45], is used to verify the spatial accuracy
of the flux implementations. This test case consists of an initial Gaussian pressure pulse in a
square domain bounded by solid walls which is allowed to evolve in time. A series of meshes was
constructed for two related mesh convergence studies. For each study, the mesh was refined by a
factor of 3. The preliminary study analyzed the relative error and convergence behavior of a series
of four meshes over a time period of 34 seconds. For these runs, the second-order Roe flux scheme
was used. Mesh sizes began at 20× 20 cells and were refined until 520× 540 cells. In this case,
the solution on the 520×540 mesh was used as the true solution when computing the error in the
coarser meshes.

Figure 4.1 shows the relative error as a function of time. Throughout the steady state period of
the run, the error between the 20× 20 and 60× 60 mesh decreases by a factor of 6. The error
between the 60× 60 and 180× 180 mesh decreases by a factor of 9. In the more comprehensive
study described later in this section, this 9× decrease in error for the finer mesh results that use the
second-order Roe flux scheme is described in detail.

Figure 4.2 shows a traditional convergence rate plot, where the error at the end of the run is plot-
ted as a function of mesh size. The convergence rate can be computed using the errors between
consecutive meshes

ri = log(Ei+1/Ei)/ log(hi+1/hi) , (4.1)

where E is the error and h is the mesh size. The reader can observe by inspecting Figure 4.2 that
the convergence rate is close to 2, the theoretical convergence rate for the tested second-order Roe
flux scheme. Figure 4.3 shows the convergence rate between the refined meshes as a function of
time. The blue and red lines in this figure correspond to the slopes of the right and left segment of
the line in Figure 4.2, respectively. As the mesh is refined, the asymptotic convergence rate of 2 is
achieved.

The comprehensive study included a larger set of mesh refinement sizes and analyzed the full series
of flux schemes. The coarsest mesh was 3×3 cells. This mesh was uniformly refined by a factor
of 3 to produce a 9× 9 cell mesh, where the solution was available at the same locations as the
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Figure 4.1. The computed relative error between the solution
on each mesh and the solution on the finest mesh for the inviscid
pulse test case. The results shown are for the second-order Roe
flux scheme in SPARC.

Figure 4.2. The computed relative error as a function of mesh
size for the inviscid pulse test case at 34 seconds. The results
shown are for the second-order Roe flux scheme in SPARC. The
convergence rate is close to 2, as expected from theory.
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Figure 4.3. The computed convergence rate between mesh sizes
as a function of time for the inviscid pulse test case. The results
shown are for the second-order Roe flux scheme in SPARC. The
blue and red lines correspond to the slopes of the right and left
segment of the line in Figure 4.2, respectively. As the mesh is
refined, the asymptotic convergence rate of 2 is achieved.

3× 3 cell mesh. Additional refined meshes were constructed including a 2187× 2187 cell mesh,
which was the finest mesh constructed. The solution on the 2187× 2187 mesh was used as the
true solution when computing the errors in the solution on the other meshes. Solution results were
computed over a time history of 3 seconds.

Figure 4.4 shows the relative error as a function of time for the first-order Roe flux scheme. This
figure shows the error between each of the meshes and the finest mesh (2187× 2187 cells). The
meshes are refined by a factor of 3, so the error for a first-order scheme should decrease by a factor
of 3 for each level of refinement. This occurs only for the finest meshes, so we may just be entering
the asymptotic range.

Figure 4.5 shows the error versus time for the second-order Roe flux scheme. The error between
the finer meshes decreases by a factor or 9, as would be expected of a second-order scheme when
the mesh is refined by a factor of 3. This is observed for several levels of refinement, demonstrat-
ing that we are in the asymptotic range. Figure 4.6 shows the error versus time for the second-
order Steger-Warming flux scheme, and Figure 4.7 shows the error versus time for the second-
order Subbareddy-Candler scheme. Both schemes also exhibit a 9× decrease in error for the finer
meshes.

