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Abstract

This report summarizes FY16 progress towards enabling uncertainty quantification for compress-
ible cavity simulations using model order reduction (MOR). The targeted application is the quan-
tification of the captive-carry environment for the design and qualification of nuclear weapons
systems. To accurately simulate this scenario, Large Eddy Simulations (LES) require very fine
meshes and long run times, which lead to week-long runs even on parallel state-of-the-art super-
computers. MOR can reduce substantially the CPU-time requirement for these simulations. We
describe two approaches for nonlinear model order reduction, which can yield significant speed-
ups when combined with hyper-reduction: the Proper Orthogonal Decomposition (POD)/Galerkin
method and the POD/Least-Squares Petrov Galerkin (LSPG) method. The implementation of these
methods within the in-house compressible flow solver SPARC is discussed. Next, a method for sta-
bilizing and enhancing low-dimensional reduced bases that was developed as a part of this project
is detailed. This approach is based on a premise termed “minimal subspace rotation”, and has the
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advantage of yielding ROMs that are more stable and accurate for long-time compressible cavity
simulations. Numerical results for some laminar cavity problems aimed at gauging the viability of
the proposed model reduction methodologies are presented and discussed.

5



Acknowledgment

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company
for the United States Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

6



Contents

1 Introduction 13

2 Nonlinear projection-based model order reduction 17
2.1 Reduced basis calculation via the Proper Orthogonal Decomposition . . . . . . . . . . . 18
2.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Galerkin ROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Least-Squares Petrov-Galerkin (LSPG) ROMs . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Hyper-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 LSPG + Collocation ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 GNAT method: LSPG + gappy POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Implementation within the SPARC code 25
3.1 FOM capabilities in SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 ROM implementation in SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Time-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 Hyper-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 SPARC ROM utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 POD basis generation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Sample mesh creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Projection error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Basis stabilization and enhancement via minimal subspace rotation 29
4.1 Application of basis rotation to Galerkin ROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Trace minimization problem for subspace rotation . . . . . . . . . . . . . . . . . . . . 31
4.1.1.1. Alternative objective functions and constraints . . . . . . . . . . . . . . . . 32

4.1.2 Solution of constrained optimization problem . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Stabilization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Application of basis rotation to LSPG ROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Numerical results 37
5.1 Numerical evaluation of LSPG ROMs in SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Viscous laminar cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Reproductive ROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Predictive ROM - Extended Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Predictive FOM - Mach Number Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7



5.1.2 Inviscid pulse in uniform base flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Numerical evaluation of ROM stabilized via minimal subspace rotation . . . . . . . . . 54

5.2.1 Sigma CFD–Spirit Galerkin ROM stabilized via minimal subspace rota-
tion for the viscous laminar cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 SPARC–Spirit LSPG ROM stabilized via minimal subspace rotation for
the inviscid pulse in uniform base flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Discussion 61
6.1 LSPG ROMs in SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Basis stabilization and enhancement via minimal subspace rotation . . . . . . . . . . . . . 62
6.3 FY17 project plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63

8



List of Figures

1.1 Compressible captive-carry problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 The computational mesh used for 2D viscous laminar cavity simulations in SPARC. 38
5.2 The pressure time history for a point midway up the downstream wall of the cavity. 40
5.3 The pressure time histories at a point midway up the downstream wall of the cavity

for the FOM and reproductive ROMs using a POD basis constructed from 800
snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 The discarded energy fractions for the POD basis constructed from 800 snapshots
for the cavity problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 The projection error for the POD basis constructed from 800 snapshots for the
cavity problem. The dashed line indicates the end of the snapshot collection period. 43

5.6 The pressure time histories at a point midway up the downstream wall of the cavity
for the FOM and reproductive ROMs using a POD basis constructed from 2000
snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 The discarded energy fractions for the POD basis constructed from 2000 snapshots
for the cavity problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 The projection error for the POD basis constructed from 2000 snapshots for the
cavity problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.9 The power spectral density of the pressure fluctuations measured at a point midway
up the downstream wall of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.10 The pressure time histories at a point midway up the downstream wall of the cavity
for the FOM and reproductive ROMs using a POD basis constructed from 2000
snapshots when the tolerances are varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11 The pressure time history for a point midway up the downstream wall of the cavity
when an updated version of SPARC is run with tighter tolerances and for a longer
period of time. The pressure does not appear to reach a periodic state. . . . . . . . . . . 48

5.12 The pressure time histories at a point midway up the downstream wall of the cav-
ity for the FOM and ROMs run for an extended time period using a POD basis
constructed from 800 snapshots. The dashed vertical line indicates the end of the
snapshot collection period. Curves terminating before time 0.154 indicate that a
non-physical quantity was computed by the ROM, and the ROM was unable to
continue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.13 The pressure time histories at a point midway up the downstream wall of the cavity
for the FOM and ROMs run at Mach 0.6 when the POD basis was constructed using
snapshots from Mach 0.575 and Mach 0.625 runs. Curves terminating before time
0.02 indicate that a non-physical quantity was computed by the ROM, and the
ROM was unable to continue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9



5.14 The projection errors for the POD basis constructed using the FOM run dimen-
sionally (left) vs. non-dimensionally (right) for the inviscid pulse problem. The
POD basis for each case was constructed using every 5 snapshots, but the projec-
tion error is computed for every snapshot. This can cause the error to increases
substantially for snapshots not in the training set . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.15 Time history of SPARC LSPG ROM generalized coordinates for mode 4 compared
to FOM projection for the inviscid pulse problem run dimensionally (left) vs. non-
dimensionally (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.16 Nonlinear model reduction of the cavity at Re≈ 5500. Evolution of modal energy;
DNS (thick gray line), standard M = 20 ROM (dashed blue line), stabilized M =
P = 20 ROM (solid black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.17 PSD of pressure at the point half way up the downstream wall of the cavity for the
cavity at Re ≈ 5500. DNS (thick gray line), stabilized M = P = 20 ROM (black
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.18 CPSD of the pressure between two points inside the of the cavity at Re ≈ 5500.
DNS (thick gray line), stabilized M = P = 20 ROM (black line) . . . . . . . . . . . . . . . 57

5.19 Snapshot of the contours of u-velocity magnitude at the final snapshot for the cavity
problem. DNS (top), standard M = 20 ROM (middle), and stabilized M = P = 20
ROM (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.20 Time history of SPARC–Spirit M = 10 mode Galerkin ROM generalized coor-
dinates compared to FOM projection for inviscid pulse problem run: marginal
stability constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.21 Time history of SPARC–Spirit M = 10 mode Galerkin ROM generalized coor-
dinates compared to FOM projection for inviscid pulse problem run: asymptotic
stability constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10



List of Tables

5.1 Parameters used for the 2D viscous laminar cavity test case in SPARC. . . . . . . . . . . . 39
5.2 Parameters used for the inviscid pulse test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11



12



Chapter 1

Introduction

The quantification of the captive-carry environment is of great interest to Sandia National Labo-
ratories, as it enables the design and qualification of nuclear weapons (NW) systems and related
components. In the captive-carry problem, a weapons bay (Figure 1.1) and its contents experi-
ence large unsteady pressure loads (which can exceed 160 dB for certain bay geometries and flow
conditions) when exposed to an external flow field. Special care must be taken to design these com-
ponents such that they are able to withstand loads of this magnitude. There exist in-house Large
Eddy Simulation (LES) Computational Fluid Dynamics (CFD) codes that can be used to simulate
this scenario, e.g., the Sigma CFD [1] and SPARC [7] flow solvers. In order to predict the dynamic
loads on the cavity and its components to a sufficient accuracy, very fine meshes and long run times
are required. Despite improved algorithms and more powerful computing platforms, a single rele-
vant captive-carry simulation can take on the order of weeks to complete even when run on parallel,
state-of-the-art supercomputers. These computational requirements preclude advanced analysis of
the captive-carry environment even with the projected growth in computing power. In particular,
uncertainty quantification (UQ) is intractable, as it requires running a simulation numerous times.

(a) Weapons bay of
an airplane

(b) Compressible cavity with ob-
ject

(c) 2D cross-section of compressible cavity

Figure 1.1. Compressible captive-carry problem
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A promising tool for drastically reducing compute times and enabling on-the-spot analysis and
UQ is model order reduction (MOR). A reduced order model (ROM) is a model constructed from
a high-fidelity simulation that retains the essential physics and dynamics of its corresponding full
order model (FOM), but has a much smaller computational cost. Although some consider a data-
fit or low-fidelity model a reduced order model, herein the term “reduced order model” refers
to a projection-based ROM. In projection-based MOR, the state variables are approximated by a
low-dimensional subspace, typically obtained through a data compression performed on a set of
snapshots collected from a high-fidelity simulation or physical experiment, followed by trunca-
tion: the removal of modes believed to be unimportant in representing a problem solution. There
are numerous approaches in the literature for computing a low-dimensional subspace, e.g., Proper
Orthogonal Decomposition (POD) [42, 20], Dynamic Mode Decomposition (DMD) [37, 41] bal-
anced POD (BPOD) [36, 46], balanced truncation [18, 29], and the reduced basis method [39, 44].
Once a reduced basis is computed, the ROM dynamical system is obtained by projecting the gov-
erning equations, or some discretized form of these equations, onto the low-dimensional subspace.
For non-linear problems, an additional layer of approximation, referred to as “hyper-reduction”, is
usually required to gain a computational speed-up.

This report summarizes an ongoing research effort to develop stable, accurate, robust and efficient
projection-based model reduction methodologies for compressible flow problems, and to imple-
ment the most viable of these approaches in the SPARC in-house flow solver. The effort leverages
earlier work by various team-members, most notably, the following

• Barone, Kalashnikova, Fike et al. [9, 23, 22]: It is demonstrated that POD/Galerkin ROMs
constructed in the L2 inner product for compressible flows can possess non-physical insta-
bilities. A stable formulation can be obtained through the careful construction of a weighted
L2 inner product, derived using energy methods, for both linear and nonlinear compressible
flow equations.

• Balajewicz, Tezaur et al. [5, 4]: The authors argue that, for a projection-based ROM of a
fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken
into account. An approach for stabilizing and enhancing projection-based fluid ROMs in
which truncated modes are accounted for a priori via a minimal rotation of the projection
subspace is proposed.

• Carlberg et al. [14]: The Gauss-Newton with Approximated Tensors (GNAT) method for
nonlinear model reduction, a Least Squares Petrov-Galerkin (LSPG) minimal-residual-based
approach that creates the ROM at the fully discrete (rather than semi-discrete) level, and
maintains efficiency using gappy POD [16] is proposed. This approach is proven to be
discrete-optimal, and shown numerically to have better stability properties than the POD/
Galerkin method for compressible flow problems.

In order to be considered viable, a ROM must be capable of capturing the statistics (e.g., pressure
power spectral density, or PSD) of a flow for long-time simulations to a sufficient accuracy. Of
particular importance are time-predictive simulations using the ROM; that is, simulations in which
the ROM is run at the same parameter values as the FOM from which it was constructed, but for
much longer in time. While the situation in which the ROM is run at different parameter values
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(e.g., Reynolds and/or Mach number) than the FOM is of interest as well for enabling UQ, ROM
robustness with respect to parameter changes is less critical than predictability in time.