Figure 4.8 shows the error versus time for the fourth-order Subbareddy-Candler flux scheme. For
this case, we would expect a 81× decrease in error as the mesh is refined by a factor of 3. This
level of decrease is observed initially for the finer meshes, but for most of the simulation time only
a 9× decrease in error is observed. The current hypothesis is that the issue has to do with the
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Figure 4.4. The relative errors between the solution on each mesh
and the solution on the finest mesh for the inviscid pulse test case.
The results shown are for the first-order Roe flux scheme in SPARC.
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Figure 4.5. The relative errors between the solution on each mesh
and the solution on the finest mesh for the inviscid pulse test case.
The results shown are for the second-order Roe flux scheme in
SPARC.
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Figure 4.6. The relative errors between the solution on each mesh
and the solution on the finest mesh for the inviscid pulse test case.
The results shown are for the second-order Steger-Warming flux
scheme in SPARC.
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Figure 4.7. The relative errors between the solution on each mesh
and the solution on the finest mesh for the inviscid pulse test case.
The results shown are for the second-order Subbareddy-Candler
flux scheme in SPARC.
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Figure 4.8. The relative errors between the solution on each
mesh and the solution on the finest mesh for the inviscid pulse
test case. The results shown are for the fourth-order Subbareddy-
Candler flux scheme in SPARC.

boundary conditions, which are not anticipated to support fourth-order accuracy in their current
form. The reasoning behind this hypothesis has to do with the degradation from fourth to second
order at around the time when the pulse starts to interact with the solid walls.

Figure 4.9 shows the error plotted versus mesh size for the various flux schemes. The slope of
the curves gives the convergence rate of the methods. Figure 4.10 shows the convergence rate
computed using the finest meshes as a function of time. This plot verifies that the various schemes
exhibit the stated order of accuracy, except for the fourth-order Subbareddy-Candler which is only
second-order accurate.
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Figure 4.9. The relative errors for each flux scheme as the mesh
size is varied.
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Chapter 5

Structure preservation in finite volume
ROMs via physics-based constraints

5.1 Least-Squares Petrov-Galerkin model reduction formula-
tion with physics-based constraints

In Computational Fluid Dynamics (CFD), it is critical that numerically-computed solutions re-
spect the underlying flow physics, e.g., global conservation laws, energy or entropy stability, etc.
While most viable CFD discretization approaches are developed to respect a priori at least some
of these physical properties of fluid flows, projection-based ROMs constructed from these high-
fidelity simulations are in general not guaranteed to preserve the same properties. For instance, a
POD ROM obtained by projecting a conservative finite volume-based full order model may not be
conservative.

One way to ensure that a projection-based ROM formulation respects certain physical properties of
the underlying flow physics and/or full order discretization is through the introduction of physics-
based constraints, an approach termed “structure preservation” [39]. Since LSPG-based ROMs
(Chapter 2) are cast in a nonlinear least-squares framework, they are particularly amenable to a
formulation that includes constraints, added in order to preserve important physical properties of
the governing problem.

Here, we describe several structure-preserving constraints that are physically meaningful for com-
pressible flow problems1.

5.1.1 Global conservation laws

Consider the original FOM nonlinear algebraic equations (2.1) as corresponding to the solution
increment at time step n:

rrrn(wwwn) = 0, n = 1, . . . ,T (5.1)

1Structure-preservation for other application is also possible; see [9] for a model reduction methodology that
preserves Lagrangian structure intrinsic to mechanical systems, and [34] for a structure-preserving model reduction
methodology for marginally-stable linear time-invariant systems.
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and the associated ROM solution w̃wwn = w̄ww+ΦΦΦMŵwwn, where w̄ww = www0 typically. Assume the FOM
from which (5.1) was derived was a finite volume discretization of a governing system of fluid
equations. Then, a reasonable set of constraints for (5.1) are global conservation laws, that is, the
mass, momentum and energy conservation expressions integrated over the problem domain Ω.

Let ρ denote the fluid density, ui denote the ith component of the fluid velocity for i = 1, . . .3 in
three spatial dimensions, p denote the fluid pressure, e denote the fluid energy and xxx denote the
spatial coordinate vector. First, the global continuity equation can be written as∫ tn

tn−1

∫
Γ

ui(xxx,τ)ρ(xxx,τ)ni(xxx)dSdτ =
∫

Ω

ρ(xxx, tn)dΩ−
∫

Ω

ρ(xxx, tn−1)dΩ (5.2)

= aaaT
ρ (w̃ww

n− w̃wwn−1) (5.3)

= aaaT
ρ ΦΦΦM(ŵwwn− ŵwwn−1), (5.4)

where we have used index notation and aaaρ ∈ RN is a vector with all zeros except for the degrees
of freedom corresponding to the density degrees of freedom; for these degrees of freedom, the
value of the entry of aaaρ is the volume of the finite-volume cell. We use the symbol Γ to denote
the boundary of the domain Ω, and ni to denote the ith component of the normal vector to Γ, for
i = 1, . . .3 in three spatial dimensions.

Analogously, we can write the three global momentum conservation laws as∫ tn

tn−1

∫
Γ

(ui(xxx,τ)ρ(xxx,τ)u j(xxx,τ)ni(xxx)+ p(xxx,τ)n j(xxx))dSdτ =
∫

Ω

ρ(xxx, tn)u j(xxx, tn)dΩ (5.5)

−
∫

Ω

ρ(xxx, tn−1)u j(xxx, tn−1)dΩ, (5.6)

= aaaT
u j
(w̃wwn− w̃wwn−1), (5.7)

= aaaT
u j

ΦΦΦM(ŵwwn− ŵwwn−1), (5.8)

for j = 1, . . . ,3 and the global energy conservation law as∫ tn

tn−1

∫
Γ

ui(xxx,τ)[ρ(xxx,τ)e(xxx,τ)+ p(xxx,τ)]ni(xxx)dSdτ =
∫

Ω

ρ(xxx, tn)e(xxx, tn)dΩ (5.9)

−
∫

Ω

ρ(x, tn−1)e(xxx, tn−1)dΩ (5.10)

= aaaT
e (w̃ww

n− w̃wwn−1) (5.11)

= aaaT
e ΦΦΦM(ŵwwn− ŵwwn−1). (5.12)

For a more detailed discussion of the POD/LSPG ROM formulation with global conservation law
constraints, the reader is referred to [39].

5.1.2 Clausius-Duhem inequality (second law of thermodynamics)

In addition to the conservation law constraints described in Section 5.1.1, one may also consider
adding as a constraint the Clausius-Duhem inequality, a statement of the second law of thermody-
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namics. Solutions satisfying this inequality are typically referred to as “entropy-stable”. Entropy
stability is an important physical property for several reasons, namely it implies nonlinear stability
and entropy-stable discretization methods typically require less numerical dissipation.

For the dimensionless, compressible Navier-Stokes equations, the weak integral form of Clausius-
Duhem inequality states that:

d
dt

∫
Ω

ρηdΩ≥
∫

∂Ω

ρη(un−v ·n)dS−
∫

Γ

qini

θ
dS+

∫
Ω

ρse

θ
dΩ−

∫
Ω

ρusρu

θ
dΩ. (5.13)

Here, ρ denotes the fluid density, η denotes the thermodynamic entropy density per unit mass, θ

denotes the absolute temperature of the fluid, qi denotes the heat flux, un is the normal velocity of
∂Ω, v is the velocity of particles inside Ω, n is the unit normal to ∂Ω, se is an energy source per unit
mass, and sρu is a momentum source term per unit mass. In the specific case where sρu = se = 0
(no energy and momentum source terms), un = 0 (the domain Ω is fixed) and the flow satisfies a
no-slip or no-penetration BC on ∂Ω, (5.13) reduces to:

d
dt

∫
Ω

ρηdΩ≥−
∫

∂Ω

qini

θ
dS. (5.14)

Effectively, (5.14) states that the entropy of the fluid is non-decreasing, a physical property of
fluid flows. It was shown in [25] that the physics dictate that a numerically computed solution
to the compressible Navier-Stokes equations must satisfy the Clausius-Duhem inequality (5.14).
Satisfaction of (5.14) by a numerical solution was termed “entropy-stability”. Integrating (5.14)
over time, we obtain:∫

Ω

ρ(x, tn)η(x, tn)dΩ−
∫

Ω

ρ(x, tn−1)η(x, tn−1)dΩ+
∫ tn

tn−1

∫
∂Ω

qi(x,τ)ni

θ(x,τ)
dSdτ. (5.15)

Our task here is to rewrite (5.14) using the usual fluid variables, ρ , ui and e. From [25], one has
the following identities:

• Relation between non-dimensional entropy s and other fluid variables:

s≡ η

cv
= ln

(
pρ
−γ
)
, (5.16)

where cv is the specific pressure at constant volume, p is the fluid pressure, and γ is the ratio
of specific heats.