A difficulty encountered by projection-based ROMs for compressible flow problems is ROM in-
stability: as demonstrated in [9, 22, 11], a compressible fluid ROM might be stable using a given
number of modes, but unstable for other choices of basis size. These non-physical ROM instabili-
ties can limit the usefulness of ROMs for long-time predictions. Since it was shown in earlier work
by Carlberg, Barone et al. [14, 12] that LSPG ROMs, which are based on Petrov-Galerkin projec-
tion, tend to be more stable than Galerkin ROMs, we chose to implement this flavor of methods in
the MOR suite within SPARC, in addition to the traditional Galerkin projection method (for com-
parison purposes). A parallel effort to the implementation and testing of these MOR approaches in
SPARC has been the extension of the method of minimal subspace rotation [5, 4], a non-intrusive
basis stabilization method, to compressible flow problems simulated in SPARC. This approach has
been demonstrated to produce ROMs that are predictive in time for laminar compressible cavity
problems [4]. Moreover, the method of minimal subspace rotation can enable extreme model re-
duction without sacrificing accuracy. Basis stabilization methods were deemed necessary for LSPG
ROMs because, while more stable than Galerkin ROMs, LSPG ROMs can exhibit instabilities for
low-dimensional expansions.

The remainder of this report is organized as follows. Projection-based model order reduction (the
Galerkin method, the LSPG method and gappy POD for hyper-reduction) for general nonlinear
systems is overviewed in Chapter 2. The implementation of model reduction capabilities within
the SPARC flow solver is detailed in Chapter 3. Next, Chapter 4 motivates and describes reduced
basis stabilization and enhancement via minimal subspace rotation. Finally, numerical results are
presented in Chapter 5 and discussed in Chapter 6. These results provide some insight into the via-
bility of the considered model reduction methodologies for compressible captive-carry problems.
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Chapter 2

Nonlinear projection-based model order
reduction

In this chapter, we overview some classical projection-based approaches to model reduction for
nonlinear partial differential equations (PDEs). There are three classes of projection-based model
reduction approaches:

(i) approaches which operate directly on the governing PDEs at the continuous level [9, 22],

(ii) approaches which operate on a semi-discrete form of the governing PDEs (i.e., the PDEs
discretized in space, but not in time), and

(iii) approaches which operate on the fully discretized governing PDEs (i.e., the PDEs discretized
in space and time) [14].

Here, we restrict our attention to the third class of approaches, as it is this class of methods that
was implemented within the SPARC flow solver.

Consider the following system of nonlinear equations

rrr(www) = 000 (2.1)

where www ∈ RN is the state vector and rrr : RN → RN is the nonlinear residual operator. In our case,
(2.1) are the compressible Navier-Stokes equations, discretized in space and time, so that (2.1) is
the (discrete) full order model (FOM) for which we will build a ROM. Assuming we solve (2.1)
using a (globalized) Newton’s method, the sequence of solutions we generate are

JJJ(k)δwww(k) =−rrr(k), k = 1, . . . ,K (2.2)

www(k) = www(k−1)+αkδwww(k), (2.3)

where JJJ(k) := ∂ rrr
∂www

(
www(k)

)
∈ RN×N , rrr(k) := rrr

(
www(k)

)
∈ RN , www(0) is an initial guess for the solution,

and αk ∈ R is the steplength (often set to one).

Our task is to build a ROM for (2.1) using the projection-based model reduction approach. This
approach consists of three steps:

(i) calculation of a reduced basis,

17



(ii) projection of the governing equations (in our case, (2.1)) onto the subspace spanned by the
reduced basis, and

(iii) hyper-reduction to handle efficiently the projection of the nonlinear terms.

Each of these steps is outlined below. The numerical implementation of the model reduction
algorithms outlined in this chapter within the SPARC flow solver is described later, in Chapter 3.

2.1 Reduced basis calculation via the Proper Orthogonal De-
composition

The first step of any projection-based model reduction approach is the calculation of a reduced
basis of order M with M << N, denoted by ΦΦΦM =

(
φφφ 1, · · · , φφφ M

)
. There are numerous ap-

proaches for calculating the reduced basis modes1. Here, we restrict our attention to reduced bases
computed via the Proper Orthogonal Decomposition (POD) [42, 3, 20]. POD is a mathemati-
cal procedure that, given an ensemble of data and an inner product, denoted generically by (·, ·),
constructs a basis for the ensemble that is optimal in the sense that it describes more energy (on
average) of the ensemble in the chosen inner product than any other linear basis of the same di-
mension M. The ensemble {xk : k = 1, . . . ,K} is typically a set of K instantaneous snapshots of a
numerical solution field, collected for K values of a parameter of interest, or at K different times.
Mathematically, POD seeks an M-dimensional (M << K) subspace spanned by the set {φφφ i} such
that the projection of the difference between the ensemble xk and its projection onto the reduced
subspace is minimized on average. It is a well-known result [9, 20, 26, 34] that the solution to the
POD optimization problem reduces to the eigenvalue problem

Rφφφ = λφφφ , (2.4)

where R is a self-adjoint and positive semi-definite operator with its (i, j) entry given by Ri j =
1
K

(
xi,x j) for 1 ≤ i, j ≤ K. It can be shown [20, 28] that the set of M eigenfunctions, or POD

modes, {φφφ i : i = 1, . . . ,M} corresponding to the M largest eigenvalues of R is precisely the desired
basis. This is the so-called “method of snapshots” for computing a POD basis [42].

2.2 Projection

Once a reduced basis is obtained, we approximate the solution to (2.1) by

w̃ww = w̄ww+ΦΦΦMŵww = w̄ww+
M

∑
i=1

φφφ iŵi (2.5)

1Approaches for calculating reduced bases include: the POD method [42, 3, 20], the BPOD method [46, 36],
the balanced truncation method [29, 18], and the reduced basis method [44, 39]. There are also methods based on
goal-oriented bases [11], generalized eigenmodes [6], and Koopman modes [38].
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with ŵww := [ŵ1 · · · ŵM]T ∈RM denoting the generalized coordinates, and w̄ww ∈RN denoting a refer-
ence solution, often taken to be the initial condition in the case of an unsteady simulation.

We then substitute the approximation (2.5) into (2.1). This yields

rrr(w̄ww+ΦΦΦMŵww) = 000, (2.6)

which is a system of N equations in M unknowns ŵww. As this is an over-determined system, it may
not have a solution.

Here, we consider two ways to compute a unique solution ŵww: Galerkin projection and Least-
Squares Petrov-Galerkin (LSPG) projection.

2.2.1 Galerkin ROMs

Performing a classical Galerkin projection of (2.6) onto the reduced basis modes in the discrete L2

inner product, we obtain the following system

ΦΦΦ
T
Mrrr(w̄ww+ΦΦΦMŵwwG) = 0, (2.7)

where the approximate solution is w̃wwG := w̄ww+ΦΦΦMŵwwG.

Despite its popularity, the Galerkin approach to model reduction is known to have some disad-
vantages when applied to compressible flow problems. In particular, it is well-known that reduced
order models constructed using the POD/Galerkin method lack in general an a priori stability guar-
antee. Thus, it can happen that a POD/Galerkin constructed for a stable full order model exhibits
a non-physical instability, which can lead to practical limitations of the ROM: as demonstrated in
[11, 24, 25, 23, 9], a compressible fluid POD/Galerkin ROM might be stable for a given number
of modes, but unstable for other choices of basis size.

2.2.2 Least-Squares Petrov-Galerkin (LSPG) ROMs

In the LSPG approach to model reduction, solving the ROM for (2.1) amounts to solving the
following least-squares optimization problem

ŵwwPG = arg min
yyy∈RM

‖rrr(w̄ww+ΦΦΦMyyy)‖2
2. (2.8)

Here, the approximate solution is w̃wwPG := w̄ww+ΦΦΦMŵwwPG. The name “LSPG” ROM comes from
the observation that solving (2.8) amounts to solving a nonlinear least-squares problem. The two
most popular approaches for this are the Gauss–Newton approach and the Levenberg–Marquardt
(trust-region) method. Following the work of Carlberg et al. [14], we adopt the Gauss–Newton

19



approach2. This approach implies solving a sequence of linear least-squares problems of the form

δ ŵww(k)
PG = arg min

yyy∈RM
‖JJJ(k)ΦΦΦMyyy+ rrr(k)‖2

2, k = 1, . . . ,KPG (2.9)

ŵww(k)
PG = ŵww(k−1)

PG +αkδ ŵww(k)
PG (2.10)

w̃ww(k)
PG = w̄ww+ΦΦΦMŵww(k−1)

PG (2.11)

It can be shown that the approximation upon convergence is w̃wwPG = w̃ww(KPG)
PG and ŵwwPG = ŵww(K)

PG .3 Note
that the normal-equations form of (2.9) is

ΦΦΦ
T
MJJJ(k)T JJJ(k)ΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
MJJJ(k)T rrr(k), k = 1, . . . ,KPG, (2.12)

which can be interpreted as a Petrov–Galerkin process of the Newton iteration with trial basis (in
matrix form) ΦΦΦM and test basis JJJ(k)ΦΦΦM.

The simplest implementation of the Gauss–Newton method for solving (2.8) consists of the fol-
lowing steps:

(i) Compute the residual rrr(k) and Jacobian JJJ(k).

(ii) Compute the product JJJ(k)ΦΦΦM.

(iii) Compute the low-dimensional Jacobian
[
JJJ(k)ΦΦΦM

]T [
JJJ(k)ΦΦΦM

]
.

(iv) Compute the low-dimensional residual
[
JJJ(k)ΦΦΦM

]T
rrr(k).

(v) Solve linear system (2.12).

(vi) Perform updates (2.10)–(2.11).

(vii) Set k← k+1 and return to step 1.

Once this simple implementation is complete and has been verified, step (v) should be replaced
with a more numerically stable linear least-squares (e.g., from ScaLAPACK) solve for (2.9). This
would involve computing a QR or singular value decomposition (SVD) factorization.

As shown in [14], LSPG ROM approaches, e.g., the GNAT method of Carlberg et al., tend to
possess better stability properties than ROMs constructed via Galerkin projection. In particular,
unpublished results showed that the GNAT ROMs implemented within the AERO-F flow solver4

were capable of generating stable predictions beyond the time interval in which it was trained.
In addition, recent thorough investigations carried out by the team at Sandia [12] illustrated the
following relationships between LSPG and Galerkin ROMs:

2The LSPG approach is the basis for the Gauss–Newton with Approximated Tensors (GNAT) method of Carlberg
et al. [14].

3In the event of an unsteady simulation, the initial guess for the generalized coordinates is taken to be the general-
ized coordinates at the previous timestep.

4AERO-F is available for download at https://bitbucket.org/frg/aero-f.
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(i) Continuous and discrete representations

• Galerkin projection and time discretization are commutative.

• LSPG ROMs can be derived for Runge–Kutta schemes.

• The LSPG ROM has a time-continuous (i.e., ordinary differential equation, or ODE)
representation under certain conditions. This ODE depends on the time step.

(ii) Equivalence conditions

• Galerkin and LSPG ROMs are equivalent for explicit time integrators.