• Ideal gas law, which relates pressure to density and energy, and temperature to energy:

p = (γ−1)ρe, θ = γ(γ−1)M2
re f e, (5.17)

where Mre f is the Mach number of the flow.

• Definition of the heat flux:
qi =−κθ,i (5.18)

where κ is the thermal conductivity.
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Using (5.16) and (5.17), we have that

η = cv ln
[
(γ−1)ρ1−γe

]
. (5.19)

Using (5.17) and (5.18), we also have that

qini

θ
=−

κe,ini

e
=−κ

(
∇(ρe)

ρe
− ∇ρ

ρ

)
·n. (5.20)

Substituting (5.20) and (5.19) into (5.15), we obtain the following:∫
Ω

cvρ(x, tn) ln [(γ−1)(ρe)(x, tn)ρ(x, tn)γ ]dΩ−
∫

Ω
ρ(x, tn−1) ln

[
(γ−1)(ρe)(x, tn−1)ρ(x, tn−1)γ

]
dΩ

−
∫ tn

tn−1
∫

∂Ω
κ

(
∇(ρe)(x,τ)
(ρe)(x,τ) −

∇ρ(x,τ)
ρ(x,τ)

)
·n dSdτ ≥ 0.

(5.21)

5.1.3 Total variation diminishing (TVD) and total variation bounded (TVB)
properties

Another inequality constraint to consider adding to the ROM is a total variation diminishing (TVD)
constraint. The total variation (TV) of a scalar quantity U in the discrete one-dimensional (1D) case
is defined as

TV (U) = ∑
j
|U j+1−U j| (5.22)

(here U j denotes the value of U at grid-point j). Equation (5.22) approximates the continuous
definition of the total variation as the L1 norm of the gradient, namely

∫
Ω
|∂U

∂x |dΩ for some domain
Ω.

A TVD constraint enforces that TV (Un+1) ≤ TV (Un), where n denotes the time step. This con-
straint is utilized to avoid the nonphysical and spurious oscillations that can occur in numerical
schemes. Due to high frequency modes for a low dimensional basis, LSPG ROMs can become
oscillatory even if the full order model is not. The TVD constraint is of especial importance in
modeling problems with shocks in hyperbolic conservation laws.

For realistic problems, it is useful to extend the definition of TVD (5.22) beyond the 1D case. The
total variation definition easily extends to higher dimensions. For example,

TV (U) = limsup
ε→0

1
ε

∫
∞

−∞

∫
∞

−∞

|U(x+ ε,y)−U(x,y)|dxdy

+ limsup
ε→0

1
ε

∫
∞

−∞

∫
∞

−∞

|U(x,y+ ε)−U(x,y)|dxdy
(5.23)

in the two dimensional case [28], where x and y denote the coordinate dimensions. This leads to
the corresponding discrete form

TV (U) =
∞

∑
i=−∞

∞

∑
j=−∞

[|Ui+1, j−Ui, j|∆y+[|Ui, j+1−Ui, j|]∆x.
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For hyperbolic systems, such as the compressible Euler equations of gas dynamics, the total vari-
ation can be defined component-wise or in terms of the characteristic variables. Unlike in the
nonlinear scalar conservation law case, the total variation in x of the solution in the system case
is not guaranteed to be a monotonically non-increasing function of time due to nonlinear wave
interactions [46]. It can be shown that the total variation with respect to the characteristic vari-
ables is decreasing in the constant coefficient case, where the system reduces to m scalar nonlinear
conservation laws [19]. Let AAA(UUU) be the diagonalizable Jacobian matrix with aaal(UUU) eigenvalues
and RRRl(UUU) eigenvectors, so RRR−1AAARRR = diag(aaal), where l = 1, · · · ,m. Then WWW = RRR−1UUU and the total
variation is then defined as

TV (UUU) =
∞

∑
j=−∞

m

∑
l=1
|wwwl

j+1−wwwl
j|, (5.24)

where wwwl
j+1−wwwl

j is the component of UUU j+1−UUU j in the lth characteristic direction [18].

For hyperbolic systems of equations, total variation bounded (TVB) may also be worth considering.
TVB constraints are weaker than TVD constraints because they allow the total variation of the
solution to increase by a specified bound β , that is we require that

TV (UUU)≤ β .

The TVB approach involves parameter tuning to find the optimal β . Machine learning methods
could be incorporated to learn the β parameter from the snapshots.

5.1.4 Rotational quantities

Conservation of rotational quantities is also important in modeling problems with turbulent flow
and vortices. Let ω = ∇×u refer to the vorticity, where u is the velocity. We can then define the
enstrophy and helicity. The enstrophy is given as the L2-norm of ω , namely∫

Ω

|ω|2dΩ. (5.25)

Enstrophy is conserved for inviscid problems in two dimensions [37, 13]. The vortex tube stretch-
ing term (ω ·∇)u does not vanish in three dimensional flow and so enstrophy is not conserved in
three dimensions [16]. Similar to the techniques for proving nonlinear stability using the entropy
norm, one can also show nonlinear stability using energy and enstrophy norms.

While enstrophy is not conserved for three-dimensional flows, helicity defined as∫
Ω

u ·ωdΩ (5.26)

is conserved. Helicity is a metric to quantify how the velocity lines coil around each other [37].
Implementation of these rotational equality constraints follows similarly to the global conservation
equality constraints.
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5.1.5 Discussion

In formulating a ROM with constraints, it is important to note that the number of constraints
cannot exceed the number of degrees of freedom M in the reduced-order model, or else the problem
becomes overdetermined. The number of constraints can be increased by decomposing the domain
Ω into a set of subdomains and enforcing the constraints over each subdomain rather than over the
entire domain Ω, as long as the problem does not become overdetermined.

Another important consideration in formulating ROMs with structure-preserving constraints is
consistency. In particular, if one introduces constraints into a ROM that the FOM solution is not
guaranteed to satisfy, one runs the risk of introducing an inconsistency between the full and reduced
models. In general, finite volume schemes for fluid problems are, by construction, conservative,
meaning the global conservation law constraints described in Section 5.1.1 will be satisfied by the
FOM solution if it is computed using a finite volume scheme. Satisfaction of the Clausius-Duhem
inequality (Section 5.1.2) in general requires a transformation of the governing equations into
the so-called “entropy variables” [25, 22, 17]. Although some entropy-stable (Clausius-Duhem-
satisfying) formulations lack the global conservation property, there do exist entropy-stable con-
servative finite volume and Discontinuous Galerkin (DG) methods, e.g., [15] and [10] respectively.
Similarly, for enstrophy preserving schemes, the governing equation is written in terms of the vor-
ticity [44, 33]. Numerical schemes with slope limiters result in high resolution and non-oscillatory
TVD solutions [23].

Note that many FOM formulations can in principle be modified to ensure the satisfaction of various
desired physical properties, e.g., through the introduction of constraints in an optimization-like
formulation [5]. This observation may justify the prescription of FOM-inconsistent constraints in
a ROM formulation, on the grounds that the FOM can be modified such that it too satisfies the
desired constraints.

5.2 Demonstration on 1D conservation laws

5.2.1 Burger’s equation

We first demonstrate the effect of the global conservation and TVD constraints on a one-dimensional
scalar conservation law. We use Burger’s equation as the governing equation,

ut + f (u)x = 0, (5.27)

where f (u) = u2

2 is a convex nonlinear flux function.

The numerical results of the reproductive ROM with basis dimension nD = 10, spatial step size
∆x = 0.02 and ∆t = ∆x2 are shown in Figures 5.1–5.2. The FOM is generated using a symmetric
limited positive (SLIP) scheme with superbee limiter [23] implemented in MATLAB. 3751 snapshots
were generated and the percent energy captured by the nD = 10 basis is 91%.

82



Figure 5.1. Spatial profile as the solution evolves with time.

Figure 5.2. Spatial profile as the shock forms and evolves with
time.

Figure 5.2 illustrates that the oscillations with the unconstrained LSPG and LSPG with global
conservation constraint amplify when the shock is formed and evolves. The global conservation
constraint decreases the amplitudes of these oscillations, whereas the TVD constraints removes
the oscillations. The solutions with unconstrained LSPG and LSPG with global conservation con-
straint are also non-physical since the maximum and minimum principles for this scalar nonlinear
conservation law are violated.
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Figure 5.3. Conserved variable and total variation as functions
of time.