• Galerkin and LSPG ROMs are equivalent in the limit of ∆t→ 0 for implicit time inte-
grators.

• Galerkin ROMs are discrete optimal for symmetric-positive-definite residual Jacobians.
Thus, in this case, LSPG and Galerkin ROMs are equivalent for a specific choice of the
weighted `2 norm employed by LSPG.

(iii) Error analysis

• For backward differentiation formulas, the LSPG ROM can yield a lower local a poste-
riori error bound than the Galerkin ROM because it solves a time-global optimization
problem (over a time window) rather than a time-local optimization problem .

• For the backward Euler time integrator, an intermediate time step should yield the
lowest error bound.

• For the backward Euler time integrator, a larger basis size leads to a smaller optimal
time step for the LSPG ROM.

This study also demonstrated the promise of the GNAT ROM for the application at hand: it yielded
accurate (sub-3% errors) responses for a compressible cavity flow, with computational savings
(measured in core-hours) exceeding 40×.

2.3 Hyper-reduction

Unfortunately, neither the Galerkin nor the LSPG projection approach detailed in Section 2.2 is
efficient for nonlinear problems. This is because the solution of the ROM system requires algebraic
operations that scale with the dimension of the original full-order model N. This problem can be
circumvented through the use of hyper-reduction. A number of hyper-reduction approaches have
been proposed, including the discrete empirical interpolation method (DEIM) [15], “best points”
interpolation [30, 31], collocation [27] and gappy POD [16]. Here, we detail two of these hyper-
reduction algorithms, namely collocation and gappy POD. The implementation of these methods
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is described in the context of the LSPG model reduction approach. LSPG combined with gappy
POD is equivalent to the GNAT method [14].

Note that introducing hyper-reduction produces a less accurate model in principle, as an additional
approximation has been employed. This leads to the notion of a hierarchy of models [13]:

I. Full-order model

II. Projection-based reduced-order model (e.g., Galerkin, LSPG)

III. Projection-based reduced-order model with hyper-reduction (e.g., Galerkin–DEIM, GNAT =
LSPG + gappy POD)

In the context of LSPG projection specifically, hyper-reduction has the effect of changing the
norm in which the residual is minimized. This effectively alters the norm in which the residual is
minimized by the ROM (compare (2.8) and (2.18)). Thus, it is commonly observed in practice that
introducing hyper-reduction does not significantly hamper the quality of the LSPG ROM.

2.3.1 LSPG + Collocation ROM

The key idea behind collocation is to compute only a small number of rows of the residual vector
and Jacobian matrix online. Assume we have a ‘sampling matrix’ ZZZ ∈ {0,1}q×N with M ≤ q� N
that consists of selected rows of the identity matrix. This matrix can be obtained, e.g, via a greedy
algorithm, and dictates which rows of the residual and Jacobian we will compute online. Given ZZZ,
one can mitigate the computational burden described at the end of Section 2.2.2 by replacing rrr(k)

with ZZZrrr(k) and JJJ(k) with ZZZJJJ(k). In this case, the nonlinear least-squares problem (2.8) becomes

ŵwwcoll,PG = arg min
yyy∈RM

‖ZZZrrr(w̄ww+ΦΦΦMyyy)‖2
2, (2.13)

and the associated Gauss–Newton iterations are

δ ŵww(k)
coll,PG = arg min

yyy∈RM
‖ZZZJJJ(k)ΦΦΦMyyy+ZZZrrr(k)‖2

2, k = 1, . . . ,Kcoll,PG (2.14)

ŵww(k)
coll,PG = ŵww(k−1)

coll,PG +αkδ ŵww(k)
coll,PG (2.15)

w̃ww(k)
coll,PG = w̄ww+ΦΦΦMŵww(k−1)

coll,PG (2.16)

Then, the approximation upon convergence is w̃wwcoll,PG = w̃ww(Kcoll,PG)
coll,PG and ŵwwcoll,PG = ŵww(K)

coll,PG. As
before, the relevant nonlinear least-squares problem can be solved via the normal equations. The
normal equations counterpart to (2.14) is

ΦΦΦ
T
MJJJ(k)T ZZZT ZZZJJJ(k)ΦΦΦMδ ŵww(k)

PG =−ΦΦΦ
T
MJJJ(k)T ZZZT ZZZrrr(k), k = 1, . . . ,Kcoll,PG, (2.17)

which can be interpreted as a Petrov–Galerkin process of the Newton iteration with trial basis (in
matrix form) ΦΦΦM and test basis ZZZT ZZZJJJ(k)ΦΦΦM.

As for the LSPG method without collocation, we outline the simplest algorithm for solving (2.13):
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(i) Compute only q rows of the residual ZZZrrr(k) and Jacobian ZZZJJJ(k).

(ii) Compute the product
[
ZZZJJJ(k)

]
ΦΦΦM, which is a q×M matrix.

(iii) Compute the low-dimensional Jacobian
[
ZZZJJJ(k)ΦΦΦM

]T [
ZZZJJJ(k)ΦΦΦM

]
.

(iv) Compute the low-dimensional residual
[
ZZZJJJ(k)ΦΦΦM

]T
ZZZrrr(k).

(v) Solve linear system (2.17).

(vi) Perform updates (2.15)–(2.16).

(vii) Set k← k+1 and return to step 1.

As before, once this initial simple implementation is complete and has been verified, step (v)
should be replaced with a more numerically stable linear least-squares solve for (2.14).

2.3.2 GNAT method: LSPG + gappy POD

The GNAT method [14] is similar to the LSPG + collocation approach described in Section 2.3.1.
The primary difference is that the gappy POD approximation aims to approximate the entire resid-
ual and Jacobian (via least-squares approximation) rather than simply subsample those quantities.
In particular, rrr(k) is replaced with WWW (ZZZWWW )+ZZZrrr(k) and JJJ(k) with WWW (ZZZWWW )+ZZZJJJ(k), where WWW ∈ RN×r

with M ≤ r ≤ q� N is an orthogonal (i.e., WWW TWWW = III) reduced basis for the residual.5 Then, the
method solves the nonlinear least-squares problem

ŵwwGNAT = arg min
yyy∈RM

‖(ZZZWWW )+ZZZrrr(w̄ww+ΦΦΦMyyy)‖2
2 (2.18)

via the Gauss–Newton iterations

δ ŵww(k)
GNAT = arg min

yyy∈RM
‖(ZZZWWW )+ZZZ

[
JJJ(k)ΦΦΦMyyy+ rrr(k)

]
‖2

2, k = 1, . . . ,KGNAT (2.19)

ŵww(k)
GNAT = ŵww(k−1)

GNAT +αkδ ŵww(k)
GNAT (2.20)

w̃ww(k)
GNAT = w̄ww+ΦΦΦMŵww(k−1)

GNAT (2.21)

One can show that the approximation upon convergence is w̃wwGNAT = w̃ww(KGNAT)
GNAT and ŵwwGNAT = ŵww(K)

GNAT.
Again, the normal-equations counterpart to (2.19) is

JJJ(k)
T

JJJ(k)δ ŵww(k)
PG =−JJJ(k)

T
rrr(k), k = 1, . . . ,KGNAT, (2.22)

where JJJ(k) := (ZZZWWW+)
[
ZZZJJJ(k)

]
ΦΦΦM ∈ Rr×M and rrr(k) := (ZZZWWW+)

[
ZZZrrr(k)

]
∈ Rr which can be inter-

preted as a Petrov–Galerkin process of the Newton iteration with trial basis (in matrix form) ΦΦΦM
and test basis ZZZT ZZZJJJ(k)ΦΦΦM.

5In practice, we should consider constructing a separate reduced basis for each component of the residual.
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A basic implementation of the GNAT method is as follows:

(i) Compute only q rows of the residual ZZZrrr(k) and Jacobian ZZZJJJ(k).

(ii) Compute the products JJJ(k) and rrr(k).

(iii) Compute the low-dimensional Jacobian JJJ(k)
T

JJJ(k).

(iv) Compute the low-dimensional residual JJJ(k)
T

rrr(k).

(v) Solve linear system (2.22).

(vi) Perform updates (2.20)–(2.21).

(vii) Set k← k+1 and return to step 1.

Once the steps above have been implemented and this simple code verified, step (v) should be
replaced with a more numerically stable linear least-squares solve as in (2.19).
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Chapter 3

Implementation within the SPARC code

Reduced-order modeling capabilities have been added to the computational fluid dynamics code
SPARC [7]. These capabilities include the reduced-order modeling implementation in SPARC itself
and several supporting utilities.

3.1 FOM capabilities in SPARC

SPARC is a cell-centered, finite-volume code written in C++ that discretizes the compressible
Navier-Stokes equations in conservative, dimensional form. Its salient features at the present time
include:

• support for multi-block structured meshes, unstructured meshes and hybrid meshes,

• standard 2nd-order flux scheme1,

• native solvers and vector/matrix classes,

• optional access to Trilinos [19] linear solvers and vector/matrix data structures,

• explicit Runge-Kutta and implicit BDF time-marching schemes,

• I/O using CGNS files2.

3.2 ROM implementation in SPARC

3.2.1 Meshes

Although SPARC supports multi-block structured meshes, unstructured meshes and hybrid meshes,
it was decided that the ROM implementation would initially target only structured meshes, as this

1The addition of higher-order schemes (e.g., the Rai scheme) is planned for FY17.
2See http://cgns.github.io for more on the CGNS file format.
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should provide the capabilities desired for our target problem of interest.

3.2.2 Time-integration

The ROM implementation in SPARC consists primarily of modified versions of the time solvers.
Specialized ROM child classes have been defined that allow SPARC to be run in either FOM mode
or ROM mode simply by changing the time solver specified in the input file.

As mentioned in Section 3.1, SPARC contains explicit Runge-Kutta as well as implicit BDF schemes.
The ROM implementation for the implicit schemes follows the approach summarized in Sec-
tion 2.2.2. A similar approach was used for the ROM implementation in the specific case of
an explicit time integration scheme.

3.2.3 Projection

The default implementation in SPARC constructs an LSPG ROM. This approach requires that an
implicit time-integration scheme be used. The option to create Galerkin ROMs (for implicit as
well as explicit time-integration schemes) is also available.

3.2.4 Linear solvers

Although SPARC has native matrix/vector data structures and linear solvers, the ROM implemen-
tation in SPARC uses the Tpetra vector and matrix classes from Trilinos. The reduced ROM
system given in equation (2.12) is solved using the direct solvers from the Trilinos package
Amesos2.

3.2.5 Hyper-reduction

As discussed in Section 2.3, the implementation described above does not provide a reduction in
computational cost. This is because the residual and Jacobian are evaluated for every cell, as in the
full-order model implementation. In addition to this, there are several operations involving full-
scale matrix/vector multiplications. Although the solution of the reduced ROM system is much
cheaper than the solution of the full order system, the overall computation time is dominated by
the matrix and vector operations, especially when a large number of modes is used. In order to
reduce the computational cost, a hyper-reduction technique is required.