Figure 5.3 depicts that even though conservation is satisfied in the finite volume FOM, conser-
vation is not preserved in the unconstrained ROM. The ROM with global conservation constraint
preserves the structure. Note that by integrating the one-dimensional Burger’s equation in space
and time, the global conservation constraint reduces to∫

Ω

u(x, tn)dΩ−
∫

Ω

u(x, tn−1)dΩ =−
∫ tn

tn−1
f (uN , t)− f (u1, t)dt. (5.28)

where uN = u(xN , t) and u1 = u(x1, t). The conservation error in the ROM with TVD constraint is
improved, but the scheme is still not conservative. Similarly, Figure 5.3 also depicts that the total
variation is improved in the ROM with the global conservation constraint, but matches the true
solution only when the TVD constraint is used. For both properties to be satisfied, both constraints
must be enforced.

Figure 5.4. Relative state-space error and total variation as func-
tions of time.
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Figure 5.4 reveals that the relative state space error, as measured in the discrete l2-norm is decreased
the constrained ROM cases. The minimal error occurs when both TVD and global conservation
are enforced.

5.2.2 Sod’s shock tube problem

The governing equations for Sod’s shock tube problem are the one-dimensional compressible Euler
equations, given by the following nonlinear systems of conservation laws

ut + f(u)x = 0, (5.29)

where u =
(

ρ, ρu, E
)T and f(u) = uu +

(
0, p, up

)T , with the variables ρ , u and E
denoting the fluid density, velocity and energy, respectively. The initial density and pressure are
discontinuous and are given by

ρ
0(x) =

{
1 if x < 0.5,
0.125 otherwise,

and

p0(x) =

{
1 if x < 0.5,
0.1 otherwise,

for x ∈Ω = [0,1]. The initial velocity is uniformly zero [41].

The FOM is a second order finite volume method with Roe flux and entropy fix from the MORTestbed
MATLAB code [47]. A predictive LSPG ROM is implemented and the results are compared from
the unconstrained and TVD constrained solutions. The training is run until time tTrain = 0.25. In
these results, we test the long-time behavior of the ROM for times past the training window. The
simulations are run with basis dimension nD = 10, spatial step size ∆x = 0.01 and temporal step
size ∆t = 0.001. 1000 snapshots were used to generate the ROM and the percent energy captured
by the nD = 10 basis is 99%.

Since the governing equation is a nonlinear system of hyperbolic conservation laws, the total vari-
ation of the solution is not guaranteed to be non-increasing, as discussed in Section 5.1.3. For
consistency, we impose the TVD constraints on the solution conserved variables that satisfy the
TVD property in the FOM. Figure 5.10 shows that the total variation of density and energy are con-
stant in the FOM, whereas the total variation of the momentum is increasing. Hence, we impose
the TVD constraints component-wise on the density and momentum.
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Figure 5.5. Spatial profile at time tROM f inal = 0.1.

86



Figure 5.6. Spatial profile at time tROM f inal = 0.2.

Figures 5.5 and 5.6 display the numerical solutions at times within the training window. There
are low amplitude oscillations present in the unconstrained LSPG solution in Figure 5.5 and a
nonphysical negative velocity present in this solution in Figures 5.5 and 5.6. These numerical
artefacts are removed in the TVD constrained LSPG ROM.
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Figure 5.7. Spatial profile at time tROM f inal = 0.3.

Figures 5.7 and 5.8 show that the LSPG ROM becomes highly oscillatory and unstable for times
outside of the training window. The TVD constrained solution removes the nonphysical oscilla-
tions and provides a stable solution for shock problems.

Figure 5.9 reveals that while global conservation holds for the total mass and total mass, the ROM
does not satisfy conservation of total momentum. Future work will include combining the global
conservation equality constraints with the TVD inequality constraint as done in Burger’s equation
[30].
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Figure 5.8. Spatial profile at time tROM f inal = 0.4.

Figure 5.9. Total conserved variables as a function of time.
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The total variation of all the conserved variables increases in the unconstrained LSPG ROM above
the total variation of the conserved variables in the ROM. Imposing the TVD constraints in the
ROM results in total variations of the conserved variables consistent with those of the FOM.

Figure 5.10. Total variation as a function of time

Figure 5.11. Relative state space error as a function of time.

In Figure 5.11, the relative state space discrete l2 error is larger in the TVD constrained ROM, even
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though it provides non-oscillatory solutions. The difference in the error is more significant at early
times. The loss of accuracy of the TVD constrained solution can be attributed to the fact that with
a low-dimensional basis to find a feasible point, the least squares residual may not be as decreased
as in the unconstrained case.

To improve the accuracy of TVD constrained solution, future work includes experimenting with
different bases, such as using the snapshots basis with a sparse l1 penalty. Another approach
is to partition domain into k different regions and compute a basis for each region. We may also
conjecture that adding the global conservation constraint will decrease the relative state-space error,
as observed with Burger’s equation.

5.3 Perspectives towards SPARC implementation

The results summarized above show that it is possible to decrease the relative state space error
and preserve the physical structure of a ROM solution through the introduction of various physics-
based constraints into the LSPG/POD ROM formulation. These promising preliminary results
suggest that the addition of constraints into the SPARC ROM formulation may be beneficial. As
discussed in our FY16 report [45] and Section 3.4.4, scenarios in which SPARC LSPG/POD ROMs
fail by computing non-physical quantities (e.g., negative pressures) do occur, which suggests some
physics-based property is being violated by these models. Prior to adding a constrained LSPG/POD
ROM formulation into SPARC it is worthwhile to perform a numerical study of whether these ROMs
satisfy the candidate constraints (e.g., conservation).

The following constraints would be worthwhile to consider adding to the unconstrained LSPG/POD
formulation in SPARC:

• Global conservation. We have seen in the above examples that even if the FOM is conserva-
tive, the ROM is not necessarily. The high-fidelity finite volume schemes employed in SPARC
are, by construction, conservative. Enforcing the global conservation constraint results will
result in a physically correct conservative ROM.

• Clausius-Duhem inequality. Similarly to global conservation, enforcing the Clausius-Duhem
inequality in model will result in an entropy preserving numerical solution. The implemen-
tation of high-fidelity entropy-stable conservative finite volume and DG methods, e.g., [15]
and [10], in SPARC is planned for FY18.

• Total variation boundedness (TVB). This constraint will be relevant to SPARC problems that
are supersonic and exhibit shocks. Stability and long time behavior of ROMs can be im-
proved by bounding the total variation. The TVB constraint can mitigate the spurious oscil-
lations, commonly found in problems with shocks.

• Enstrophy and helicity conservation. Enstrophy and helicity conservation constraints are
important when modeling vortices and turbulence in the two and three dimensional flows.
Note that enstrophy and helicity conservation often requires a special numerical formulation,
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so these quantities may not be conserved by SPARC FOMs for all problems.

Finally, it is worth noting that, while physics-based structure-preserving constraints can improve
the accuracy of ROMs based on the POD method, the accuracy of these models will likely be
limited by the quality and span of the reduced basis employed, especially for predictive problems.
The combination of LSPG/POD ROMs with basis enhancement and/or enrichment methodologies,
e.g., [6] and [2], is therefore recommended as a longer-term research endeavor.
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Chapter 6

Summary and future work

6.1 Summary

This report summarizes our FY17 study of the viability of the LSPG/POD model reduction method-
ology implemented within the SPARC finite volume flow solver in the context of a 2D viscous
laminar cavity flow problem. This problem is a simplified representation of the captive-carriage
environment, of interest to Sandia National Laboratories for the design and qualification of NW
systems. Of particular interest are long-time simulations, in which the ROM is run at the same
parameters as the FOM from which it is constructed, but much longer in time.

The primary focus of this work is to see if reduced-order models can accurately reproduce the PSD
of the pressure fluctuations from the full-order model. We find that ROM accuracy and stability
can be improved by running the ROM non-dimensionally, varying the ROM training window,
introducing a preconditioner into the ROM LSPG formulation that has the effect of modifying the
norm in which the residual is minimized, and varying the timestep used in the ROM. Our results
demonstrate that the improved ROMs can produce PSDs with peaks matching their corresponding
FOMs, a promising result that warrants the continuation of this work in the future.