In our implementation of hyper-reduction, we use the concept of a sample mesh [13] to define
a small set of cells where the residual and Jacobian are evaluated. Since we run SPARC using
its structured mesh implementation, a lot of computational efficiency comes through an efficient
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traversal of the mesh. This efficient traversal is no longer possible with the introduction of a sample
mesh. As a consequence, the use of a sample mesh is much more challenging than it would be in
an unstructured mesh implementation.

The current sample mesh implementation is in a SPARC child class that redefines the residual and
Jacobian calculations. This implementation works by creating a list of cells where the residual
and Jacobian entries are evaluated. SPARC can switch between the nominal traversal through the
mesh and this list traversal by specifying the appropriate discretization type in the input file. Either
option can be used for the FOM or the ROM implementation, although the list traversal approach
is currently limited to explicit schemes only.

We note that, in order to be efficient, the implementation of hyper-reduction in SPARC requires
several optimizations. Currently, the POD basis defined on the full mesh is read in, which uses
more memory than necessary; ideally, only the entries of the basis at the sample mesh should be
stored. Moreover, the list implementation of the sample mesh described above is not the most
optimal approach. Since the sample mesh entries are not sorted, the mesh is not traversed in a
systematic way. Improvements to the sample mesh implementation were begun but put on hold
until further testing and debugging of the ROM implementation is completed.

3.3 SPARC ROM utilities

3.3.1 POD basis generation routines

These routines read in a CGNS file containing snapshots of the flow field, compute a POD basis,
and write the basis to a new CGNS file that can be read in by the SPARC ROM implementation. The
POD basis calculation is performed using the RBGen library from the Trilinos package Anasazi.
Several options specify how the basis is constructed:

• Base flow type specifies a quantity that is subtracted from the snapshots prior to basis gener-
ation. This would be the quantity w̄ww in equation (2.5). The current options are:

– None - nothing is subtracted (default).

– Mean - the average flow field is computed and subtracted from all the snapshots.

– First - the first snapshot is subtracted from all the other snapshots.

– Previous - each snapshot has the previous snapshot subtracted from it so that the basis
is computed using the increment between snapshots.

• Basis Type

– Vector - a single basis is constructed for all flow variables (default).
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– Scalar - separate bases are constructed for each individual flow variable.

• Non-Dimensionalization (off by default)

– Specifies scaling factors that are applied to each variable prior to computing the basis

Note that the projection step of the model reduction is applied to the equations in dimensional
variables even when the non-dimensionalization option is specified.

3.3.2 Sample mesh creation

This routine creates a list of cells where the residual and Jacobian are to be evaluated. The algo-
rithm used is adapted from the Model-Order Reduction (MOR) capabilities implemented by Julien
Cortial in the open-source finite element framework Albany [40]. This algorithm is similar to that
developed for Missing Point Estimation [2].

3.3.3 Projection error

This routine reads in a POD basis and a set of snapshots, projects the snapshots onto the modes,
and computes the resulting projection error.

3.3.4 Post processing

This routine reads in a POD basis and a set of generalized coordinates (i.e., modal coefficients)
and constructs the resulting flow field. This is useful for recreating the flow when running with a
sample mesh.
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Chapter 4

Basis stabilization and enhancement via
minimal subspace rotation

As described in Section 2.1, a basis for the low-dimensional subspace defining a ROM is obtained
from a higher-dimensional subspace through truncation, defined as the removal of modes deemed
unimportant in representing the problem solution. Typically, the size of the reduced basis is chosen
according to an energy criterion: modes with low energy are discarded, so that the reduced basis
consists of the highest energy modes. In most realistic applications, e.g., nonlinear compressible
fluid flow, a basis that captures 99% or more of the snapshot energy is required for the ROM to
accurately reproduce the snapshots from which it was constructed. Computing a basis that captures
99% of the snapshot energy is in general only feasible for toy problems and/or low resolution
models, however, as the “99% energy” requirement leads to relatively high-dimensional bases for
problems of interest here. Moreover, higher order modes are often unreliable for prediction, so
including them in a reduced basis is unlikely to improve the predictive capabilities of a ROM.

It has been argued by a number of researchers, including Balajewicz and Tezaur, that, for a low-
dimensional ROM to be stable and accurate, the truncated/unresolved subspace must be accounted
for in some way. Although low energy modes are negligible from a data compression point of
view, they are often crucial for representing solutions to the dynamical equations. For fluid flow
applications, low energy higher-order modes are associated with energy dissipation. Since low-
dimensional ROMs lack the appropriate balance between energy production and energy dissipa-
tion, low-dimensional ROMs can be inaccurate and sometimes unstable, as shown for the specific
case of POD/Galerkin incompressible and compressible flow ROMs in [9, 22, 5, 4]. While LSPG
ROMs tend to possess better stability properties than Galerkin ROMs [14], instabilities have been
observed when running low-dimensional ROMs constructed using this method for long-time sim-
ulations in the high Reynolds number regime (see Chapter 5). Sometimes these instabilities result
in the calculation of non-physical quantities, e.g., negative energies or pressures, by the ROM.

The situation described above has motivated the development of approaches for stabilizing and
enhancing projection-based ROMs by modifying the projection subspace such that it captures more
of the low-energy but highly dissipative scales of the flow solution in a way that does not increase
the reduced basis size. Building upon earlier work by Balajewicz et al. [5] for incompressible flow,
we have developed a reduced basis stabilization and enhancement approach for compressible flow
that accounts for truncated higher order modes a priori via a minimal rotation of the projection
subspace [4]. In this method, a low-dimensional reduced basis is stabilized through the offline
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solution of a small trace minimization problem on the Stiefel manifold. One important advantage
of the method is that it gives rise to a ROM formulation that is consistent with the underlying FOM.
Another important advantage is that the method is non-intrusive, meaning it could be applied with
ease to a variety of ROMs without the need to modify the ROM source code. The proposed basis
rotation approach has been shown to produce projection-based ROMs that are stable and capable
of reproducing statistical features of the flow (e.g., pressure PSDs) for long-time simulations in
[4].

In this chapter, we describe briefly the proposed approach of stabilizing and enhancing low-
dimensional ROMs using minimal subspace rotation in the context of a Galerkin ROM constructed
for the nonlinear compressible flow equations in specific volume form. We then describe the
method’s extension to LSPG ROMs implemented in a flow solver such as SPARC.

4.1 Application of basis rotation to Galerkin ROMs

Consider, without loss of generality1, the 3D compressible Navier-Stokes equations in primitive,
dimensionless, specific-volume form:

ζ,t +ζ, ju j−ζ u j, j = 0,
ui,t +ui, ju j +ζ p,i− 1

Reζ τi j, j = 0,

p,t +u j p, j + γu j, j p−
(

γ

PrRe

)(
κ(pζ ), j

)
, j−

(
γ−1
Re

)
ui, jτi j = 0,

(4.1)

for i, j = 1,2,3. Here, the symbol p denotes the fluid pressure, and ζ ≡ 1/ρ denotes the specific
volume of the fluid, where ρ is the fluid density; Pr and Re denote the Prandtl and Reynolds
numbers, respectively. The stress tensor τi j is given by

τi j = µ
(
ui, j +u j,i

)
+λuk,kδi j, (4.2)

for i, j,k = 1,2,3, where δik denotes the Kronëcker delta. µ and λ are the Lamé coefficients, and
the symbol κ denotes the thermal diffusivity, assumed herein to be constant.

In the Galerkin ROM approach, the governing variable, www(xxx, t) is discretized using basis functions
(modes) {φφφ i(xxx)}M

i=1 ∈ H with corresponding mode coefficients {ai(t)}M
i=1

www(xxx, t)≈ www0(xxx)+www[1..M](xxx, t) := www0(xxx)+
M

∑
i=1

ai(t)φφφ i(xxx), (4.3)

where www0(xxx) denotes the (steady) mean flow. A Galerkin projection applied to (4.1) yields a system
of coupled quadratic ODEs whose constant coefficients are calculated off-line and once and for all
(see Appendix A of [21] for details). This system has the form:

1We choose to formulate the proposed method in the context of equations expressed in the primitive, rather than
conservative, variables so that hyper-reduction can be avoided (all nonlinearities in (4.1) are polynomial). It is possible
to extend our proposed approach to problems where the full-order model (FOM) is based on the compressible Navier-
Stokes equations in conservative form; see Section 4.2.
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daaa
dt

=CCC+LLLaaa+
[

aaaTQQQ(1)aaa aaaTQQQ(2)aaa · · · aaaTQQQ(M)aaa
]T

, (4.4)

where CCC∈RM, LLL∈RM×M and QQQ(i) ∈RM×M, ∀i= 1, . . . ,M. These matrices can be computed using
a previously-developed in-house model reduction code known as Spirit [8, 22, 17]. Spirit is a
C++ parallel POD/Galerkin ROM code that reads in snapshot data written by a high-fidelity code,
computes a POD basis from this snapshot set using the Anasazi package from the Trilinos suite
of libraries [19], and constructs a ROM by projecting the governing linear or nonlinear fluid PDEs
onto the reduced basis in one of several inner products. For a detailed discussion of the Spirit
code, the reader is referred to [22, 17].

4.1.1 Trace minimization problem for subspace rotation

The key idea behind the minimal subspace rotation approach is to model the truncated modes a
priori by “rotating” the projection subspace into a more dissipative regime. Specifically, instead
of approximating the solution using only the first M most energetic POD modes, the solution is
approximated using a linear-superposition of M + P (with P > 0) most energetic POD modes.
Mathematically this can be expressed as:

φ̃φφ i =
M+P

∑
j=1

X jiφφφ j i = 1, · · · ,M, (4.5)

where XXX ∈ R(M+P)×M is the orthonormal (XXXT XXX = IIIM×M) “rotation” matrix. The Galerkin system
tensors associated with these new modes are expressed as a function of XXX as follows:

Q̃(i)
jk =

M+P

∑
s,q,r=1

XsiQ
(s)
qr Xq jXrk i, j,k = 1, · · · ,M, (4.6a)

L̃LL = XXXTLLLXXX , (4.6b)

C̃CC = XXXTCCC∗, (4.6c)

where CCC∈RM+P, LLL∈R(M+P)×(M+P) and QQQ(i) ∈R(M+P)×(M+P),∀i= 1, · · · ,(M+P) are the Galerkin
system coefficients corresponding to the first M+P most energetic POD modes. The new Galerkin
system is hence:

daaa
dt

= C̃CC+ L̃LLaaa+
[

aaaTQ̃QQ(1)aaa aaaTQ̃QQ(2)aaa · · · aaaTQ̃QQ(M)aaa
]T

, (4.7)

where the matrices Q̃QQ(i), L̃LL and C̃CC are given by (4.6). Remark that (4.6) is consistent with the
original ROM formulation (4.4), and hence the governing PDEs (4.1). This is not the case for a
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popular class of methods for stabilizing ROMs, termed eddy-viscosity-based stabilization methods
[45, 35]. In these approaches, the dynamics of the truncated modes are modeled by modifying
the constant and linear terms of the Galerkin model to incorporate an eddy-viscosity based closure
model into the ROM2.

The goal of the proposed approach is to find XXX such that:

(i) the new modes φ̃φφ i remain good approximations of the flow, and

(ii) the new Galerkin ROM is stable and accurate.