Also described in this report are the results of a formal mesh convergence study of various finite
volume discretization methods within SPARC, and a structure-preserving constrained LSPG ROM
formulation. The mesh convergence study demonstrates that the expected order of accuracy is in
general achieved for the schemes in SPARC in the context of an inviscid pressure pulse problem.
We show in the context of some 1D conservation laws that the constrained structure-preserving
formulation makes it possible to decrease the relative state space error and preserve the physical
structure of a ROM solution, which suggests that adding constraints to the LSPG/POD ROMs in
SPARC in the future may be a worthwhile effort.

6.2 Future work

During FY17, significant progress was made in improving the predictive capabilities of the LSPG/
POD ROMs through the work detailed in this report. However, further research is required to gain
a complete picture of the viability of the proposed ROM methodology for the targeted application.
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In addition, code optimizations are required to achieve the desired speedups (relative to a SPARC
high-order model) by using the ROMs in SPARC.

The primary FY18 tasks for this project will center around: (Objective 1) gaining as complete
as possible of an understanding of the viability of the LSPG/POD ROMs implemented in the
SPARC flow solver in the specific case of a 2D viscous laminar cavity problem, and (Objective
2) improving the efficiency of the said ROMs so as to understand what speedups are possible
with respect to a full order simulation, as well as to have a complete SPARC LSPG/POD ROM
implementation that can be used by future researchers/analysts working with the code.

In addition to the two objectives identified above, we will complete and verify the implementation
of the higher order Rai scheme [35] commenced during FY17. This is expected to benefit the
Advanced Technology Development and Mitigation (ATDM) project and enable 3D cavity ROM
simulations at a later point in time. Specific tasks and measurable outcomes for each of these two
primary objectives identified above are discussed below.

Towards Objective 1, we will focus on gaining a complete understanding of the effect of the follow-
ing “tunings” involving our SPARC LSPG/POD ROMs, all in the context of a 2D viscous laminar
cavity flow problem:

• Understanding the effect of the time-step on ROM accuracy for predictive-in-time SPARC
ROM simulations.

• Understanding the effect of various preconditioners (described in more detail in Objective 2)
on ROM accuracy for predictive-in-time simulations.

• Understanding the effect of the training window and snapshot sampling frequency on ROM
accuracy for predictive-in-time simulations.

• Determining the basis size required to achieve a viable predictive-in-time ROM.

“Viability” of the ROM is defined as the ability of the ROM to represent the pressure PSD of the
flow at various points of interest (e.g., on the inner cavity wall; see Section 3.2). All findings will
be documented in a SAND report and/or published article, and archived in a repository.

Towards Objective 2 we plan to implement and understand the benefits of the following optimiza-
tions to the LSPG/POD ROM code in SPARC, required for achieving speedups over a high-fidelity
SPARC simulation:

• Implementation of preconditioners in SPARC that emulate “ideal preconditioned ROMs”
(Section 3.4.4). These preconditioners effectively change the inner product in which the
residual norm is minimized, and are critical to obtaining ROMs that accurately reproduce
the pressure PSDs for predictive-in-time simulations using the ROM. We plan to leverage
the existing SPARC interface to Trilinos [20] preconditioners.

• Introduction of a QR algorithm for solving minimal residual least squares problem at the
heart of the LSPG/POD Galerkin method for improved stability and faster ROM computa-
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tions. We plan to leverage QR capabilities in Trilinos.

• Implementation of hyper-reduction via the “sample mesh” concept. In this approach, the
residual in the ROM is computed only at a small set of points, rather than the entire mesh.
The approach is necessary to achieve speed-ups with a ROM over its corresponding full
order model.

Measurable outcomes will include a demonstration of the reduction in wall-clock time for a ROM
run with each optimization performed, towards getting an idea of the speedups possible with
LSPG/ROMs implemented within SPARC. We will also study numerically the effect of the planned
optimizations on ROM accuracy.

Parallel FY18 development efforts within SPARC will likely include the implementation of physics-
based structure-preserving constraints (Chapter 5 and [39]) as well as the implementation of a
recently-proposed space-time MOR methodology which gives rise to ROMs with slower-growing
error bounds [12].
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