Once the goals (i) and (ii) are translated into mathematical statements, a constrained optimization
problem is formulated for XXX . To guarantee that the new modes remain good approximations of the
flow, the distance ||XXX− IIIM+P,M||F is minimized, where IIIM+P,M are the first M columns of an M+P
identity matrix, and || · ||F is the Frobenious norm. To ensure that the ROM is stable and accurate,
an eddy-viscosity-based constraint equation is used as a proxy. In other words, the eigenvalues of
the linear operator are modified until a stable and accurate ROM is generated.

Mathematically, the constrained optimization problem for XXX outlined above reads as follows:

minimize
XXX∈V(M+P),M

− tr
(
XXXTIII(M+P)×M

)
subject to tr(XXXTLLLXXX) = η

(4.8)

where η ∈ R and
V(M+P),M ∈ {XXX ∈ R(M+P)×M : XXXTXXX = IIIM , P > 0}. (4.9)

In (4.9), V(M+P),M is the Stiefel manifold, defined as the set of (M +P)×M matrices satisfying
the orthonormality condition XXXTXXX = IIIM [33, 43]. In (5.7), the objective function is simplified by
utilizing the property that for a real matrix ||AAA||2F = tr(AAATAAA). Thus, minimizing ||XXX− IIIM+P,M||F is
equivalent to minimizing −tr(XXXTIII(M+P)×M).

The appropriate eigenvalue distribution η , must be identified using a solution matching procedure.
Our approach for selecting η is discussed in Section 4.1.3

4.1.1.1. Alternative objective functions and constraints

There are other choices for the objective function and constraint in (5.7) than the ones we have
selected. The optimization problem (5.7) can be formulated more generally as follows:

minimize
XXX∈V(M+P),M

f (XXX)

subject to g(XXX ,LLL) = 0,
(4.10)

for some goal-oriented objective function f (XXX) and constraints g(XXX ,LLL) = 0. Possible objective
functions in (4.10) include:

2For a review of eddy-viscosity-based stabilization methods for model reduction, the reader is referred to [4].
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• Maximize resolved turbulent kinetic energy (TKE)3:

f (XXX) =−||ΣΣΣ−XXXXXXT
ΣΣΣ||F , (4.11)

where ΣΣΣ denotes the square of the second moments of the ROM modal coefficients [5].

• Minimize weighted subspace rotation:

f (XXX) = ||WWW (XXX− IIIM+P,M)||F , (4.12)

where WWW is some matrix of weights.

• Maximize parametric robustness:

f (XXX) =−
Q

∑
i=1

βi||ΦΦΦ∗M(µi)XXX−ΦΦΦ
∗
M(µi)||F , (4.13)

where βi are weights and µi are parameters (e.g., Reynolds or Mach number), for i = 1, ...,Q.
Here, ΦΦΦ

∗
M denotes the original (unrotated) basis.

• Minimize Ordinary differential equation (ODE) based objective:

f (XXX ,LLL) = |||aaa(t)− ãaa(t)||| (4.14)

where ãaa(t) is a reference time series for ROM modal amplitudes aaa(t).

Some candidates for the constraint in (4.10) include:

• Manipulation of individual eigenvalues:

g(XXX ,LLL) = λ̃i−βi, (4.15)

for some βi ∈ R, where λ̃i denote the eigenvalues of L̃LL.

• Linear energy conservation:
g(XXX ,LLL) = L̃LLH , (4.16)

where L̃LLH is the Hermitian part of L̃LL.

4.1.2 Solution of constrained optimization problem

A common method for solving constrained optimization problems of the form (5.7) is the method
of Lagrange multipliers [32]. In this method, the Lagrangian of the optimization problem is com-
puted, and its stationary points are sought, yielding necessary optimality conditions for local max-
ima and minima. The reader can verify that the Lagrangian for (5.7) is

L (XXX ,ΛΛΛ1,ΛΛΛ2) :=−tr(XXXTIII(M+P)×M)+ tr(ΛΛΛ1(XXXTLLL∗XXX− η

M IIIM))+ tr(ΛΛΛ2(XXXTXXX− IIIm)), (4.17)

3Maximizing TKE was considered in earlier work involving basis stabilization via subspace rotation for incom-
pressible flow [5]. For both incompressible as well as compressible flow, maximizing this objective functional led to
less accurate results than minimizing the subspace rotation.
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where ΛΛΛ1 and ΛΛΛ2 are diagonal matrices of Lagrange multipliers.

Suppose that XXX is a local maximizer of problem (5.7). Then XXX satisfies the first-order optimality
condition LXXX = −III(M+P)×M +ΛΛΛ1(LLL∗+LLL∗T)XXX +2ΛΛΛ2XXX = 0, tr(XXXTLLL∗XXX − η

M IIIM) = 000, and XXXTXXX −
IIIM = 000. Solving (5.7) using Lagrange multipliers is possible; however, it is inefficient. Significant
speed-ups are possible by satisfying the orthonormality constraint directly via optimization on
the Stiefel matrix manifold. In this method, with the help of the augmented Lagrange method,
the constrained optimization problem is reduced to an unconstrained optimization problem on the
Stiefel manifold as follows:

minimize
XXX∈V(M+P),M

− tr(XXXTIII(M+P)×M)+
µk

2
tr(XXXTLLL∗XXX− η

n IIIM)2−λL tr(XXXTLLL∗XXX− η

n IIIM), (4.18)

where µk is increased until the constraint is satisfied to some desired precision. The variable λL is
an estimate of the Lagrange multiplier and is updated according to the rule

λL i+1← λL i−µktr(XXX (k)T
LLL∗XXX (k)− η

M IIIM), (4.19)

where XXX (k) is the solution of the unconstrained problem at the kth step. In this work, the Manopt
MATLAB toolbox [10] is used to solve (4.18).

4.1.3 Stabilization algorithm

The overall stabilization procedure is summarized in Algorithm 1. The distribution of stabilizing
eigenvalues η in (4.18) is identified using a brute force approach, which is feasible in this case
because the associated ROMs are small and relatively inexpensive to integrate numerically. A
global ROM “energy” is defined as follows: E(t)(k) = ∑

M
i (a(t)(k)i )2. A linear fit of the temporal

data is performed: E(t)(k) ≈ c(k)1 t + c(k)0 . If the absolute value of c(k)1 is below some predefined

tolerance, the ROM is deemed stable and the procedure halts. If the value of c(k)1 is positive
(indicating increasing energy) then η(k+1) = η(k)+ ε , where ε < 0. If the value of c(k)1 is negative
(indicating decreasing energy) then η(k+1) = η(k)+ε where ε > 0. This search is automated using
MATLAB’s fzero root finding algorithm.

For a more detailed discussion of the stabilization algorithm, including some guidelines for select-
ing the parameters in Algorithm 1, and some general remarks about the numerical solution of the
optimization problem (5.7), the reader is referred to [4].
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Algorithm 1: Stabilization algorithm for compressible Navier-Stokes equations

input : Initial guess for stabilizing eigenvalue distribution η(0), ROM size M and P≥ 1,
Galerkin system matrices associated with the first M+P most energetic POD
modes. C ∈ RM+P, L ∈ R(M+P)×(M+P) and Q(i) ∈ R(M+P)×(M+P), i = 1, · · · ,M+P,
convergence tolerance TOL, and maximum number of iterations. kmax

output: Stabilizing rotation matrix XXX

1 for k = 0, · · · ,kmax do
2 Solve constrained optimization problem on Stiefel manifold:

minimize
XXX (k)∈V(M+P),M

− tr
(

XXX (k)TIII(M+P)×M

)
subject to tr(XXX (k)TLLLXXX (k)) = η

(k).

3 Construct new Galerkin matrices using (4.6)
4 Integrate numerically new Galerkin system

5 Calculate modal energy E(t)(k) = ∑
M
i (a(t)(k)i )2

6 Perform linear fit of temporal data E(t)(k) ≈ c(k)1 t + c(k)0

7 Based on energy growth c(k)1 , calculate ε using root-finding algorithm and perform
update η(k+1) = η(k)+ ε

8 if ||c(k)1 ||< TOL then
9 XXX := XXX (k)

10 terminate the algorithm
11 end
12 end
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4.2 Application of basis rotation to LSPG ROMs

Having formulated the minimal subspace rotation approach for reduced basis stabilization and en-
hancement in the context of Galerkin ROMs in Section 4.1, we now discuss the method’s extension
to LSPG ROMs (Section 2.2.2). For concreteness and without loss of generality, we focus on the
specific case in which the LSPG ROM is computed using the SPARC code. Our initial stabilization
workflow depends also on the Spirit code4 (for generating the matrices and tensors appearing
in (4.4)) and the Manopt MATLAB toolbox (for solving the optimization problem (4.18)). The
workflow is as follows:

(i) Run SPARC in FOM mode to collect snapshots.

(ii) Run SPARC in ROM mode to generate a POD basis.

(iii) Transform the POD basis from SPARC to Spirit. In particular5:

• Interpolate the POD modes from element centers (SPARC convention) to nodes (Spirit
convention).

• Transform the POD modes from conservative variables (used in SPARC) to primitive
variables (used in Spirit).

(iv) Run Spirit with the POD basis from step (iii) to generate the matrices LLL, QQQ(i) and CCC ap-
pearing in (4.4), as well as a mass matrix MMM pre-multiplying the transient term in (4.4)6.

(v) Apply Algorithm 1 from Section 4.1.3 to stabilize the SPARC POD modes using the matrices
LLL, QQQ(i), CCC and MMM from Spirit.

(vi) Transform the stabilized basis back to SPARC variables (reverse of step (iii)).

(vii) Run SPARC in ROM mode with the scaled stabilized POD basis instead of the original POD
basis.

The workflow described above should be invoked in the case a SPARC ROM for a particular problem
of interest experiences instabilities. This is not the only situation in which the approach can be
beneficial, however. As explained at the beginning of this chapter, the proposed basis stabilization
and enhancement methodology can enable extreme model reduction by producing accurate ROMs
of very small dimension. The approach is therefore recommended if one is interested in reducing
the dimension of a ROM without sacrificing accuracy or stability.

Once the basic workflow described above has been put in place, verified and demonstrated, one
may consider modifying the objective function and constraints in (5.7), for example, as suggested
in Section 4.1.1.1.

4See Section 4.1 and [8, 22, 17].
5Some additional scaling and/or normalization of the modes may be required in Spirit to avoid bad scaling of the

ROM matrices and tensors.
6A mass matrix arises because the POD modes from SPARC scaled following step (ii) will not be orthonormal.
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Chapter 5

Numerical results

This chapter summarizes results for two numerical examples aimed at determining if accurate
predictive ROMs can be constructed for captive-carry problems using the POD/LSPG approach
implemented within the SPARC code (see Chapter 3 for details of the implementation). Two test
cases are considered: a 2D viscous laminar cavity problem, and the problem of an inviscid pulse in
a uniform base flow. In Section 5.1, we evaluate the performance of the LSPG ROMs in SPARC on
these test cases. Section 5.2 aims to gauge the viability of the basis stabilization approach detailed
in Chapter 4 on problems akin to those considered in Section 5.1.

Before presenting the main results, two remarks are in order.

First, the examples considered here are admittedly much simpler than the transonic, turbulent flow
simulations we are ultimately interested in. Once we have confidence that accurate ROMs can be
constructed for the simplified tests considered here, we will evaluate our ROM methodology on
higher Reynolds number, turbulent problems.

Second, we note that the implementation of hyper-reduction in SPARC has been put on hold, as it
was deemed more important to ensure that the ROMs in SPARC are viable without hyper-reduction,
which can introduce additional error (Section 3.2). For this reason, our SPARC ROMs do not yet
achieve the speedups possible with hyper-reduction.

5.1 Numerical evaluation of LSPG ROMs in SPARC

5.1.1 Viscous laminar cavity

The computational domain for this test case is composed of two rectangular regions: a cavity re-
gion, Ωcavity = [0.0m,0.0917136m]× [0.0m,−0.0458568m], and an outer flow region, Ω f low =
[−4.58568m,4.58568m]× [0.0m,6.87852m]. This 2D domain is made into a 3D domain for
SPARC by making the mesh 1 cell thick and imposing symmetry (inviscid, slip wall) boundary
conditions on the faces parallel to the plane. The nominal mesh used for these simulations con-
tains 104,500 hexehedral cells and is shown in Figure 5.1. A formal mesh convergence study is
planned but has not been completed yet. The large extent of the outer flow domain is intended
to minimize the effects of any pressure waves reflecting off the boundaries. Reflections off the
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Figure 5.1. The computational mesh used for 2D viscous laminar
cavity simulations in SPARC.
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Parameter Dimensional Value
Free-stream Velocity, u1 208.7816m/s
Temperature, T 300K
Density, ρ 2.90×10−4 kg/m3

Viscosity, µ 8.46×10−7 kg/(ms)
Specific Gas Constant, R 287.097384766765m2/(s2 K)
γ 1.4
Prandtl Number 0.72

Table 5.1. Parameters used for the 2D viscous laminar cavity test
case in SPARC.

boundaries were seen to have a significant impact on the accuracy and stability of ROMs in pre-
vious work [22]. Previous runs using other codes, such as Sigma CFD, utilized a sponge region to
eliminate reflected pressure waves. As SPARC does not currently have a sponge boundary condition
implemented, the outer domain was made very large and the cells stretched in the far field in order
to minimize any pressure wave reflections.

The flow conditions for this test case are chosen to produce approximately Mach 0.6 and a Reynolds
number of approximately 3000. The exact parameters specified in the SPARC input file are given in
Table 5.1. The nominal full-order model runs used BDF2 time stepping with a fixed time step of
2×10−7 s which corresponds to a CFL number of under 5.0.

We are interested in the pressure fluctuations inside the cavity. The pressure is output every time
step at a location midway up the downstream wall of the cavity. The resulting time history can
then be used to compute the PSD of the pressure fluctuations.

Viscous, no-slip boundary conditions are imposed on the left, right, and bottom surfaces of the
cavity domain, Ωcavity. Far-field boundary conditions are imposed on the left, right, and top sur-
faces of the outer flow domain, Ω f low. A combination of inviscid slip wall and viscous no-slip wall
boundary conditions are imposed on the lower boundary of Ω f low. The regions immediately before
and after the cavity have no-slip walls, but the regions closer to the inflow and outflow surfaces
have inviscid slip walls. This strategy allows constant far-field inflow conditions to be specified
without having to impose a boundary layer profile. The boundary layer begins to grow at the up-
stream transition from inviscid wall to no-slip wall. The extent of the no-slip wall was chosen to
allow the boundary layer to attain the desired thickness at the beginning of the cavity.

Three types of ROM runs are discussed in this section. First, there are reproductive ROMs in
which the ROM attempts to reproduce the snapshots from the FOM used to create the POD basis.
Second, there are runs that use the same basis as the reproductive ROMs but attempt to integrate
in time beyond the snapshot collection period. Third, there are predictive runs where snapshots
from FOM runs with two different Mach numbers are used to create a basis for a ROM run at an
intermediate Mach number.

39



0.000 0.005 0.010 0.015 0.020
Time

22

23

24

25

26

27

28

P
re

ss
u
re

Pressure Probe, Cavity Ma0.6 Re5k

Figure 5.2. The pressure time history for a point midway up the
downstream wall of the cavity.

Reproductive ROMs

For these simulations, SPARC is first run using the regular full-order model implementation for
100,000 time steps using a time step of 2× 10−7 s. Figure 5.2 shows the pressure time history
at a point midway up the downstream cavity wall. An almost periodic region can be identified
from this plot beginning a little before t = 0.15s. The FOM was then restarted from t = 0.15s in
order to collect snapshots of the flow field every time step. In order to speed up the resulting ROM
calculations, the time step for this FOM run was changed to 2×10−6 s. Changing the time step did
not seem to impact the FOM runs very much, but it reduced the number of snapshots by a factor
of 10.

Next, a POD basis was constructed using all of the snapshots that were collected. A single basis
was constructed for all the conservative flow variables: density, x–momentum, y–momentum, z–
momentum, and energy. The initial snapshot, i.e., at t = 0.15s, was used as the base flow and was
subtracted from all of the other snapshots prior to computing the basis. No other pre-processing,
such as non-dimensionalization or normalization, was performed.
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Figure 5.3. The pressure time histories at a point midway up
the downstream wall of the cavity for the FOM and reproductive
ROMs using a POD basis constructed from 800 snapshots.

Short-time simulation

First, we ran SPARC in ROM mode with a POD basis constructed using 800 snapshots (approxi-
mately one full period of variation). Figure 5.3 shows a comparison of the pressure time histories
at a point midway up the downstream wall of the cavity. More specifically, this plot compares the
FOM with reproductive ROMs having varying numbers of modes. The ROMs appear to reproduce
the FOM pressure history fairly accurately.

Figure 5.4 shows the discarded energy fractions for the POD basis constructed from 800 snapshots.
The discarded energy fraction is the amount of energy that will be neglected when truncating the
basis to a finite number of modes. Using 200 modes, the POD basis captures over 99.99% of the
energy contained in the snapshot set. Using 500 modes captures over 99.999% of the energy, and
using all 800 modes captures 100% of the energy.

Figure 5.5 shows a plot of the projection error for the basis constructed from 800 snapshots. This
is computed by taking the snapshots from a full-order model run, projecting them onto a basis of
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Figure 5.4. The discarded energy fractions for the POD basis
constructed from 800 snapshots for the cavity problem.

a given size, then reconstructing the flow field and computing the error between it and the FOM.
The dashed line on the plot indicates the end of the snapshot collection period. Prior to this time,
the projection errors are fairly low and the flow field can be seen that the error decreases as more
modes are used. When all 800 modes are used, the projection error is under 1.0× 10−14 and
close to machine precision up until the end of the snapshot collection period. Beyond the snapshot
collection period, the projection error jumps to a higher value for all but the smallest numbers
of modes considered. This indicates that there may be accuracy issues when using this basis for
predictive ROM runs beyond the snapshot collection period, as will be discussed in a later section.
Prior to the end of the snapshot collection period, the fact that the projection error when using 800
modes is close to machine precision indicates that an 800 mode basis is capable of reproducing the
FOM snapshots to within machine precision.

Longer-time simulation

A second reproductive test was performed in which the FOM was restarted from t = 0.15s and
run for 2000 time steps (approximately 2.5 periods of variation). Figure 5.6 shows the pressure
time histories for these runs. The ROMs produce pressure variations that grow in magnitude.
This may indicate a possible instability in the ROMs. The reader can also observe by examining
Figure 5.6 that, even when using all 2000 modes, the ROM fails to reproduce the FOM exactly.
This is inconsistent with LSPG ROM theory, which says that a ROM with a full basis (M = K)
should have zero error. It is conjectured that our ROM has non-zero error when M = K = 2000
due to poor scaling, and/or an improper treatment of boundary condition terms in the ROM. The
former theory is studied in Section 5.1.2 in the context of a simpler problem involving an inviscid
pulse in a uniform base flow. Since SPARC is a dimensional code and the values of the parameters
considered are different by up to 5 orders of magnitude (e.g., O(10−4) for density and O(101) for
pressure; see Table 5.1), catastrophic cancellation during the projection step of the model reduction
and/or inaccurate solver performance due to poor matrix conditioning is conceivable.

Figure 5.7 shows the discarded energy fractions for the POD basis constructed from 2000 snap-
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Figure 5.5. The projection error for the POD basis constructed
from 800 snapshots for the cavity problem. The dashed line indi-
cates the end of the snapshot collection period.
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Figure 5.6. The pressure time histories at a point midway up
the downstream wall of the cavity for the FOM and reproductive
ROMs using a POD basis constructed from 2000 snapshots.
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Figure 5.7. The discarded energy fractions for the POD basis
constructed from 2000 snapshots for the cavity problem.

shots. Using 100 modes, the POD basis captures over 99.9% of the energy contained in the snap-
shot set. Using 500 modes captures over 99.99% of the energy, 1200 modes captures over 99.999%
of the energy, and using all 2000 modes captures 100% of the energy.

Figure 5.8 shows a plot of the projection error for the basis constructed from 2000 snapshots. The
projection errors behave as expected, with the error decreasing as the number of modes used is
increased. When using 100 modes, the projection error is under 1.0× 10−4. This decreases to
under 1.0×10−5 for 500 modes, and further to under 1.0×10−6 for 1200 modes. When all 2000
modes are used the projection error is under 1.0×10−14 and close to machine precision. The fact
that the projection error when using 2000 modes is close to machine precision indicates that a 2000
mode basis is capable of reproducing the FOM snapshots to within machine precision.

Figure 5.9 shows a comparison of the power spectral densities for the pressure time histories given
in Figure 5.6. The calculation of the PSD for such a short time signal may not be realistic, but
the plots are provided here to reinforce that the goal of the ROMs is to reproduce the statistical
nature of the cavity flow, not the instantaneous flow features. As can be seen, the ROMs accurately
reproduce the FOM PSD for this case. This is to be expected since the observed differences
between the ROMs and the FOM had to do with the magnitude of the pressure variations, not the
frequencies. The vertical dashed lines indicate the primary frequencies of the FOM pressure signal
computed manually, and the PSDs seem to capture these fairly well given the short duration of the
time signal.

One possible explanation for the discrepancies between the ROM runs and the FOM may have to
do with the tolerances used in SPARC for this case. Runs with tighter tolerances seemed to eliminate
the increasing amplitudes, but introduced an apparent shift in frequency, as shown in Figure 5.10.
However, this still uses the same basis as the original run, which was based off of a FOM run
with the original nominal tolerances. FOM runs with tighter tolerances, and an updated version of
SPARC produce time histories such as that shown in Figure 5.11. For this run, the pressure time
history does not reach a periodic state. It is possible that it may reach one if run for a longer
time, but if not then some other strategy for determining when to start collecting snapshots will be
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Figure 5.8. The projection error for the POD basis constructed
from 2000 snapshots for the cavity problem.
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Figure 5.9. The power spectral density of the pressure fluctua-
tions measured at a point midway up the downstream wall of the
cavity.
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Figure 5.10. The pressure time histories at a point midway up
the downstream wall of the cavity for the FOM and reproductive
ROMs using a POD basis constructed from 2000 snapshots when
the tolerances are varied.

required.

Predictive ROM - Extended Time

Accurately reproducing the FOM is a necessary step in verifying the ROM implementation in
SPARC. However, it is also desired that the ROMs can be used to predict behavior for which they
were not trained. One desired predictive capability is the ability to extend the time of the simulation
beyond the snapshot collection period of the training data.

For this case, the basis created for the reproductive ROMs using 800 snapshots was used to at-
tempt to run for 2000 time steps. Figure 5.12 shows the pressure histories for this case. The
vertical dashed line in the plot indicates the end of the snapshot collection period. As discussed
earlier, although they are not exact, the ROMs reproduce the FOM fairly accurately up until the
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Figure 5.11. The pressure time history for a point midway up the
downstream wall of the cavity when an updated version of SPARC
is run with tighter tolerances and for a longer period of time. The
pressure does not appear to reach a periodic state.
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snapshot collection period. However, after this time, the error in the ROMs grows, which may be
expected given the projection errors shown in Figure 5.5. The simulations eventually start produc-
ing non-physical results, such as negative energies or pressures. This may indicate an instability, or
there could be other issues with the ROMs. Before a definitive conclusion about the predictive ca-
pabilities of the LSPG ROMs in SPARC can be made, however, the unexpected behavior involving
reproductive LSPG ROMs in SPARC (e.g., non-zero error when M = K) must be resolved.

Predictive FOM - Mach Number Variation

As discussed above, one of the ultimate goals of the project summarized in this report is to create
ROMs that are predictive for use in uncertainty quantification. It is therefore a desired property
that the ROMs maintain their accuracy when run at conditions for which they were not trained.

As a simple test of this capability, SPARC was run using the regular full-order model implementation
at Mach 0.575 and Mach 0.625. The ROM will then be run at Mach 0.6 and compared to the FOM.
For these runs, SPARC ran for 100,000 time steps using a time step of 2×10−7 s and snapshots were
collected every 50 time steps for a total of 2000 snapshots per run. In contrast to the reproductive
runs discussed above where snapshots were collected in a somewhat periodic region, for these runs
snapshots are collected starting from the initial condition.

A single POD basis was computed using snapshots from the Mach 0.575 and Mach 0.625 ROM
runs. The initial flow from the Mach 0.6 case was used as the base flow and subtracted from both
sets of snapshots. This simplifies the ROM creation, but the resulting basis is tailored for the Mach
0.6 case. There are other options for handling the base flow which may produce a more general
basis, but there is no clear best approach and it is an area of future research.

Figure 5.13 shows the time pressure time histories for the FOM and two predictive ROMs run with
170 and 750 modes out of 4000 total modes. In both cases, the ROMs appear to reproduce the
frequency of the pressure variations at the beginning of the simulations. However, the amplitudes
of the oscillations are not captured well and appear to be growing. Eventually the ROMs produce
non-physical results, such as negative energies or pressures. Although these results may seem
discouraging, they are inconclusive in light of the unexpected behavior observed in the reproductive
LSPG ROMs discussed earlier (e.g., non-zero error when M = K). As mentioned earlier, these
issues must be resolved and the reproductive ROMs verified prior to performing more studies of
the predictive capabilities of the SPARC ROMs.

5.1.2 Inviscid pulse in uniform base flow

This test case consists of a 2D Gaussian pressure pulse in the domain: Ω= [−1.0,1.0]× [−1.0,1.0].
The purpose of this much simpler problem is to try to identify and resolve the SPARC LSPG ROM
non-convergence (as M→ K) and apparent instability issues identified in Section 5.1.1.

Slip wall boundary conditions (i.e. no-penetration, inviscid walls) are applied to the edges of the
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Figure 5.12. The pressure time histories at a point midway up
the downstream wall of the cavity for the FOM and ROMs run
for an extended time period using a POD basis constructed from
800 snapshots. The dashed vertical line indicates the end of the
snapshot collection period. Curves terminating before time 0.154
indicate that a non-physical quantity was computed by the ROM,
and the ROM was unable to continue.
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Figure 5.13. The pressure time histories at a point midway up
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Parameter Dimensional Value Non-Dimensional Value
Pressure, p̄ 101325.0N/m2 1.0
Temperature, T̄ 301.24825911K 1.0
Density, ρ̄ 1.1715554kg/m3 1.4
Velocities, ū1 and ū2 0.0m/s 0.0
Speed of Sound, c̄ 347.97m/s 1.0
Specific Gas Constant, R 287.097384766765m2/(s2 K) 0.7142857142857143
γ 1.4 1.4
Time Step, ∆t 1.0e−5s 3.4797e−3

Table 5.2. Parameters used for the inviscid pulse test case.

domain. SPARC is a 3D CFD code, so the computational domain is made to be one cell thick and
symmetry (i.e. slip wall) boundary conditions are applied on the faces parallel to the plane.

For the results presented here, the domain is discretized into 40× 40× 1 hexahedral cells. This
choice of discretization was inherited from previous runs in Sigma CFD [22]. However, the Sigma
CFD runs used a higher-order method, the Rai scheme, whereas SPARC is currently only 2nd-order.
A mesh convergence study in SPARC is currently underway to determine if this discretization is
sufficient.

The test case is initialized by applying disturbances to the uniform base flow of the form:

p′ = 0.001γ p̄e−10r, (5.1)
T ′ = 0.0, (5.2)

ρ
′ =

p′

RT̄
, (5.3)

u′1 = 0.0, (5.4)
u′2 = 0.0, (5.5)

where γ is the ratio of specific heats (1.4 for air), R is the specific gas constant, r is the radial
distance from the center of the domain, and p̄ and T̄ are the pressure and temperature of the base
flow.

This test case was run both dimensionally and non-dimensionally1. The purpose of these two sets
of runs was to determine whether poor scaling in the (default) dimensional runs can be contributing
to the apparent instability and non-convergence properties of the LSPG ROMs in SPARC described
in Section 5.1.1. The parameter values used for these runs are given in Table 5.2. In each case,
whether the run was dimensional or non-dimensional, the workflow for creating and running a
ROM was the same. For the ROM runs in SPARC, the test case was run for 1000 time steps and
snapshots of the flow field were recorded every 5 time steps. Additional runs with 4000 and 8000
time steps were performed for the stabilization work in Spirit (see Section 5.2).

1As mentioned in Section 3.3, SPARC is a dimensional code. However, it is possible to run a non-dimensional
problem through a careful selection of the initial conditions and parameters appearing in the equations.
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Figure 5.14. The projection errors for the POD basis constructed
using the FOM run dimensionally (left) vs. non-dimensionally
(right) for the inviscid pulse problem. The POD basis for each
case was constructed using every 5 snapshots, but the projection
error is computed for every snapshot. This can cause the error to
increases substantially for snapshots not in the training set

First, SPARC was run using the standard full-order model implementation for 1000 time steps and
snapshots of the flow field were collected every 5 time steps for a total of 200 snapshots. These
snapshots were then used to construct a POD basis containing a maximum of 200 modes. For these
runs, the flow field associated with the initial pressure pulse was used as the base flow. SPARC was
then run using the reduced-order model implementation to try to reproduce the full-order model
behavior.

Figure 5.14 shows the projection error for the POD basis computed from the dimensional and non-
dimensional FOM runs. The POD basis for each case was constructed using every 5 snapshots.
However, the projection error shown here is computed for every snapshot. The projection error
is low for snapshots included in the training set, but the error can increase substantially for those
snapshots not in the training set. This is evident by the large spread seen for the 200 mode cases
and other cases using a large number of modes. Overall, the projection error is low for all cases,
meaning that the for each case the POD basis is capable of accurately reproducing the snapshots
from the FOM.

For the results presented here, LSPG ROMs were run using varying numbers of modes. Figure 5.15
provides some results for both the dimensional and non-dimensional runs. These plots show the
generalized coordinate (i.e. coefficient) for one mode, in this case mode 4, for ROMs using 5 to
200 modes. Also shown on these plots is the full-order model solution projected onto the mode
of interest, i.e mode 4. If the time history of the generalized coordinates matches the projected
full-order model for all modes, then the ROM will accurately reproduce the FOM behavior.

The plot on the left in Figure 5.15 shows the behavior for the dimensional runs. As can be seen,
the 5 and 10 mode ROMs do not accurately replicate the FOM. The 30 mode ROM diverges from
the expected behavior and quickly produces NANs. The 20 and 70 mode ROMs seem to do fairly
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Figure 5.15. Time history of SPARC LSPG ROM generalized
coordinates for mode 4 compared to FOM projection for the invis-
cid pulse problem run dimensionally (left) vs. non-dimensionally
(right).

well, but they do not exactly replicate the FOM. The 140 mode ROM seems to exhibit a possible
instability, but it remains finite over the simulation time. The 200 mode ROM seems to go unstable
very early and quickly produces NANs. This behavior was unexpected. LSPG ROMs should have
the property that adding additional modes does not negatively impact the accuracy of the ROM.

The plot on the right in Figure 5.15 shows the behavior for the non-dimensional runs. The ob-
served behavior for these runs is much more consistent with expectations. The 5 mode ROM is
fairly accurate at reproducing the projected FOM solution, and increasing the number of modes
to 10 improves the accuracy. Further increases to the number of modes produces ROMs whose
behavior is indistinguishable visually from the projected FOM behavior. These results suggest that
the unexpected behavior in the dimensional results was at least partially due to poor scaling, as
conjectured above; however, in order to ascertain this, additional testing on a variety of problems
is required. Such studies, as well as more quantitative evaluations of the accuracy, as planned, but
not presented here.

5.2 Numerical evaluation of ROM stabilized via minimal sub-
space rotation

The results in Section 5.1 suggest that the LSPG ROMs in SPARC could benefit from basis en-
hancement and stabilization via minimal subspace rotation (Chapter 4), as this approach has been
shown to improve the stability and accuracy of low-dimensional ROMs [5, 4]. First, we present
some promising results for a variant of the viscous laminar cavity problem described above for
which a Galerkin ROM was generated entirely in the Spirit code using snapshots from the Sigma
CFD flow solver (Section 5.2.1). Such ROMs are termed “Sigma CFD–Spirit” ROMs. Next, in
Section 5.2.2, we apply steps (i)–(v) of the stabilization algorithm outlined in Section 4.2 to an
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LSPG ROM constructed in SPARC for the inviscid pulse test case considered in Section 5.1.2, and
evaluate the performance of the resulting SPARC–Spirit ROM.

5.2.1 Sigma CFD–Spirit Galerkin ROM stabilized via minimal subspace
rotation for the viscous laminar cavity

Here, we present some preliminary results for a variant of the viscous laminar cavity problem
described above for which a Galerkin ROM was generated entirely in the Spirit code using
snapshots from the Sigma CFD flow solver, and stabilized using the minimal subspace rotation
approach described in Chapter 4. The purpose of this study is to gauge the viability of the proposed
subspace rotation approach for long-time moderate Reynolds number problems similar to those
simulated using SPARC.

The domain of interest is an open cavity, discretized using a mesh with 98,408 nodes (see Figure 3
in [4]). At the inflow boundary, a value of the velocity and temperature that is above the free stream
values is specified. The flow at the cavity walls is assumed to be adiabatic and to satisfy a no-slip
condition. The remaining outflow boundaries are open, and a far-field boundary condition that
suppresses the reflection of waves into the computational domain is implemented here. The high-
fidelity simulation is initialized by setting the flow in the cavity to have a zero velocity, free stream
pressure, and temperature. The region above the cavity is initialized to free stream conditions
and the flow is allowed to evolve. The viscosity µ is kept spatially constant and calculated such
that a Reynolds number of 5452.1 is achieved. The thermal conductivity κ is also constant, and
computed such that the Prandtl number is 0.72. The Mach number of the flow is 0.6.

The high-fidelity solver, Sigma CFD, was initiated with the conditions described above and allowed
to run until a statistically stationary flow regime is reached. At this point, a total of Kmax = 500
snapshots were collected from SIGMA CFD, taken every ∆tsnap = 1×10−5 seconds. The snapshots
were used to construct a POD basis of size 20 modes in the L2 inner product. This basis captured
about 72% of the snapshot energy. Typically, the basis size M would be selected such that the
POD basis captures a greater percentage of the snapshot ensemble energy (e.g., ≈ 90% or more).
We chose a basis that captures less energy of the snapshot set to highlight the effectiveness of our
approach for low-dimensional POD expansions. The predictive power of the stabilized ROM was
evaluated by numerically integrating the ROM 10× the duration of the original snapshots.

Figure 5.16 illustrates the performance of a stabilized M = P = 20 ROM of the higher Reynolds
number cavity problem. In this figure, the modal energy of the DNS, standard, and stabilized
ROMs are illustrated. The standard ROM does not go unstable for this problem, but overpredicts
the energy of the original DNS snapshots by an order of magnitude.

Figure 5.17 shows the PSD of the predicted pressure fluctuations at the point half way up the
downstream wall of the cavity. The PSD of the CFD signal was computed using all available
snapshots from t = 0 to t = 67 where t is non-dimensional. On the other hand, the PSD of the
stabilized ROM was computed from the signal 10× past the duration of the original snapshots; i.e.
t = (670−67) to t = 670. The stabilized ROM accurately predicts the chaotic pressure fluctuations
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Figure 5.16. Nonlinear model reduction of the cavity at Re ≈
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M = 20 ROM (dashed blue line), stabilized M = P = 20 ROM
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Figure 5.17. PSD of pressure at the point half way up the down-
stream wall of the cavity for the cavity at Re≈ 5500. DNS (thick
gray line), stabilized M = P = 20 ROM (black line)

at the selected location.

Figure 5.18 illustrates the Cross Power Spectral Density (CPSD) for pressure fluctuations at two
points: half way up the downstream wall of the cavity, and half way up the upstream wall of
the cavity. Both the power and phase lag at the fundamental frequency, and the first two super
harmonics (normalized frequency (×π rad/sample)≈ 0.18,0.35, and 0.53) are predicted accurately
using the stabilized ROM. The phase lag at these three frequencies in Figure 5.18 as predicted
by the CFD and the stabilized ROM is identified by red squares and blue triangles, respectively.
As expected, the low-dimensional ROM is unable to reproduce the phase lag of low-amplitude
frequencies or higher-order super harmonics.

Finally, Figure 5.19 shows a snapshot of the predicted velocity and pressure magnitudes at the
final snapshot collection time. Since the flow at this higher Reynolds number is chaotic, the low-
dimensional model can not be expected to track the original snapshots exactly. However, the
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Figure 5.18. CPSD of the pressure between two points inside
the of the cavity at Re ≈ 5500. DNS (thick gray line), stabilized
M = P = 20 ROM (black line)
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Figure 5.19. Snapshot of the contours of u-velocity magnitude
at the final snapshot for the cavity problem. DNS (top), standard
M = 20 ROM (middle), and stabilized M = P = 20 ROM (bottom)

snapshots demonstrates that the stabilized ROMs faithfully reproduce the large features of the
flow. The same cannot be said of the standard ROMs.

5.2.2 SPARC–Spirit LSPG ROM stabilized via minimal subspace rotation
for the inviscid pulse in uniform base flow

Having demonstrated the viability of the basis rotation and enhancement technique described in
Chapter 4 on a Sigma CFD–Spirit Galerkin ROM, we consider the extension of this method to
a SPARC LSPG ROM following the procedure outlined in Section 4.2. The problem considered is
the viscous inviscid pulse in a uniform base flow (Section 5.1.2). We have attempted to stabilize
and enhance the LSPG ROMs in SPARC for this problem by applying steps (i)–(v) in Section
4.2. That is, we have stabilized a given SPARC basis for this problem using the Spirit code and
Algorithm 1 in Chapter 4, and compared the generalized coordinates with the projection of the
snapshots onto the stabilized POD modes for the resulting SPARC–Spirit ROMs. Applying the
full LSPG stabilization workflow described in Section 4.2, in particular, reading the stabilized basis
into SPARC and evaluating the accuracy of the resulting LSPG ROM in SPARC, will be the subject
of future work.
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As described in [22, 17], implemented within the Spirit code are a number of linear as well as
nonlinear compressible flow equations. Since the inviscid pulse case considered here is effectively
linear, we run Spirit in linearized Euler mode. It is straightforward to show that a Galerkin ROM
for the linear Euler equations has the form

daaa
dt

= LLLaaa. (5.6)

To be consistent with the Euler equations, the Galerkin ROM must be marginally stable; that is,
the real components of the eigenvalues of LLL must vanish. For the specific case of a linear system,
the stabilization optimization problem (4.10) takes the form

minimize
XXX∈V(M+P),M

− tr
(
XXXTIII(M+P)×M

)
subject to Re(λ̃λλ ) = 0,

(5.7)

where λ̃λλ are the eigenvalues of XXXT LLLXXX . This optimization problem is solved in MATLAB using the
active-set algorithm in fmincon. Derivatives are approximated using central finite differences
and work on incorporating analytical derivatives is ongoing.

Numerical results for an M = P = 10 SPARC–Spirit ROM stabilized using the minimal subspace
rotation approach are presented. The reader can observe by examining Figure 5.20 that the sta-
bilized ROM remains marginally stable for all time t, while the underlying (unstabilized) ROM
exhibits exponential growth.

The reader can observe that the amplitudes of the FOM projection coefficients in Figure 5.20 are
decaying. The decaying amplitudes of the FOM projection coefficients indicates that the FOM
solver is dissipative. This is likely due to the 2nd-order scheme employed in SPARC. Since the
marginal stability constraint in (5.7) (Re(λ̃λλ ) = 0) is non-dissipative, if the user wishes to use the
marginal stability constraint, the FOM discretization must be upgraded to a higher-order, less dis-
sipative scheme. It is possible to generate more accurate ROMs using the existing 2nd-order FOM
discretization in SPARC by modifying (5.7) to require asymptotic stability (i.e., Re(L̃LL) < 0) and
using the ODE based objective given in (4.14). Results for this problem are shown in Figure 5.21.
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Figure 5.20. Time history of SPARC–Spirit M = 10 mode
Galerkin ROM generalized coordinates compared to FOM projec-
tion for inviscid pulse problem run: marginal stability constraint.
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Chapter 6

Discussion

This report summarizes our FY16 progress towards enabling uncertainty quantification using model
reduction for compressible cavity simulations performed using the SPARC in-house flow solver. In
particular, we have described the following:

• our model reduction methodology, which is based on the POD/Galerkin and POD/LSPG
methods,

• the implementation of these model reduction methods in SPARC,

• the minimal subspace rotation approach for reduced basis stabilization and enhancement,

• numerical results for reproductive as well as predictive ROMs for several test cases simulated
in SPARC, including a test case involving a cavity geometry at a moderate Reynolds number.

Here, we summarize the main takeaways from the numerical studies performed during FY16 and
detailed in the previous chapter, as well as describe our plan for subsequent work.

6.1 LSPG ROMs in SPARC

Although we have made progress towards understanding the expected performance of POD/LSPG
ROMs for compressible captive cavity flow problems simulated using SPARC, further work is
needed to make a definitive conclusion about their viability. First and foremost, we must un-
derstand why reproductive full basis (M = K) LSPG ROMs in SPARC sometimes have non-zero
error, a result inconsistent with the theory of LSPG ROMs. Our numerical experiments for the
inviscid pulse test case led us to believe that this issue can be resolved through a simple non-
dimensionalization (or equivalent scaling) of the equations in SPARC. A reformulation of the bound-
ary condition treatment for the ROMs in SPARC may also be required. Only after the ROM im-
plementation in SPARC for the reproductive case is corrected and verified does it make sense to
evaluate the predictive capabilities of the SPARC LSPG ROMs and complete the implementation of
hyper-reduction in SPARC.
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6.2 Basis stabilization and enhancement via minimal subspace
rotation

We have obtained promising results applying the minimal subspace rotation approach for basis
stabilization and enhancement to compressible cavity flow problems in the moderate Reynolds
number regime using the Sigma CFD high-fidelity flow solver and the Spirit ROM code: the
stabilized ROMs are stable for long-time simulations and capable of predicting statistical prop-
erties (e.g., pressure PSDs) of the flow. Our original formulation of this method was for ROMs
constructed for the governing equations in primitive specific volume form. We have formulated an
extension of the stabilization and enhancement methodology to LSPG ROMs in SPARC, and have
put in place most of the steps required. The full workflow has yet to be completed and tested.
Since we believe the apparent instability and non-convergence issues encountered in our numeri-
cal studies of the LSPG ROMs in SPARC can be remedied through non-dimensionalization and/or
boundary condition reformulation, the minimal subspace rotation approach may not be as critical
as originally believed for reproductive ROMs in which the basis captures a large fraction of the
snapshot energy (e.g., 99% or more). However, the method is expected to improve stability and
accuracy for low-dimensional ROMs. A worthwhile research endeavor in the future is to come
up with a further extension of the minimal subspace rotation approach which is embedded within
the SPARC flow solver and does not require the Spirit code, to ensure consistency between the
FOM and stabilized ROM systems. For predictive simulations using ROMs, additional research in
expanding the span of a reduced basis (stabilized or not) beyond that of the original snapshot set is
needed as well. This is because, for predictive problems, the minimal subspace rotation approach
will not yield a more accurate result than that obtained using a full-basis (M = K) ROM.

6.3 FY17 project plan

Much of the FY17 effort will be focused on resolving the computational difficulties described
above by correcting the ROM implementations in SPARC. Once these issues are remedied, we will
move towards higher Reynolds number, turbulent problems. We will also resume the implemen-
tation of hyper-reduction in SPARC, which will enable us to achieve large speed-ups in our ROMs.
We will continue the extension of the minimal subspace rotation technique for stabilizing and
enhancement projection based ROMs to minimal-residual ROMs in SPARC.

Also included in the FY17 effort will be the implementation and verification of higher order dis-
cretization methods (e.g., the Rai scheme) in the SPARC high-fidelity solver. Higher order methods
will enable us to use coarser meshes in our numerical examples, and lead to less dissipative FOM
and ROM solutions.

At the end of FY17, we will produce a report documenting our captive carriage ROM findings
during the year, and (if applicable) recommendations of alternative approaches based on literature
search.
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